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Proanthocyanidins (PAs) are a class of flavonoid compounds in plants that play many
important roles in pest and disease resistance and are beneficial components of the human
diet. The crabapple (Malus) provides an excellent model to study PA biosynthesis and
metabolism; therefore, to gain insights into the PA regulatory network in Malus plants, we
performed RNA-seq profiling of fruits of the ‘Flame’ cultivar at five sequential developmental
stages. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed
that differentially expressed genes (DEGs) related to the functional category ‘plant hormone
signal transduction’ were significantly enriched during fruit development. Further analysis
showed that ethylene signal transduction pathway genes or response genes, such as ERS
(ethylene response sensor), EIN3 (ETHYLENE INSENSITIVE 3) and ERFs (ethylene response
factors), may play an important role in the regulatory network of PA biosynthesis. Additionally,
12 DEGs, including 10 ERFs, 1 MYB, and 1 bHLH transcription factor, associated with PA
biosynthesis were identified using WGCNA. The expression patterns of these genes
correlated with PA accumulation trends and transcriptome data from qRT-PCR analysis.
The expression of RAP2-4 (RELATED TO APETALA 2-4) and RAV1 (related to ABI3/VP1),
which belong to the ERF transcription factor family, showed the greatest correlations with
PAs accumulation among the 12 identified TFs. Agrobacterium mediated-transient
overexpression of the RAP2-4 led to an increase in PA abundance in crabapple leaves
and apple fruits, and the opposite results were observed in RAV1-overexpressed crabapple
leaves and apple fruits. Moreover, a yeast one-hybrid assay showed that RAP2-4 and RAV1
specifically bound the promoters of the PA biosynthetic genes McLAR1 and McANR2,
respectively. These results indicate that RAP2-4 act as an inducer and RAV1 act as a
repressor of PA biosynthesis by regulating the expression of the PA biosynthetic genes
McLAR1 and McANR2. Taken together, we identified two potential regulators of PA
biosynthesis and provide new insights into the ethylene-PA regulatory network.
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INTRODUCTION

Flavonoids compose a major class of plant polyphenolic
compounds and can be divided into three categories:
anthocyanins, proanthocyanidins (PAs) and flavonols
(Williams and Grayer, 2004). PAs are formed by the
condensation of flavan-3-ol monomeric units (catechin and
epicatechin) and are also called condensed tannins. PAs are
known to be involved in protection against UV radiation and
defense against microbial pathogens and pest attacks (Carini
et al., 2000; Li M. et al., 2016), and they have multiple health
benefits in the human diet as a consequence of their antioxidant
activities (Yun et al., 2011; Ma et al., 2017).

Leucoanthocyanidin reductase (LAR) and anthocyanidin
reductase (ANR) are located at the branch of the common core
flavonoid pathway (Tanner et al., 2003; Bogs et al., 2005), are
mainly responsible for the biosynthesis of PAs via a multistep
enzymatic reaction and have been studied in many plant species
(Xie et al., 2003; Xie et al., 2004). In apple, the transcript levels of
the LAR and ANR genes were significantly correlated with the
contents of catechin and epicatechin, respectively, which
suggests that they play important roles in PA synthesis (Liao
et al., 2015). Moreover, two LAR genes, MrLAR1 and MrLAR2,
and two ANR genes, MrANR1 and MrANR2, have been
identified in crabapple. Overexpressing these four genes in
tobacco leaves (Nicotiana tabacum) increased the PA content,
and silencing them in crabapple plants inhibited the
accumulation of PAs (Li et al., 2019).

Several studies have reported that genes involved in flavonoid
biosynthesis are regulated by transcription factors of the R2R3-
MYB, bHLH (basic helix-loop-helix) and conserved WD repeat
families. For example, in apple, the anthocyanin pathway is
controlled by MdMYB1, MdMYB10, and MdMYBA.
Overexpressing these three TFs in apples can activate the
expression of anthocyanin biosynthetic genes and significantly
promote anthocyanin accumulation in plants (Ban et al., 2007;
Espley et al., 2007; Takos et al., 2006). A recent study suggested
that a paralog of MdMYB10, MdMYB110a, regulates
anthocyanin accumulation in red-fleshed apples (Chagné et al.,
2013). The low-temperature-induced MdbHLH3 protein
interacts with MdMYB1 and promotes anthocyanin
accumulation by activating the expression of MdMYB1 and
anthocyanin biosynthetic genes in apple (Xie et al., 2012).
Similar results were also found in other plants, such as
Arabidopsis (Arabidopsis thaliana), alfalfa (Medicago
truncatula), and strawberry (Fragaria × ananassa) (Gonzalez
et al., 2008; Li P. et al., 2016; Medina-Puche et al., 2014).
Moreover, several studies have shown that MYB and bHLH
TFs are also involved in PA biosynthesis (Espley et al., 2007;
Hichri et al., 2011; Montefiori et al., 2015; Lai et al., 2016). In
apple (Malus domestica), overexpressing MdMYB9 or
MdMYB11 increased the contents of both anthocyanins and
PAs in apple calli (Wang et al., 2017). Additionally, both MYB
proteins interact with MdbHLH3 and bind to the promoters of
MdANS, MdANR, and MdLAR (An et al., 2015). Recently,
MdMYBPA1, a PA1-type MYB TF, was cloned from red-
fleshed apple; overexpressing MdMYBPA1 could promote PA
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accumulation in apple calli by binding the promoters of genes in
the PA and anthocyanin biosynthetic pathways (Wang N. et al.,
2018). In crabapple, McMYB12a and McMYB12b coordinately
regulate PA biosynthesis by binding to the promoters of PA
biosynthetic genes (Tian et al., 2016). Moreover, several MYB
transcription factors, such as VvMYBC2-L1, VvMYBPA1,
VvMYBPA2, and VvMYBPAR, have been shown to specifically
regulate the PA biosynthetic pathway by significantly activating
enzymes in the flavonoid pathway in grape (Vitis vinifera)
(Huang et al., 2014; Koyama et al., 2014).

There are also a growing number of reports that other regulatory
genes are involved in regulating PA biosynthesis (Sagasser et al.,
2002; Amato et al., 2016; Gonzalez et al., 2016); for example, a BTB
protein, MdBT2, plays a negative role in the biosynthesis of
anthocyanins and proanthocyanidins. MdBT2 interacts with
MdMYB9 and negatively regulates the abundance of MdMYB9
protein via the 26S proteasome system (An et al., 2018a). The
ethylene response factor MdERF1B has been shown to interact with
MdMYB9, MdMYB1, and MdMYB11 to regulate anthocyanin and
proanthocyanidin biosynthesis (Zhang et al., 2018). Thus, we
speculate that there may be many different transcription factor
families involved in PA biosynthesis in crabapple. MdNAC52
(NAM, ATAF1/2, CUC2) participates in the regulation of PA
biosynthesis by regulating the expression of MdMYB9 and
MdMYB11. Additionally, MdNAC52 can directly bind the
promoter of MdLAR to control its expression and promote PA
synthesis (Sun et al., 2019).

Crabapple (Malus) belongs to the Malus Mill family of
Rosaceae and is represented by a large germplasm collection
(Tian et al., 2011); its fruits produce abundant anthocyanins,
flavonols, PAs, and phlorizin compounds. Procyanidin B1,
procyanidin B2, epicatechin, and catechin are the main PA
compounds in crabapple fruits (Tian et al., 2017; Li et al.,
2019). This makes it a valuable model for studying the
molecular mechanisms of PA biosynthesis. In the current
study, we performed RNA-seq analyses on the fruit of the
‘Flame’ crabapple cultivar at five different developmental stages
to identify candidate regulators of PA biosynthesis. Furthermore,
we conducted an unbiased network analysis to identify genes that
are coexpressed with those known to be involved in PA
accumulation. Based on the results of qRT-PCR analysis,
transient infection, 4-dimethylaminocinnamaldehyde
(DMACA) staining and yeast one hybrid (Y1H), we
characterized the functions of two transcription factors
involved in PA biosynthesis during fruit development.
MATERIALS AND METHODS

Plant Materials
In this study,Malus spp. ‘Flame’, a green-fruited cultivar, was used.
Eight-year-old trees were grafted onto Malus hupehensis and
planted at the Crabapple Germplasm Resources Nursery at the
Beijing University of Agriculture (40.l°N, 116.6°E). Three trees
showing similar growth were used, and fruit samples were
collected from annual branches growing at the edge in the
February 2020 | Volume 11 | Article 76
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southeast direction. The fruits were collected 20, 40, 60, 80, and 100
days after budding (S1-S5, ‘S’ represents ‘stage’). All flesh samples
were frozen in liquid nitrogen upon collection and stored at −80°C
prior to high-pressure liquid chromatography (HPLC) analysis or
RNA extraction.

‘Flame’ tissue culture plants were harvested from one-year-
old branches before spring bud germination, and the culturing
conditions were as previously described (Tian et al., 2017).

RNA Quantification and Quality Analysis
RNAdegradation and contamination were visualized on 1% agarose
gels. RNA purity was confirmed using a Nano Photometer®

spectrophotometer (IMPLEN, CA, USA). RNA concentration was
measured using a Qubit® RNA Assay Kit in a Qubit® 2.0
fluorometer (Life Technologies, CA, USA). RNA integrity was
assessed using an RNA Nano 6000 Assay Kit and a Bioanalyzer
2100 system (Agilent Technologies, CA, USA) (Yang et al., 2018).

RNA-Seq Library Preparation
A total of 3 µg of RNA per sample was used as input material for the
RNA sample preparation. Sequencing libraries were generated using
an NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB,
USA) following the manufacturer’s recommendations, and index
codes were added to label each sample. To preferentially select the
150 to 200 bp cDNA fragments, an AMPure XP system was used to
purify the library fragments. High-fidelity DNA polymerase,
Universal PCR primers and index (X) primers were used in the
PCRs. An Agilent Bioanalyzer 2100 system was used to assess the
quality of the library.

Read Mapping to the Reference Genome
and Quantification of Gene Expression
An index of the reference genome was built using Bowtie v2.2.3,
and paired-end clean reads were aligned to the apple (Malus
domestica) reference genome using TopHat v2.0.12 (Trapnell
et al., 2009; Riccardo et al., 2010). HTSeq v0.6.1 (https://pypi.
python.org/pypi/HTSeq) was used to count the read numbers
mapped to each gene (Anders et al., 2015).

Differential Expression Analysis
Differential gene expression analysis of the five groups (three
biological replicates per group) was performed using the DESeq
R software package (1.18.0) (http://www.bioconductor.org/
packages/release/bioc/html/DESeq.html) (Benjamini and
Hochberg, 1995). The resulting P-values were adjusted using
the Benjamini and Hochberg approach for determining the false
discovery rate (Benjamini and Hochberg, 1995). Genes with an
adjusted P-values < 0.05 found by DESeq were considered
differentially expressed (Anders and Huber, 2010).

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Enrichment Analysis of
Differentially Expressed Genes (DEGs)
Blast2GO software was used to identify enriched GO terms. GO
terms with corrected P < 0.05 were considered significantly
Frontiers in Plant Science | www.frontiersin.org 3
enriched for DEGs (Conesa et al., 2005). KOBAS software was
used to test the statistical enrichment of DEGs in the KEGG
pathways (http://www.genome.jp/kegg/) (Mao et al., 2005).

Identification of Coexpression Modules
and Visualization of Hub Genes
The R WGCNA package was used to identify modules of highly
correlated genes based on fragments per kilobase of transcript
per million mapped reads (FPKM) data (Zhang and Horvath,
2005). The WGCNA analysis was performed according to
established methods (Zhan et al., 2015). Genes with the highest
degree of connectivity within a module are referred to as
intramodular hub genes (Langfelder and Horvath, 2008). The
gene annotation information was taken from the KOBAS 2.0
annotation results.

HPLC and Quantitative Real Time (qRT)-
PCR Analysis
HPLC and qRT-PCR analyses were performed according to
previously published methods (Tian et al., 2011). Frozen
samples (approximately 0.8–1.0 g fresh weight) were extracted
with 10 mL extraction solution (methanol: water: formic acid:
trifluoroacetic acid = 70: 27: 2: 1) at 4°C in the dark for 72 h. The
supernatant was passed through filter paper and then through a
0.22-mm Millipore™ filter (Billerica, MA, USA). Trifluoroacetic
acid: formic acid: water (0.1: 2: 97.9) was used as mobile phase A,
and trifluoroacetic acid: formic acid: acetonitrile: water (0.1: 2:
48: 49.9) was used as mobile phase B for HPLC analysis. The
gradients used were as follows: 0 min, 30% B; 10 min, 40% B; 50
min, 55% B; 70 min, 60% B; 30 min, 80% B. Detection was
performed at 520 nm for anthocyanins and at 280 nm for PAs
(Revilla and Ryan, 2000). All samples analyzed consisted of three
biological triplicates.

The expression levels of related genes were analyzed using
qRT-PCR and SYBR Green qPCR Mix (TaKaRa, Ohtsu, Japan)
with a Bio-Rad CFX96 Real-Time PCR system (BIO-RAD, USA)
according to the manufacturers’ instructions. The PCR primers
were designed using NCBI Primer BLAST (https://www.ncbi.
nlm.nih.gov/tools/primer-blast/) and are listed in Table S1. qRT-
PCR analysis was carried out in a total volume of 20 ml
containing 9 ml of 2×SYBR Green qPCR Mix (TaKaRa, Ohtsu,
Japan), specific primers at 0.1 mM each, and 100 ng of template
cDNA. The reaction mixtures were heated to 95°C for 30 s,
followed by 39 cycles at 95°C for 10 s, 50 to 59°C for 15 s, and 72°
C for 30 s. A melting curve was generated for each sample at the
end of each run to ensure the purity of the amplified products.
The transcript levels were normalized using the Malus 18S
ribosomal RNA gene (GenBank ID DQ341382, for crabapple)
as the internal control and calculated using the 2^ (−DDCt) analysis
method. All samples analyzed consisted of three biological
replicates extracted from three different batches of fruits.

DMACA Staining and Determination of
PA Content
PA accumulation in crabapple leaves was visualized via
infiltration with DMACA stain. Samples were stained via
February 2020 | Volume 11 | Article 76
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incubation overnight with DMACA solution (0.2% DMACA w/v
in methanol: 6 M HCL, v/v = 1:1). The PA content was
determined as previously described (Wang et al., 2017).

Transient Expression Assays in Crabapple
Plantlets and Apple Fruits
Fu l l - l eng th RAP2-4 (MD15G1365500) and RAV1
(MD13G1046100) constructs were PCR-amplified from a
cDNA library derived from Malus crabapple leaves (cv.
“Flame”) using gene-specific primers and Taq DNA
polymerase (TaKaRa, Ohtsu, Japan) according to the
manufacturer’s instructions. Full-length RAP2-4 and RAV1
were cloned into a modified pBI101 vector using seamless
cloning at the NdeI and KpnI sites. The PCR primers used are
shown in Table S1 (Tian et al., 2016).

A. tumefaciens cells were grown, collected, and resuspended
to a final optical density of 1.5 at 600 nm in a solution of 10 mM
MES, 10 mM MgCl2, and 200 mM acetosyringone and then
incubated at room temperature for 3 to 4 h without shaking. The
infiltration protocol and culture methods for transient
expression assays in crabapple plantlets and apple fruits were
adapted as previously described (Tian et al., 2016). All samples
were analyzed from at least three biological replicates.

Yeast One-Hybrid Assays
The open reading frames of RAP2-4 and RAV1 were cloned into
the EcoRI and SacI sites of pGADT7 (Clontech, Palo Alto, CA,
USA) under the control of the galactokinase 4 (GAL4) promoter to
yield the effector constructs. The promoter fragments of McCHS
(MD13G1285100), McCHI (MD01G1117800), McF3H
(MD02G1132200), McDFR (MD03G1214100), McANS
(MD01G1153600), McUFGT (MD09G1141700), McLAR1
(MD16G1048500), McLAR2 (MD13G1046900), McANR1
(MD10G1311100), and McANR2 (MD05G1335600) were ligated
Frontiers in Plant Science | www.frontiersin.org 4
into the pHIS2 plasmid, the sites are located upstream of the LacZ
reporter gene (BD Biosciences, Shanghai, China). The background
of the pHIS2 vectors was suppressed using 3-amino-1,2,4-triazole
(3-AT). The yeast one-hybrid assay methods were as previously
described (Wang N. et al., 2018). The primers used for the yeast
one-hybrid assays are shown in Table S1.

Accession Number
Raw sequencing data in this manuscript have been deposited in
National Center for Biotechnology Information Sequence Read
Archive under accession number PRJNA546094.
RESULTS

Metabolic Differences Among and
Transcriptome Analyses of Different
Developmental Stages
To compare the variation in flavonoid content during crabapple
fruit development, we selected fruit flesh for high-performance
liquid chromatography (HPLC) from three biological replicates
of ‘Flame’ fruit at five different developmental stages (35, 60, 95,
120, and 150 days after full bloom) (Figure 1A). The main PA
compounds procyanidin B1, procyanidin B2, and epicatechin
were detected by HPLC, and the overall PA content (procyanidin
B1, procyanidin B2, epicatechin) decreased during fruit
deve lopment (Figure 1B ) . Moreover , anthocyanin
accumulation was only detected at stage 5, and phloridzin
accumulated in the early stages of fruit development.

We used RNA-seq analysis to profile the transcriptomes of
‘Flame’ fruit at five representative developmental stages (Figure
1A) (three biological replicates). The total numbers of clean
reads in the RNA-seq libraries ranged from 10,664,693 to
13,963,577, and > 83% of paired reads were mapped to the
FIGURE 1 | Analyses conducted for the DEGs identified by RNA-seq in the five stages of fruit development in M. ‘Flame’. (A) Fruit phenotypes at different stages
(S1 to S5). (B) The content of the main flavonoid compounds in M. ‘Flame’ fruit at five developmental stages. (C) Expression analysis of flavonoid pathway genes at
five developmental stages in fruit evaluated via RNA-seq with three biological replicates.
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apple genome (Table 1). Pearson correlation analysis showed
that the three biological replicates had highly consistent
transcriptome profiles across all developmental stages (r2 =
0.858 to 0.986; Figure S1). The percentages of exonic
sequences ranged from 42.95% to 56.98%, and the percentages
of intronic sequences ranged from 2.19% to 5.42% (Figure S2).

We also observed that many flavonoid biosynthetic genes were
highly expressed during development (Figure S3). Flavonoid
pathway biosynthetic genes, including CHS (chalcone synthase)
(MD04G1003300, MD13G1285100), CHI (chalcone isomerase)
(MD01G1167300, MD07G1186300, MD07G1233400), flavanone
3 beta-hydroxylase (F3H,MD02G1132200, MD15G1246200), F3H
(flavanone 3-hydrocylase) (MD02G1132200), dihydroflavonol 4-
reductase/flavanone 4-reductase (DFR, MD15G1024100),
flavonoid 3 ’-monooxygenase (F3 ’H, MD14G1210700,
MD06G1201700), leucoanthocyanidin dioxygenase (LDOX,
MD06G1071600, MD03G1001100), and flavonol synthase (FLS,
MD08G1121600, MD15G1353800) showed > 11-fold differential
expression (Table S3). Notably, the PA-related biosynthetic genes
LAR (MD13G1046900 , MD16G1048500) and ANR
(MD05G1335600, MD10G1311100), encoding enzymes
associated with PA biosynthesis, exhibited a > 20-fold decrease
in expression with the development of crabapple fruit, and these
results were consistent with the trends in the accumulation of the
PAs (Figure 1C).

Identification of DEGs Between Different
Developmental Stages
To explore the molecular basis of the variations in PA content
and obtain a more detailed understanding of the PA regulatory
network during crabapple fruit development, the expression of
each gene at the fifth developmental stage was compared to that
over the consecutive developmental stages and then filtered using
|log2(fold-change)| > 1 or < −1 and a false discovery rate (FDR) <
0.05. The most DEGs were found for S1 vs. S5 (8,710), while the
S1 vs. S2 comparison had the fewest DEGs (1,645) (Figure S3).

Many DEGs related to ‘phenylalanine metabolism,’
‘phenylpropanoid biosynthesis,’ and ‘flavonoid biosynthesis,’
which are associated with PA biosynthesis, were significantly
TABLE 1 | RNA sequencing data and corresponding quality control.

Sample name Clean reads GC content

S1-1 11,910,449 3,544,170,716
S1-2 12,022,054 3,586,802,306
S1-3 12,467,852 3,716,697,858
S2-1 11,019,595 3,286,767,958
S2-2 11,266,806 3,363,171,396
S2-3 11,551,754 3,447,672,244
S3-1 11,327,223 3,369,447,850
S3-2 11,123,686 3,318,143,424
S3-3 13,008,255 3,873,955,712
S4-1 13,271,812 3,968,098,102
S4-2 13,963,577 4,172,384,900
S4-3 13,133,430 3,917,360,394
S5-1 10,664,693 3,184,130,574
S5-2 12,477,368 3,724,748,616
S5-3 11,749,880 3,507,409,072
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enriched during fruit development, as shown by KEGG analysis
(Figures 2A, B). Interestingly, several DEGs related to ‘plant
hormone signal transduction’ were also enriched throughout
fruit development. We also identified several plant hormone
signal transduction and response proteins, including auxin-
responsive genes, ethylene signal transduction pathway genes
and ethylene-responsive genes, among the DEGs related to ‘plant
hormone signal transduction’ during fruit development (Figure
2C, Table S2). Interestingly, several auxin-responsive genes were
significantly enriched throughout fruit development, which
implied that auxin might be involved in PA biosynthesis
during fruit flesh development in crabapple.

Notably, ethylene signal transduction pathway genes and
ethylene-responsive genes, including ethylene-responsive
transcription factors and the ethylene receptor, were
upregulated in a stage-specific manner during the later stages
of fruit flesh development. In addition, many DEGs related to
ethylene biosynthesis and signal transduction, such as ERS
(ethylene response sensor) (MD03G1292200), EIN3
(ETHYLENE INSENSITIVE 3) (MD07G1053800), and ERFs
(ethylene response factors) (MD04G1009000, MD11G1306500,
MD17G1209000, MD16G1140800), were enriched during fruit
development, suggesting that ethylene may play an important
role in regulating PA biosynthesis in the late stages of fruit
flesh development.

Identification of WGCNA (Weighted
Correlation Network Analysis) Modules
and Hub Genes Associated With
PA Biosynthesis
To further identify the specific transcription factors involved in
regulating PA biosynthesis during crabapple fruit development, a
total of 9,471 DEGs were used in aWGCNA analysis, resulting in
17 distinct modules (Figure 3A). The MElightcyan module was
the highest correlative module with procyanidin B2, and this
module included 4,297 genes and had the highest correlation
with PA accumulation (0.81) across all developmental stages
(Figure 3B). In the MElightcyan module, 137 and 296 genes
were related to ‘signal transduction mechanisms’ and
%≧Q30 Total reads Mapped reads

47.55% 94.06% 23,820,898
48.22% 93.74% 24,044,108
47.98% 93.65% 24,935,704
48.06% 94.76% 22,039,190
47.92% 94.90% 22,533,612
47.73% 95.45% 23,103,508
47.48% 92.70% 22,654,446
47.37% 92.39% 22,247,372
47.26% 92.60% 26,016,510
47.37% 95.00% 26,543,624
47.44% 95.40% 27,927,154
47.61% 95.46% 26,266,860
47.62% 93.87% 21,329,386
48.52% 93.65% 24,954,736
48.42% 93.54% 23,499,760
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‘transcription,’ respectively (Figure 3B, Tables S3 and S4). These
analyses further showed that as the fruit developed, ethylene
signal transduction pathway genes gradually increased, while
ethylene-responsive genes gradually decreased. In addition,
genes associated with ‘transcription’ were highly enriched for
the MYB, bHLH, ERF, and ARF families. These data indicate that
ethylene signal transduction pathway genes or ethylene-
responsive genes play an important role in the regulatory
network of PA biosynthesis and that MYBs, bHLHs, ERFs, and
ARFs may be involved in the metabolism of PAs.

To further identify the specific TFs that participate in
regulating PA biosynthesis during crabapple fruit development,
296 genes encoding transcription factors, including members of
the MYB, bHLH, ERF, TCP, bZIP, WRKY, and WD40 families,
were further analyzed via a correlation network (Figure 3C). The
top 150 genes that showed the most connections in the network
based on their high KME (eigengene connectivity) values were
defined as hub genes, and the enrichment for MYB, bHLH, and
ERF transcription factors were detected.

Through correlation networks and gene expression trends, we
identified 12 transcription factors from the MYB, bHLH and
ERF families as hub genes (Figure 3C). These genes included
ethylene-response factors (ERF105, MD07G1248600; ERF023,
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MD01G1083000; RAP2-4, MD15G1365500; ERF1A,
MD04G1058000 ; ERF5 , MD06G1051900 ; RAV1 ,
MD13G1046100; DREB1A, MD06G1072300; DREB1D,
MD04G1067800; ERF1E, MD06G1072200; and ERF061,
MD14G1127700), MYB44 (MD08G1107400) and bHLH13
(MD07G1151000) (Figure 4A).

To visualize the reliability of the RNA-seq data, the
expression level of hub genes were detected by qRT-PCR
analysis (Figure 4B). The results showed that the expression
levels of these genes gradually decreased during fruit
development. To better validate the reliability of the selected
hub genes, we generated a heat map showing the correlation
data. The RNA-seq and qRT-PCR data showed strong
correlations (> 0.70) between PAs and the expression of related
candidate PA regulators (Figure 4C).

Functional Assay of Transcription Factors
Associated With PA Biosynthesis in
Crabapple Plantlets and Apple Fruits
The ERF family gene RAP2-4 (RELATED TO APETALA 2-4)
participates in regulating plant development and stress resistance
via light perception and ethylene signaling (Lin et al., 2008). By
contrast, RAV1 (related to ABI3/VP1) is known to be a suppressor
FIGURE 2 | Functional analysis of DEGs between consecutive developmental stages. (A) Venn diagrams for the DEGs between each combination (Stage 1 vs.
Stage 2, Stage 2 vs. Stage 3, Stage 3 vs. Stage 4, Stage 4 vs. Stage 5). (B) KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment of DEGs
(152) during fruit development. (C) Heat map comparing DEGs (152) during fruit development.
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involved in flower development, growth, and stress responses (Hu
et al., 2004). Here, the expression of RAP2-4 and RAV1 showed the
greatest correlations with PAs accumulation among the 12
identified TFs during fruit development (Figures 4A, C).

To assess the role of RAP2-4 and RAV1 in PA biosynthesis,
1221 bp PAP2 and 1098 bp RAV1 cDNA sequences from
‘Royalty’ were cloned from fruit flesh, and they were predicted
to encode 406 and 365 amino acids, respectively.

Subsequently, the vector constructs 35S::RAP2-4 and 35S::RAV1
(pBI101 for overexpression) were overexpressed in ‘Flame’ tissue
culture plants, resulting in stronger DMACA staining and higher
PA content in 35S::RAP2-4 expressed leaves than in the control
(Figure 5A). We also observed weaker DMACA staining and lower
PA content in RAV1-overexpressing leaves than in control leaves
(Figure 5A). Gene expression analysis by qRT-PCR further
indicated that the expression of the PA-related genes McLAR1
andMcANR1 increased compared to those in the control in RAP2-
4-overexpressing leaves, while McANR2 expression was lower in
RAV1-overexpressing leaves than in the control (Figures 5B, C).

We also overexpressed the RAP2-4 and RAV1 genes in ‘Red
Fuji’ fruits to further reveal the role of these two TFs.
Agrobacterium tumefaciens cultures containing 35S::RAP2-4 or
35S::RAV1 were individually injected into apple fruits. The fruits
Frontiers in Plant Science | www.frontiersin.org 7
infiltrated with 35S::RAP2-4 rapidly accumulated PAs, resulting in
deep blue staining in the peels. In contrast, apple fruits infiltrated
with the 35S::RAV1 showed weaker DMACA staining. (Figure
5D). By using qRT-PCR, the expression of McLAR1 strongly
increased compared to control peels in RAP2-4-overexpressing
fruit peels, we also observed a significant decrease in the
expression of McLAR2 and McANR2 when RAV1 was
overexpressed. (Figures 5E, F). These results suggest that RAP2-
4 may act as an activator in PA biosynthesis, while RAV1 acts as
a suppressor.

RAP2-4 and RAV1 Proteins Bind to the
Promoters of PA Biosynthetic Genes
To verify the speculation that PA biosynthetic genes might be
regulated by RAP2-4 and RAV1 in crabapple, a yeast one-hybrid
assay was employed to test their ability to bind the promoters of
McCHS, McCHI, McF3H, McDFR, McANS, McUFGT, McLAR1,
McLAR2, McANR1, and McANR2. The results showed that
RAP2-4 bound the promoter of McLAR1, and RAV1 bound
the promoter of McANR2. From these results, we deduced that
the PA biosynthetic genes McLAR1 and McANR2 might be
candidate target genes of RAP2-4 and RAV1, respectively
(Figure 6).
FIGURE 3 | Identification of WGCNA modules and hub genes associated with proanthocyanidin biosynthesis. (A) Module-PA weight correlations and corresponding
P-values (in parentheses). A high degree of correlation between a specific module and the procyanidin B2 is indicated by red underlining of the module name.
(B) Transcriptional heat map of genes in the MElightcyan module, the module with the highest correlation with procyanidin B2. (C) Analysis of TF correlation
networks in the MElightcyan module. Candidate hub genes are shown in bigger font, and the size of the graph is positively correlated with the PA correlation.
Different letters above the bars indicate significantly different values (P < 0.05) calculated using one-way analysis of variance (ANOVA) followed by Tukey’s multiple
range test.
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DISCUSSION

PAs accumulate in several plant tissues, especially in fruits, and
play many important roles in physiological and developmental
processes; PAs are the main products of the flavonoid pathway
and have significant health benefits to humans (Bondonno et al.,
2019). Crabapple fruits produce abundant PA compounds,
making them a valuable model for studying the molecular
mechanisms of PA biosynthesis. In our study, we found via
HPLC analysis that the accumulation of PAs was enriched in
young fruits during fruit development. Similar trends in
expression have previously been reported for banana fruit
(Musa); the expression levels of MaANR and MaLAR were
associated with the accumulation of PAs in young fruits
(Pandey et al., 2016). Thus, we used RNA-seq analysis to focus
on the molecular mechanisms underlying PA biosynthesis
during fruit development.

Abscisic acid, ethylene, and jasmonic acid have been reported
to be involved in anthocyanin biosynthesis and to promote fruit
ripening, while auxin and gibberellin inhibit anthocyanin
biosynthesis and delay fruit maturation (Jaakola, 2013; Murcia
et al., 2016; Olivares et al., 2017). Moreover, previous research
has shown that the ABA signaling network promotes flavonol
biosynthesis (especially of quercetin derivatives) in early land
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plants (Brunetti et al., 2019). These results showed that
phytohormones play important roles in the development and
ripening of fruit and are also involved in flavonoid biosynthesis
(Coelho et al., 2019). In our research, many DEGs related to
‘plant hormone signal transduction’ were enriched throughout
fruit development, suggesting a correlation between plant
hormones and PA biosynthesis in Malus crabapple fruit
(Figure 2). Further analyses of DEGs related to ‘plant
hormone signal transduction’ identified auxin and ethylene as
playing important roles during the development of fruit flesh,
and they may be involved in the regulation of PA biosynthesis.
Moreover, many DEGs encoding genes involved in ethylene
biosynthesis and ethylene signal transduction, as well as ERF
transcription factors, were significantly enriched during fruit
development, suggesting a correlation between ethylene and
PA biosynthesis in Malus crabapple fruit.

Further analyses with the MElightcyan module, the module
with the highest correlation with procyanidin B2, showed that
ethylene signal transduction pathway and ethylene response
genes play an important role in the regulatory network of PA
biosynthesis, and MYBs, bHLHs, ERFs, and ARFs may be
involved in PA metabolism (Figure 3). This information
suggests a new path for exploring the PA regulatory network.
Several studies have reported that the regulation of genes
FIGURE 4 | Identification and analysis of PA-biosynthesis-associated transcription factor genes. (A) Heat maps describing the expression profiles of candidate
genes related to PA biosynthesis. ERF represents ethylene-responsive transcription factors, MYB represents the R2R3-MYB transcription factor, bHLH represents
the helix-loop-helix DNA-binding domain. (B) Validation of RNA-seq expression profiles via qRT-PCR. (C) Correlation analysis between PA accumulation and the
expression of related candidate PA regulators via RNA-seq and qRT-PCR data. Different letters above the bars indicate significantly different values (P < 0.05)
calculated using one-way analysis of variance (ANOVA) followed by Tukey’s multiple range test.
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FIGURE 5 | Overexpression of RAP2-4 (MD15G1365500) and RAV1 (MD13G1046100) in Malus crabapple leaves and Malus domestica ‘Fuji’ fruit peels.
(A) 4-Dimethylaminocinnamaldehyde (DMACA) staining in pRI101-, RAP2-4 (MD15G1365500)-, and RAV1 (MD13G1046100)- overexpressing crabapple leaves.
(B) The PA contents of transiently overexpressing leaves. (C) Expression analysis of RAP2-4, RAV1, and PA-related biosynthetic genes in transiently overexpressing
leaves. (D) DMACA staining in pRI101-, RAP2-4 (MD15G1365500)-, and RAV1 (MD13G1046100)-overexpressing apple peels. (E) The PA contents of transiently
overexpressing apple peels. (F) Expression analysis of RAP2-4, RAV1, and PA-related biosynthetic genes in transiently overexpressing apple peels. All results are
derived from three biological replicates. Different letters above the bars indicate significantly different values (P < 0.05) calculated using one-way analysis of variance
(ANOVA) followed by Tukey’s multiple range test.
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involved in PA biosynthesis is in part mediated by many
transcription factors. MYB and bHLH transcription factors
have been the most comprehensively researched, including in
Arabidopsis (Nesi et al., 2001), strawberry (Schaart et al., 2013),
grape (Deluc et al., 2006), persimmon (Akagi et al., 2009) and
apple (Wang et al., 2017). In addition, MdARF13 interacts with
MdMYB10 to promote anthocyanin biosynthesis by directly
binding the promoter of MdDFR. By contrast, MdERF1B is
responsible for regulating anthocyanin and PA accumulation,
mainly by acting on MdMYB9 and MdMYB11 in apple (Zhang
et al., 2018; Wang Y. C. et al., 2018). In our study, the genes
encoding MYB, bHLH, and ERF transcription factors exhibited
significantly higher expression and showed the same trends as
PA accumulation in the 9,471 DEGs identified viaWGCNA and
transcription factor correlation network analysis (Figure 3). We
hypothesized that the MYB, bHLH, and ERF families play pivotal
roles in the regulation of PA biosynthesis inMalus crabapple and
selected 12 candidate hub genes from these families for
subsequent verification (Figure 4).
Frontiers in Plant Science | www.frontiersin.org 10
Ethylene, the major ripening hormone in climacteric fruit, is
also involved in regulating flavonoid biosynthesis (Onik et al.,
2018; Li et al., 2016). In grape berries, exogenous ethylene
promotes anthocyanin biosynthesis by stimulating the
expression of CHS, F3H, LDOX, and UFGT (El-Kereamy et al.,
2003). In plum, ethylene-treated fruits show significantly
improved flesh reddening via an increase in PAL expression
(Manganaris et al., 2008). In apples, exogenous ethylene
treatment during fruit ripening increased the anthocyanin
content and the enzymatic activity of anthocyanin biosynthetic
genes (Faragher and Brohier, 1984). However, it is unclear
whether ethylene promotes PA accumulation during fruit
ripening. On the other hand, ERF TFs have been identified as
regulators of flavonoid biosynthesis in plants. In Arabidopsis,
AtERF4 and AtERF8 promote anthocyanin accumulation by
activating the expression of anthocyanin biosynthetic genes
under light treatment (Koyama and Sato, 2018). In pear (Pyrus
bretschneideri), PyERF3 enhances anthocyanin biosynthesis by
interacting with both PyMYB114 and PybHLH3, and Pp4ERF24
FIGURE 6 | Cis-element binding ability of RAP2-4 and RAV1 with anthocyanin and PA biosynthetic genes. Interaction of RAP2-4 and RAV1 proteins with the
promoters of flavonoid biosynthetic genes as revealed by yeast one-hybrid assays. The concentration of 3AT is 50 mM for RAP2-4 and RAV1. Yeast transformed
with pGADT7/pHIS2, pGADT7-RAP2-4/pHIS2, pGADT7-RAV1/pHIS2, or pGADT7-/pHIS2-flavonoid biosynthetic gene promoters were used as controls.
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and PpERF96 interact with MYB114 and participate in blue-
light-mediated anthocyanin biosynthesis in pear fruits (Yao
et al., 2017; Ni et al., 2019). In apple, MdERF3 promotes
anthocyanin biosynthesis by interacting with MdMYB1 (An
et al., 2018b), while MdERF1B has been reported to interact
with MdMYB9, MdMYB1, and MdMYB11 to regulate
anthocyanin and proanthocyanidin biosynthesis (Zhang
et al., 2018).

In our study, by usingWGCNA, we noticed several ERF TFs in
the MElightcyan module. Considering the important roles of
ethylene during fruit development, we selected two ERF
transcription factors (RAP2-4, MD15G1365500, and RAV1,
MD13G1046100) that had the greatest difference in expression
for further analysis. Previous studies have shown that RAP2-4
plays critical roles in waterlogging tolerance, cold and heat stress,
salt stress, and drought stress (Figueroayañez et al., 2016; Phukan
et al., 2018). In addition, RAV1 acts as a negative regulator of
growth in many plant species, and its transcription is
downregulated by BR and ABA (Hu et al., 2004). Expression
analysis was employed to detect the functional role of these two
ERF TFs in crabapple fruits. The results showed that the
transcription levels of RAP2-4 and RAV1 were positively
correlated with the PA contents of crabapple fruits. Y1H
suggested that these two ERF TFs participate in regulating PA
accumulation by binding to the promoters of PA biosynthetic
genes. These results were further confirmed by transient
overexpression analysis. Thus, we deduced that RAP2-4 and
RAV1 may be candidate PA regulators and play pivotal roles in
regulating PA biosynthesis during crabapple fruit development.
Furthermore, we found that RAP2-4 acts as a positive regulator
and that RAV1 acts as a negative regulator in PA accumulation.
We speculated that these two TFs may participate in PA
biosynthesis via competitive interaction with MYB or bHLH
TFs, and this hypothesis will be addressed in future studies.

Overall, RNA-seq analyses and the functional studies of these
two ERF transcription factors provide insights into fruit
development. Notably, we found that ethylene plays a critical
role in this pathway and that ERF transcription factors regulate
PA biosynthesis.
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