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Tropical montane forests (TMFs) play an important role as a carbon reservoir at a global
scale. However, there is a lack of a comprehensive understanding on the variation in
carbon storage across TMF compartments [namely aboveground biomass (AGB),
belowground biomass (BGB), and soil organic matter] along altitudinal and
environmental gradients and their potential trade-offs. This study aims to: 1) understand
how carbon stocks vary along altitudinal gradients in Andean TMFs, and; 2) determine the
influence of climate, particularly precipitation seasonality, on the distribution of carbon
stocks across different forest compartments. The study was conducted in sixty 0.1 ha
plots along two altitudinal gradients at the Podocarpus National Park (Ecuador) and Río
Abiseo National Park (Peru). At each plot, we calculated the amount of carbon in AGB (i.e.
aboveground carbon stock, AGC), BGB (i.e. belowground carbon stock, BGC), and soil
organic matter (i.e. soil organic carbon stock, SOC). The mean total carbon stock was
244.76 ± 80.38 Mg ha–1 and 211.51 ± 46.95 Mg ha–1 in the Ecuadorian and Peruvian
plots, respectively. Although AGC, BGC, and SOC showed different partitioning patterns
along the altitudinal gradient both in Ecuador and Peru, total carbon stock did not change
with altitude in either site. The combination of annual mean temperature and precipitation
seasonality explained differences in the observed patterns of carbon stocks across forest
compartments between the two sites. This study suggests that the greater precipitation
seasonality of colder, higher altitudes may promote faster turnover rates of organic matter
and nutrients and, consequently, less accumulation of SOC but greater AGC and BGC,
compared to those sites with lesser precipitation seasonality. Our results demonstrate the
capacity of TMFs to store substantial amounts of carbon and suggest the existence of a
.org March 2020 | Volume 11 | Article 1061
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trade-off in carbon stocks among forest compartments, which could be partly driven by
differences in precipitation seasonality, especially under the colder temperatures of
high altitudes.
Keywords: aboveground biomass, allometric equations, Andes, belowground biomass, climatic gradients,
precipitation seasonality, soil organic carbon
INTRODUCTION

Tropical forests are the most important terrestrial carbon sink
(Pan et al., 2011). During the last century, however, both the
increase in temperatures and the loss of tropical forest cover may
have diminished their effectiveness in mitigating the effect of
climate change (Gibbs et al., 2007; Saatchi et al., 2011; Liu et al.,
2017; Mitchard, 2018). In this context, it is paramount to make
accurate estimations of the carbon content of tropical forests.
Because programs such as REDD+ (Reducing Emissions from
Deforestation and Forest Degradation; http://theredddesk.org/)
are intended to provide economic rewards for developing
countries that reduce their carbon emissions (Saatchi et al.,
2011; Sills et al., 2017), knowing the amount of carbon stored
in ecosystems is also key in political and economic terms—not
just ecological—when designing effective policies.

Tropical montane forests (TMFs) in the Andes range across
broad gradients, both altitudinal (typically from ca. 1000 to over
3600 m; Spracklen and Righelato, 2014) and environmental,
making them unique for understanding the influence of climate
on carbon stocks (Malhi et al., 2010). They are important by
providing ecosystem services and as biodiversity hotspots
(Bruijnzeel et al., 2011), but in comparison to moist lowland
tropical forests, their role as a carbon sink is still poorly
understood (e.g. Baker et al., 2004; Gibbs et al., 2007; Malhi
et al., 2009; Malhi et al., 2010; Paulick et al., 2017). So far we
know that TMFs can store substantially more aboveground
biomass (AGB) per unit area than previously believed (global
AGB average of 271 Mg ha–1), although their contribution to
AGB per unit area is lesser than that of lowland tropical forests
(global AGB average of 423 Mg ha–1; Spracklen and Righelato,
2014). Alternatively, TMFs could be important for the storage of
carbon as belowground biomass (BGB, Leuschner et al., 2007;
Girardin et al., 2010) and as soil organic matter (Raich et al.,
2006; Leuschner et al., 2007; Leuschner et al., 2013). This fact can
be particularly relevant at higher altitudes, where hydromorphic
processes (i.e. water saturation in the soil associated under
conditions of reduction) can prevail over podsolisation
processes (i.e. downward migration of aluminium, iron and
organic matter, and their accumulation in lower layers), thus
resulting in lower rates of organic matter decomposition (Schawe
et al., 2007) and larger concentration of soil organic
carbon (SOC).

In contrast to SOC, aboveground (AGC) and belowground
carbon (BGC) are expected to decline with altitude (Kitayama
and Aiba, 2002; Raich et al., 2006; Girardin et al., 2010; Girardin
et al., 2013; Phillips et al., 2019). However, other patterns have
been also reported for the relationship between AGC and
.org 2
altitude: positive monotonic (Tashi et al., 2016), unimodal
(Weaver and Murphy, 1990; Lieberman et al., 1996; Raich
et al., 1997; Moser et al., 2008; Alves et al., 2010; Larjavaara
and Muller-Landau, 2012; Marshall et al., 2012; Ensslin et al.,
2015; Phillips et al., 2019), bimodal (Venter et al., 2017), or null
(i.e. no relationship; Culmsee et al., 2010; Unger et al., 2012; Peña
and Duque, 2013; Peña et al., 2018). There are fewer studies
investigating changes in SOC along altitudinal gradients in
TMFs. In addition to those reporting an increase of SOC with
altitude (Townsend et al., 1995; Schrumpf et al., 2001; Kitayama
and Aiba, 2002; Raich et al., 2006; Graefe et al., 2008; Girardin
et al., 2010; Moser et al., 2011; Dieleman et al., 2013), some
studies report no change at all (Soethe et al., 2007; Zimmermann
et al., 2010; Phillips et al., 2019). Few studies have quantified
carbon stocks in different TMF compartments (AGB, BGB, soil
organic matter) simultaneously or total carbon stocks (Girardin
et al., 2010; Phillips et al., 2019).

This study aims to fill some of the existing gaps of knowledge
by investigating the role of Andean TMFs as carbon reservoirs.
The specific goals were: (1) to understand how carbon stocks
from the different forest compartments (AGB, BGB, and soil
organic matter) and total carbon stock vary along the altitudinal
gradient; and (2) to determine the influence of climate—
particularly temperature and precipitation seasonality—on
carbon stocks. Understanding these carbon trade-offs should be
a priority when formulating policies and designing conservation
and management plans aimed at mitigating consequences of
environmental change (Mathez-Stiefel et al., 2017).
MATERIAL AND METHODS

Study Area and Climatic Characterization
The study was carried out along two altitudinal gradients of well
preserved TMFs: Podocarpus National Park (Ecuador) and Río
Abiseo National Park (Peru). These sites extend along wide
altitudinal ranges (ca. 2000 m) of continuous forest cover, each
within a single river basin: the Bombuscaro river in Ecuador and
the Montecristo–Abiseo rivers in Peru. Three altitudinal belts
were studied in each site: low (800–1,100 m), middle (1,900–
2,100 m), and high (2,700–2,900 m). Sixty 0.1 ha (50 × 20 m)
plots were established between 2015 and 2017: 10 plots within
each belt at each site, at least 300 m apart (coordinates in
Appendix S1) and avoiding natural disturbances (e.g., tree-fall
gaps or landslides). A detailed description of the study area can
be found in Bañares-de-Dios et al. (2020).

We retrieved bioclimatic variables from the CHELSA
climatological dataset (Karger et al., 2017) for each gradient
March 2020 | Volume 11 | Article 106
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and selected two variables representing the main axis of climatic
variability in our study sites: annual mean temperature (°C) and
precipitation seasonality (%). The first was selected since TMFs
extend along a broad thermal range (ca. 9 and 12 °C in Ecuador
and Peru, respectively). Annual mean temperature was highly
correlated with the rest of temperature-related bioclimatic
variables (Pearson's correlation, r > 0.8). Precipitation
seasonality was selected because it can have an important effect
on soil mineralization rates and nutrient availability for plants,
even though moist TMFs are not subjected to long periods of
water deficit and thus its vegetation does not display adaptations
to such conditions, like deciduousness. Precipitation seasonality
was calculated as the standard deviation of the monthly
precipitation estimates expressed as a percentage of the mean
of those estimates (i.e. the annual mean). Thus, a higher value of
precipitation seasonality means that the total monthly
precipitation is more heterogeneously distributed across time.
For instance, 50% of precipitation seasonality means that this
variability represents 50% of the mean monthly precipitation.
Because of the properties of the normal distribution, this
implies that differences between the rainiest and driest months
could be—with 95% confidence interval—as high as twice (i.e.
200%) the mean monthly precipitation value, whereas if
precipitation seasonality were 10% this difference would be
only of 40% of the mean monthly precipitation value.

Field Sampling, Floristic, and Functional
Data
In each plot, all standing woody stems (including trees, palms,
tree ferns and lianas) ≥ 2.5 cm in diameter at breast height (DBH,
at 130 cm from the ground) were recorded. For each stem, height
was estimated visually since the use of precise instruments
proved impractical. For individuals with multiple stems, we
used the height of the tallest stem as the individual's height
and the square root of the sum of the squares of DBH of each
stem as the overall individual's DBH (Arellano et al., 2016). Field
measurements were taken by multiple surveyors, who were
trained at the beginning of each field campaign. Tree branch
samples were collected for taxonomic determination and to
estimate wood density. In total, 19,127 individuals were
inventoried excluding tree ferns: 9,847 in Ecuador and 9,280 in
Peru. Vouchers were identified at regional herbaria. In total, 826
different taxa were recognized from the Ecuadorian plots and 543
taxa from the Peruvian plots. The most abundant families in
Ecuador were Melastomataceae (12.1% of total individuals),
Lauraceae (10.8%), and Rubiaceae (9.0%) at low altitudes;
Rubiaceae (16.5%), Melastomataceae (14.0%), and Lauraceae
(12.7%) at mid altitudes; and Melastomataceae (21.5%),
Cunoniaceae (16.8%), and Primulaceae (10%) at high altitudes.
In Peru, the most abundant families were Leguminosae (8.9%),
Rubiaceae (8.2%), and Malvaceae (8.2%) at low altitudes;
Piperaceae (21.6%), Lauraceae (9.5%) and Rubiaceae (8.3%) at
mid altitudes; and Rubiaceae (16%), Piperaceae (15.7%), and
Chlorantaceae (14.6%) at high altitudes.

Branch wood density (WD) was measured based on
Cornelissen et al. (2003) and used as a proxy for stem wood
Frontiers in Plant Science | www.frontiersin.org 3
density, since both are strongly and positively correlated
(Swenson and Enquist, 2008). Sections of branches (as
cylindrical as possible) of ca. 10 cm long were stripped of
cortex, and their volumes calculated as cylinders by measuring
their diameter and length fresh. Branch wood density was
calculated dividing fresh volume by dry mass after drying at
80°C for 48–72 h. Mean WD and its standard deviation (SD)
were calculated for each species using sample values of all
conspecifics. For species with just one sample, SD was
estimated by multiplying WD by the SD/mean ratio averaged
across all the samples in the entire dataset, where SD/mean
ratioEcuador = 0.200 and SD/mean ratioPeru = 0.234. Individuals
for which WD values were lacking (e.g. emergent tall trees with
inaccessible branches or lost samples) were assigned the mean
WD of their family and their SD estimated as above. The latter
included 611 individuals in 57 taxa from Ecuador (6.2% of the
total individuals) and 735 in 59 taxa from Peru (8.5%). Finally,
the 63 individuals from Ecuador (0.6% of the total individuals)
and 117 from Peru (1.3% of the total individuals) with no WD
measurement that could not be identified to family or belonged
to families with no WD data (Cyclanthaceae, Dioscoreaceae, and
Icacinaceae in Ecuador; Arecaceae and Humiriaceae in Peru),
were removed from the analyses.

Carbon Stocks
We used Chave's three-variable pantropical allometry model
(Chave et al., 2014) to estimate aboveground biomass (AGB)
for each individual tree:

AGB = 0:0673 � WD � DBH2 � H� �0:976

whereWD wood density (g·cm–3),DBH diameter at breast height
(cm), and H is height (m). We then calculated the plot AGB as
the sum of the AGB of all trees within each plot. We used the R
package “BIOMASS” (Réjou-Méchain et al., 2017) to calculate
the uncertainty associated to the estimation of AGB at the tree
level, both as a result of measurement error and intraspecific
variability in the case of WD. For the estimation of height and
DBH, we assumed that the error was normally distributed, with
the SD being 5% of the estimated value, thus reflecting that larger
trees were likely to produce larger errors in the estimation of
height and DBH. For WD, the error followed a normal
distribution parametrized by the mean WD and its SD. Then
the measurement errors of H, WD and DBH were included into
Chave's equation using a Bayesian inference procedure (1000
iterations; Chave et al., 2014). The AGB of lianas was calculated
separately through the following equation (Schnitzer et al., 2006):

AGB = e−1:484+2:657�ln DBHð Þ

and we added it to each plot's estimated AGB.
Belowground biomass (BGB) was estimated using Kachamba

et al. (2016)'s equation:

BGB = 0:285 � DBH1:993

We assumed that the aboveground carbon stock (AGC)of a plot
accounted for the 50% of its AGB, following Chave et al. (2005).
March 2020 | Volume 11 | Article 106
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We replicated this assumption for belowground carbon stock
(BGC) from BGB.

Soil samples were collected from the surface (0-15 cm) below
the decomposing organic layer (e.g., foliage, small twigs, fruits,
seeds) in each plot. Soil samples, consisting of five different
subsamples from five different points in the plot, were collected,
mixed, air-dried and sifted through a 2-mm sieve (Arellano et al.,
2016). Soil pH was determined in 1:2.5 pH-deionized water, soil
texture was determined by the Bouyoucos hydrometer method
(Bouyoucos, 1962), and total C and N concentrations were
measured through dry combustion using a LECO CHNS-932
elemental auto-analyzer. Bulk density was determined by core
sampling at three points of each plot. Soil samples were dried at
105 °C for 24 h. Total oven-dry mass of the soil samples were
weighted, and then the coarse fraction (>2mm) was separated and
weighted to determine the gravimetric coarse fraction content. The
plant residue (mainly coarse roots) included in the coarse fraction
(>2 mm) was weighted separately in order to determine the
percentage present in the whole sample. Bulk density (BD) was

calculated as Mt=o
n

i=1
Vi whereMt is the total oven-dry mass of the

three cores (g), and Vi the volume of each core i (cm3). Finally, the
soil organic carbon stock (SOC) (Mg ha–1) was calculated
following Schrumpf et al. (2011):

SOC =
C � BD � LTH � FE content

10

where C is soil organic carbon concentration (g kg–1) in the soil
layer, BD bulk density (g cm–3), LTH layer thickness (cm), and FE
content the relative contribution of fine earth fraction (i.e. all soil
particles smaller than 2 mm, thus excluding gravel, stones and
coarse plant residue) to total soil mass. Despite important
variations in BD across sites and altitudinal ranges (see
Appendix S3) that make seemingly reasonable to correct SOC
estimates by an equivalent soil mass, SOC has been historically
quantified to a fixed depth. This method has been employed in the
vast majority of publications comparing SOC between treatments
or over time periods (Wendt and Hauser, 2013), it is designated as
good practice by the Intergovernmental Panel on Climate Change
(IPCC, 2003), and has been subsequently used in protocols of
global importance to assess SOC, such as that of the European
Joint Research Centre (JRC-EU; Stolbovoy et al., 2007).

Relation Between Carbon Stocks, Altitude,
and Climate
Generalized linear models (GLMs) with a Gamma error
distribution were fitted to determine how carbon stocks vary in
the different compartments of the forest and along the altitudinal
gradient separately for Ecuador and Peru. Quadratic terms of the
explanatory variables were included to account for non-linear
relationships. To understand the role of climate on the carbon
stocks of the different compartments, we fitted another set of
GLMs with a Gamma error distribution to relate each of the
three carbon stock response variables, as well as total carbon
stock, to annual mean temperature (°C) and precipitation
seasonality, as well as their interaction, using data from both
Frontiers in Plant Science | www.frontiersin.org 4
sites. The significance of predictors was tested using the Chi-
squared statistic (a ≤ 0.05), and the explained deviance (D2) was
used to assess the goodness of fit of the model:

D2 =
nulldeviance − residualdevianceð Þ

nulldeviance

All analyses were conducted with the R environment (R
Development R Core Team, 2018).
RESULTS

Climatic Characteristics and
Soil Properties
Annual mean temperature and temperature seasonality
decreased consistently as altitude increased at both sites.
Temperature range was broader in the Peruvian (11.5–23.9 °C
annual mean) than in the Ecuadorian site (12.2–21.1 °C annual
mean) (Appendix S2). Patterns of annual precipitation differed
between sites: while in the Ecuadorian site precipitation
increased with altitude (from 957 to 1,614 mm/year), in the
Peruvian site it ranged from 1,019 to 2,007 mm/year, and was
lowest at the mid altitudinal belt (Appendix S2). The range of
precipitation seasonality in Ecuador was much narrower (24.3–
32.9%) than in Peru (31.8–50.8%), where it increased from low to
middle and high altitudes (Appendix S2).

Soil pH ranged from 2.31 to 5.98 in Ecuador and from 3.64 to
6.83 in Peru. Soils from Ecuador showed consistently lower pH
values and higher organic carbon concentration, C/N ratio, and
bulk density than those from Peru at each altitudinal belt
(Appendix S3). There was an overall decrease in pH and an
increase in organic carbon concentration and C/N ratio with
altitude (Appendix S3). Soils from Ecuadorian plots showed a
similar sandy loam texture along the altitudinal gradient, while in
the Peruvian plots soil texture ranged from loam, at low altitude, to
sandy loam at middle altitude, and loamy sand at high altitude
(Appendix S3). In both sites, bulk density gradually decreased with
altitude. Soils from Ecuador showed consistently lower pH values
and higher organic carbon concentration, C/N ratio, and bulk
density than those from Peru at each altitudinal belt (Appendix S3).

Carbon Stocks Along the Altitudinal
Gradient
Mean diameter at breast height (DBH) and tree height increased in
Ecuador from low to mid altitudes and then decreased again at high
altitude, whereas in Peru these values did not change much across
altitudinal belts (Appendix S4). Wood density remained mostly
constant across altitudinal belts in Ecuador, with a slight average
increase at higher altitude, whereas in Peru average wood density
values decreased monotonically with altitude (Appendix S4).

AGC ranged from 16.82 to 222.07 Mg ha–1 among
Ecuadorian plots, and from 37.14 to 160.17 Mg ha–1 among
Peruvian plots (Figure 1). BGC ranged from 26.79 to 126.65 Mg
ha–1 in Ecuador, and from 46.62 to 119.94 Mg ha–1 in Peru. SOC
ranged from 26.65 to 268.09 Mg ha–1 in Ecuador, and from 12.87
to 100.38 Mg ha–1 in Peru. Total carbon stock ranged from 86.85
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to 406.35Mg ha–1 in Ecuador (mean value 244,76 ± 48.40Mg ha–1),
and from 116.73 to 318.52 Mg ha–1 in Peru (mean value 211.51 ±
80.38 Mg ha–1). The mean total carbon stock found across all
study sites was 229.02 ± 68.06 Mg ha–1. All plot-level estimations of
AGC, BGC, and SOC are available in Appendix S1.

The largest mean AGC was found at low (87.34 ± 48.40 Mg ha–1)
and middle altitudes (88.03 ± 51.39 Mg ha–1) from Ecuador, and
decreased by ca. 73.2% at high altitude (23.56 ± 5.47 Mg ha–1;
Figure 1); whereas in Peru, the greatest mean AGC was found at low
altitude (92.44 ± 122.62 Mg ha–1), decreasing by ca. 6% at mid
altitude (86.97 ± 117.86 Mg ha–1) and ca. 15.7% at high altitude
(77.90 ± 101.56 Mg ha–1; Figure 1). In Ecuador, the best model for
aboveground carbon (AGC) contained the quadratic term of altitude
Frontiers in Plant Science | www.frontiersin.org 5
(Table 1A), and the predicted response curve revealed a unimodal
relationship, reaching a maximum estimated AGC at ca. 1500 m
(Figure 2A). In Peru, however, AGC did not show any relationship
with altitude (Figure 2B, Table 1A).

Regarding BGC, the largest mean value in Ecuador was found
at low (72.75 ± 25.74Mg ha–1); andmiddle altitudes (70.37 ± 23.85
Mg ha–1) and decreased by 49.7% at high altitude (35.38 ± 5.43 Mg
ha–1; Figure 1); whereas in Peru, the largest mean BGC was found
at middle altitude (84.21 ± 20.66 Mg ha–1; Figure 1). Overall, BGC
followed the same relationship with altitude as AGC, both in
Ecuador and Peru (Figures 2C, D, respectively; Table 1).

At each altitude, SOC in Ecuadorian plots were in general
higher than in Peruvian plots. In Ecuador, the largest mean SOC
TABLE 1 | Analysis of deviance tables for the generalized linear models testing the effect of altitude (linear and quadratic terms) on different carbon stocks, namely aboveground
carbon (AGC) in Mg/ha, belowground carbon (BGC) in Mg/ha, soil organic carbon (SOC) in Mg/ha, and total carbon stocks, in a) Ecuador and b) Peru, respectively.

Response variable Term Deviance d.f. p-value D2 Estimate Std. Error

a) Ecuador
AGC Linear 4.700 1 <0.001 0.333 –7.757 10–5 1.356 10–5

Quadratic 6.220 1 <0.001 0.441 2.481 10–8 4.014 10–9

BGC Linear 1.947 1 <0.001 0.381 –3.683 10–5 8.902 10–6

Quadratic 1.524 1 <0.001 0.298 1.174 10–8 2.436 10–9

SOC Linear 2.400 1 0.008 0.192 –8.584 10–6 1.137 10–5

Quadratic 0.682 1 0.654 0.005 1.237 10–9 2.746 10–9

Total carbon stock Linear 0.025 1 0.627 0.007 –4.980 10–6 2.711 10–6

Quadratic 0.385 1 0.058 0.110 1.330 10–9 6.943 10–10

b) Peru
AGC Linear 0.075 1 0.462 0.022 1.472 10–6 7.106 10–6

Quadratic 0.002 1 0.915 0.000 –2.117 10–10 1.977 10–9

BGC Linear 0.002 1 0.852 0.001 –2.432 10–6 5.076 10–6

Quadratic 0.017 1 0.611 0.010 7.167 10–10 1.405 10–9

SOC Linear 1.031 1 0.004 0.180 –3.739 10–5 1.222 10–5

Quadratic 0.849 1 0.008 0.148 8.573 10–9 3.222 10–9

Total carbon stock Linear 0.007 1 0.717 0.005 –1.647 10–6 1.711 10–6

Quadratic 0.043 1 0.360 0.030 4.334 10–10 4.716 10–10
M
arch 2020 | Volume 11
Deviance, degrees of freedom (d.f.), p-values and explained deviance (D2) is shown for each term in the models. The estimated coefficients and their standard errors are also shown.
Statistically significant terms (p-value ≤ 0.05) are highlighted in bold.
FIGURE 1 | Carbon stocks (mean ± sd) for each forest compartment (above and belowground biomass, and soil organic carbon) and total carbon stock per
altitudinal belt (drawing by María Medel).
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FIGURE 2 | Relationship between aboveground (A, B), belowground (C, D), soil organic (E, F) and total carbon stocks (G, H) and altitude (m a.s.l), both in Ecuador (left
charts) and Peru (right charts), with its 95% confidence intervals (dotted lines). AGC, Aboveground carbon; BGC, Belowground carbon; SOC, Soil organic carbon.
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was found at high (169.6 ± 76.9 Mg ha–1) and middle altitudes
(1,10.2 ± 77.3 Mg ha–1) and the lowest mean SOC at low altitude
(82.5 ± 48.6 Mg ha–1; Figure 1). Nevertheless, in Peru, the largest
mean SOC was found at middle altitude (57.4 ± 17.6 Mg ha–1),
though the differences across altitudinal belts were not as large as
in Ecuador (Figure 1). SOC increased with altitude in Ecuador,
while in Peru slightly increased from low to middle altitude and
then stabilizing from middle to high altitude, with the
relationship being quadratic (Figures 2E, F; Table 1).

The resulting total carbon stock (the sum of AGC, BGC and
SOC) did not vary with altitude, neither in Ecuador nor in Peru
(Figures 2G, H, respectively; Table 1).

Carbon Stocks and Climate
Annual mean temperature and precipitation seasonality, but not
their interaction, had a statistical significant effect on AGC, BGC,
and SOC. There was, however, no effect of either climate variable
or their interaction on total carbon stocks (Table 2).
Precipitation seasonality had a positive effect on both AGC
and BGC at low (i.e. warm temperatures, represented by red
lines in Figures 3A, B) and at high altitudes (i.e. cold
temperatures, represented by blue lines in Figures 3A, B).
Temperature also had a positive effect on both AGC and BGC.
Whereas the effect of precipitation seasonality on SOC was
almost negligible when annual mean temperature was warm,
there was a very marked negative effect when cold (Figure 3C).
Finally, the total carbon stock did not show any difference with
precipitation seasonality, either under warm or cold annual
mean temperature (Figure 3D).

DISCUSSION

Our results show that carbon storage at each compartment of the
forest (AGC, BGC, and SOC) follows a distinct pattern along the
altitudinal gradient that differs between sites.

Although AGC is expected to decline with altitude as a result
of lower-statured trees (Kitayama and Aiba, 2002; Raich et al.,
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2006; Girardin et al., 2010; Girardin et al., 2013), in Ecuador our
model shows maximum AGC at middle altitude (ca. 1500 m).
This result is similar to the unimodal patterns reported in other
studies (Weaver and Murphy, 1990; Lieberman et al., 1996; Raich
et al., 1997; Moser et al., 2008; Alves et al., 2010; Larjavaara and
Muller-Landau, 2012; Marshall et al., 2012; Ensslin et al., 2015;
Phillips et al., 2019), and it has been suggested to be caused by a
complex combination of factors that occur at mid altitudes,
including optimal balance of respiration (with respiration costs
being lower at mid altitudes) and photosynthesis (which is not
yet inhibited by low air temperatures) and being less prone to
disturbance compared to low and high altitudes (Marshall et al.,
2012). Conversely, in Peru there was no relationship between
AGC and altitude. No change of AGC with altitude has been also
reported in other studies, whether caused by the dominance of
Fagaceae that can reach very large sizes at high altitudes
(Culmsee et al., 2010; Peña et al., 2018), or by increased soil
fertility with altitude, which would have a positive effect on plant
growth compared to poorer lowland soils, thus compensating the
negative effect that lower temperatures have on AGC (Unger
et al., 2012). The latter is more likely to explain the lack of an
AGC pattern with altitude seen in Peru.

The same pattern of variation of AGC with altitude was found
for BGC in both sites. This is not surprising as the equations for
estimating AGC and BGC both relied on tree DBH. In general,
coarse-root biomass contains the largest fraction of BGC, even if
carbon stored in fine-root biomass can, in relative terms, be
particularly high in upper TMFs (up to 46.0% of total BGC;
Girardin et al., 2010), probably as a consequence of limited soil
nutrients available (Leuschner et al., 2007; Girardin et al., 2010).
Thus, it seems reasonable to assume that coarse root biomass,
and therefore BGC, will be positively correlated with AGC
because taller trees (more abundant at lower TMFs) would
invest more into coarse-root anchoring—particularly in windy
or erosion-prone sites—whereas smaller trees (more abundant at
upper TMFs) will not be able to develop a large deep root system
(Girardin et al., 2010).
TABLE 2 | Analysis of deviance tables for the generalized linear models testing the effect of annual mean temperature (T, in °C), precipitation seasonality (PS, in %), and
their interaction (T:PS) on different carbon stocks, namely aboveground carbon (AGC), belowground carbon (BGC), soil organic carbon (SOC), and total carbon stocks.
Deviance, degrees of freedom (d.f.), p-values and explained deviance (D2) is shown for each term in the models.

Response
variable

Term Deviance d.f. p-value D2 Estimate Std. Error

AGC T 1.921 1 0.017 0.104 –3.606 10–4 1.574 10–4

PS 2.231 1 0.010 0.121 –1.524 10–3 7.103 10–4

T:PS 0.954 1 0.093 0.052 7.555 10–6 4.438 10–3

BGC T 0.728 1 0.008 0.089 –2.195 10–4 9.217 10–5

PS 2.285 1 <0.001 0.280 –9.662 10–4 4.158 10–4

T:PS 0.219 1 0.145 0.207 3.884 10–6 2.644 10–6

SOC T 4.463 1 <0.001 0.139 2.037 10–4 1.659 10–4

PS 9.283 1 <0.001 0.290 9.664 10–4 8.058 10–4

T:PS 0.087 1 0.615 0.003 –2.770 10–6 5.547 10–6

Total carbon stock T 0.000 1 0.997 0.000 1.397 10–5 2.501 10–5

PS 0.124 1 0.223 0.023 7.666 10–5 1.165 10–4

T:PS 0.018 1 0.646 0.003 –3.549 10–7 7.765 10–7
M
arch 2020 | Volume 11 |
The estimated coefficients and their standard errors are also shown. Statistically significant terms (p-value ≤ 0.05) are highlighted in bold. Precipitation seasonality is calculated as the
standard deviation of the monthly precipitation estimates expressed as a percentage of the mean of those estimates (i.e. the annual mean).
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In general, our results confirm that TMFs soil properties such
as acidity, soil organic matter accumulation and C/N ratio
increase with altitude, as reported in prior studies (Grieve et al.,
1990; Schawe et al., 2007; Schrumpf et al., 2011). Yet, there were
differences in the patterns of SOC along the altitudinal gradient
between the two sites. Upper TMFs in Ecuador can store large
amounts of SOC compared to forests at low altitudes, which is in
agreement with patterns reported in previous studies for TMFs
(Townsend et al., 1995; Schrumpf et al., 2001; Kitayama and Aiba,
2002; Raich et al., 2006; Graefe et al., 2008; Girardin et al., 2010;
Moser et al., 2011; Dieleman et al., 2013). Contrastingly, in Peru,
SOC slightly increased from low to middle altitude and remained
unchanged above. Similarly, Schawe et al. (2007) observed in
Bolivian TMFs a continuous increase of SOC up to 2000–2400 m
that remained constant above that altitude. The increase in SOC at
higher altitude in the Ecuadorian gradient might be partly
explained by an increased C/N ratio as a consequence of low
temperature and high precipitation that may cause soil
acidification and subsequent low biological activity. However,
this reasoning is not valid for explaining the lower SOC at the
high altitude TMF in Peru. It is interesting to note that, on
average, upper TMF soils in Peru showed higher organic carbon
concentration (Appendix S3), but proportionally lesser bulk
density, which ultimately explains the decrease in SOC from
middle to high altitude. Typically, soils with higher organic
content have lesser bulk density, although the bulk density of
organic horizons also depends on the degree of decomposition,
the make-up of plant residue in the soil and the void ratio. A
greater amount of fiber or coarse roots in the core soil create a
more open structure that results in more voids and therefore lower
bulk density. The coarse-root (>2mm in diameter) fraction
present in soils at high altitude in Peru constitute a much
higher percentage of total soil weight than those from Ecuador,
which may partly explain the lower value of bulk density of soils
from Peru at high altitude, and will ultimately have a great
influence on the calculation of the carbon stock of these soils.

Overall, regardless of the individual patterns of AGC, BGC, or
SOC along the altitudinal gradient, we did not observe any
variation with altitude at either study site when carbon stocks
from all compartments were combined. This pattern has been also
found by other studies (Raich et al., 2006; Girardin et al., 2010;
Selmants et al., 2014; Phillips et al., 2019). It is likely the result of a
trade-off among carbon stocks stored at different forest
compartments. The key question, thus, is why different carbon
stocks (AGC, BGC, and SOC) show diverging patterns of change
with altitude between sites, but when combined they result in
similar total carbon stocks that remain constant across altitude. It
has been suggested that the lack of response to altitude of total
carbon stocks is the result of changes in the prevailing
atmospheric temperatures, which would trigger opposite trends
in AGC and SOC, thus equalising total carbon stocks along the
altitudinal gradient (Selmants et al., 2014; Phillips et al., 2019).
However, this does not explain the disparity in the patterns of
AGC, BGC and SOC reported in various studies of TMFs. We
believe that there are other climatic drivers that may be playing an
important role in determining the observed trade-offs, allowing
FIGURE 3 | Relationship between aboveground (A), belowground (B), soil organic
(C) and total carbon stocks (D) and precipitation seasonality (%) both under warm
(24°C annual mean temperature, red lines) and cold (12°C, blue lines) conditions. E,
Ecuadorian plots; P, Peruvian plots. Precipitation seasonality is calculated as the
standard deviation of the monthly precipitation estimates expressed as a percentage
of the mean of those estimates (i.e. the annual mean). The range of predictions for
increasing values of precipitation seasonality (x-axis) represent the observed values in
our two study sites, with lower variation at low altitude (i.e. warm conditions) and
higher variation at high altitude (i.e. cold conditions). Shaded areas represent 95%
confidence intervals upon model predictions.
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for different patterns of change of the carbon stocks stored in the
individual forest compartments—as reported in a number of
studies—while maintaining total carbon stocks in a plot
constant across altitude. Our analyses suggest that at low
altitudes, warmer temperatures may promote nutrient cycling
and plant growth (Kitayama and Aiba, 2002; Girardin et al.,
2010) that contribute to high AGC and BGC, but also result in low
SOC values. At those low altitudes, little variation in precipitation
seasonality was observed between Ecuador (average value of
32.2%) and Peru (average value of 25.5%; Appendix S2). Higher
precipitation seasonality therefore contributed to higher AGC and
BGC, but showed little effect on SOC. Conversely, at high altitudes
we found different patterns of precipitation seasonality: whereas
our forest plots in the upper belt in Ecuador showed similar values
of precipitation seasonality to those found at low altitudes
(average value 29.7%), these were much higher for our plots in
Peru (average value 50.2%; Appendix S2). This fact could explain
the differences in the observed patterns of carbon stock among
forest compartments between Ecuador and Peru. At high altitude
in Ecuador, low precipitation seasonality results in 1) an
accumulation of organic matter in the soil that renders high
SOC values (Schawe et al., 2007) and, since available nutrients
subsequently become scarce (due to low nutrient cycling), 2) a
decrease in plant growth, as shown by the low AGC and BGC
values. Conversely, the higher precipitation seasonality at greater
altitude in Peru allows for drier periods during which
mineralisation rates increase. The latter may result in 1) less
accumulation of organic matter in the soil—as indicated by the
decrease in SOC values—that allows for a richer pool of nutrients
available to plants, and thus 2) favor an increase in plant growth,
as shown by greater AGC and BGC values. Yet, we acknowledge
that our conclusions should be taken with caution, as biotic
drivers (e.g. soil food-web, plant competition aboveground, etc.)
and variables influencing soil dynamics (e.g. soil type, plant
residue quality and quantity, amount and quality of soil organic
matter, microbial activity and composition) are also likely to
contribute significantly to carbon stocks.

Ultimately, TMFs can make an important contribution to
global carbon stocks. Our estimates of AGC (80.42 Mg ha–1 on
average) are somewhat lower than those reported for other
Andean TMFs (106.04 Mg ha–1 on average; Spracklen and
Righelato, 2014). This could be partly a consequence of using
branch wood density as a proxy for stem wood density, which
could result in lower AGB and AGC estimated values,
particularly in species with very hard wood species and/or
large individuals, that could ultimately account for an
important portion of a community's biomass. There is,
however, enormous variation among studies, with estimates
ranging from 77.20 Mg ha–1 (Girardin et al., 2010) to 409.07
Mg ha–1 (Grimm and Fassbender, 1981), proving the need for
further studies. In general terms, although evergreen tropical
lowland forests can store larger AGC than Andean TMFs (e.g.
Baker et al., 2004; Malhi et al., 2009; Spracklen and Righelato,
2014), the latter—especially those at higher altitudes—can store a
substantial amount of carbon in the form of SOC (Raich et al.,
2006), a component of the system that has been often neglected.
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The mean total carbon stock found in our study sites (229.02 ±
68.06 Mg ha–1) was within the low to middle range (87–754 Mg
ha–1) reported in a meta-analysis of TMFs by Raich et al. (2006),
and similar to the results recently reported for Colombian TMFs
(241.3 ± 37.5 Mg ha–1; Phillips et al., 2019). Yet, according to our
study, and considering that the extent of TMFs in the Neotropics
has been recently estimated to be 750,000 km2 (Kappelle and
Brown, 2001), NewWorld TMFs could store 16–19 109 Mg C, and
up to 48–58 109 Mg C, for the estimated ca. 2.2 106 km2 of TMF
worldwide (Mulligan, 2010). Although there is considerable
uncertainty in these predictions—as is often the case when it
comes to standing biomass estimation—they can be used to
illustrate how large amounts of carbon in TMFs from both
biomass and soils, are as much at risk of emission through
deforestation and land use change as tropical lowland forests,
with the consequent dramatic impact on global climate.

Conclusions
Our study emphasizes the important role that TMF plays in
storing carbon. It points out the existence of trade-offs among
carbon stocks when partitioning the three TMFs compartments—
AGB, BGB, and soil organic matter. The result is that plot overall
carbon stock along the altitudinal gradient remains constant,
although patterns of variation differed between sites when
looking at individual components of the system. Precipitation
seasonality may partly explain these differences, as the occurrence
of drier periods in the year would increase mineralization rates,
particularly at higher altitudes. This would result in less
accumulation of organic matter in the soil and, consequently, an
increase in plant growth and AGB. Such trade-offs reflect the
potential of TMFs to store substantial amounts of carbon that
contribute significantly to global carbon stocks.
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