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Stomata, the small pores on the epidermis of plant shoot, control gas exchange between
the plant and environment and play key roles in plant physiology, evolution, and global
ecology. Stomatal development is initiated by the basic helix-loop-helix (bHLH)
transcription factor SPEECHLESS (SPCH), whose central importance in stomatal
development has recently come to light. SPCH integrates intralineage signals and
serves as an acceptor of hormonal and environmental signals to regulate stomatal
density and patterning during the development. SPCH also plays a direct role in
regulating asymmetric cell division in the stomatal lineage. Owing to its importance in
stomatal development, SPCH expression is tightly and spatiotemporally regulated. The
purpose of this review is to provide an overview of the SPCH-mediated regulation of
stomatal development, reinforcing the idea that SPCH is the central molecular hub for
stomatal development.
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INTRODUCTION

In Arabidopsis, stomata formation depends on a series of cell divisions and consecutive cell fate
transitions, producing five major cell types of the stomatal lineage, including meristemoid mother
cells (MMCs), meristemoids, stomatal lineage ground cells (SLGCs), guard mother cells (GMCs),
and guard cells (GCs) (Nadeau and Sack, 2002b; Bergmann and Sack, 2007; Lau and Bergmann,
2012; Pillitteri and Torii, 2012; Pillitteri and Dong, 2013). A subset of protodermal cells in the
epidermis acquire the fate of MMCs and initiate the stomatal lineage by undergoing asymmetric
entry divisions to produce the small triangular meristemoids and larger sister cells called SLGCs
(Figure 1). Meristemoids carry out a limited number of asymmetric amplifying divisions to
increase the number of SLGCs, while also performing the process of self-renewal (Figure 1).
Finally, meristemoids lose their ability of reiterative asymmetric division and differentiate into
GMCs. Each GMC symmetrically divides to yield a pair of highly specialized GCs (Figure 1)
(Nadeau and Sack, 2002b; Bergmann and Sack, 2007; Lau and Bergmann, 2012; Pillitteri and Torii,
2012; Pillitteri and Dong, 2013). SLGCs can also acquire the MMC fate and undergo asymmetric
division to produce satellite meristemoids that are oriented away from preexisting stomata or
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precursors. This asymmetric division, which prevents the direct
contact between two stomata, is termed “oriented asymmetric
spacing divisions”. Alternatively, SLGCs can terminally
differentiate into pavement cells (Figure 1) (Geisler et al.,
2000; Bergmann and Sack, 2007).
SPEECHLESS (SPCH) INITIATES THE
STOMATAL LINEAGE

A null stoma mutant named spch-1 was identified in a sensitized
genetic screen (MacAlister et al., 2007). SPCH encodes a bHLH
transcription factor and has two closely related paralogues,
MUTE and FAMA. SPCH is broadly transcribed in epidermal
cells, but the SPCH protein is restricted to MMCs and
meristemoids, suggesting that SPCH is strictly regulated at the
posttranslational level (MacAlister et al., 2007). Closer
observation showed that epidermal cells in spch-1 did not
undergo asymmetric entry division. In contrast, overexpression
of SPCH induced ectopic entry division in the epidermis. These
results suggest that SPCH is crucial for stomatal lineage initiation
(Figure 2) (MacAlister et al., 2007; Pillitteri et al., 2007). The
stomatal formation is also completely eliminated when both the
two homologous bHLH-leucine zipper (bHLH-LZ) transcription
factors, INDUCER OF CBF EXPRESSION1 (ICE1) and
SCREAM2 (SCRM2), are knocked out (Kanaoka et al., 2008).
Further research revealed that SPCH, MUTE, and FAMA
heterodimerize with SCRMs (ICE1 and SCRM2) to trigger the
successive MMC-meristemoid-GMC-GC fate transition
(Figure 2) (Kanaoka et al., 2008). The direct targets of SPCH
include SPCH itself and ICE1/SCRM2. SPCH and ICE1/SCRM2
can bind to their own promoters and enhance self-expression,
thereby constituting a positive feedback loop that maintains the
MMC and meristemoid fate (Lau et al., 2014; Horst et al., 2015)
(Figure 2). In the grass Brachypodium distachyon and Oryza
sativa, disabling either SPCH or ICE1 eliminated stomata,
suggesting that the SPCH/ICE1 heterodimer also functions as a
switch for the stomatal initiation in monocots (Raissig et al.,
2016; Wu et al., 2019).
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SPCH INTEGRATES INTRALINEAGE
SIGNALS FOR PROPER STOMATAL
DENSITY AND PATTERNING

SPCH activity is inhibited by its phosphorylation and consequent
degradation (Lampard et al., 2008). Interestingly, although the
phosphorylation of SPCH is known to be mediated by mitogen-
activated protein kinase 3/6 (MPK3/6), a direct interaction between
MPK3/6 and SPCH has not been detected to date. A recent study
has found that ICE1/SCRM2 acts as a scaffolding partner for their
interaction (Lampard et al., 2008; Putarjunan et al., 2019). The
direct association of MPK3/6 and ICE1/SCRM2 is also required for
the phosphorylation and consequent degradation of ICE1/SCRM2,
and this process is crucial for the proper specification of the
stomatal cell fate (Putarjunan et al., 2019). Accordingly, a direct
link between the SPCH•SCRM module and a MAPK cascade
consisting of YODA (YDA), four MAPKKs (MKK4/5/7/9), and
two MAPKs (MPK3/6) is established during the stomatal
development (Bergmann et al., 2004; Wang et al., 2007; Lampard
et al., 2009; Putarjunan et al., 2019). Upstream of the YDA-MKK4/
5/7/9-MPK3/6 cascade lies a multiprotein receptor complex
composed of the leucine-rich repeat receptor-like protein TOO
MANYMOUTHS (TMM), the ERECTA family (ERf) leucine-rich
repeat receptor-like kinases [ERECTA (ER), ERECTA-LIKE1
(ERL1), and ERECTA-LIKE2 (ERL2)], and SOMATIC
EMBRYOGENESIS RECEPTOR KINASEs (SERKs) (Yang and
Sack, 1995; Nadeau and Sack, 2002a; Shpak et al., 2005; Lee et al.,
2012; Lee et al., 2015; Meng et al., 2015). These receptors can
recognize several specifically expressed ligands that belong to the
EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family of
secreted cysteine-rich peptides to either repress or promote
stomatal development in specific regions (Figure 2) (Hara et al.,
2007; Hara et al., 2009; Hunt and Gray, 2009; Abrash and
Bergmann, 2010; Hunt et al., 2010; Kondo et al., 2010; Sugano
et al., 2010; Abrash et al., 2011; Lee et al., 2012; Niwa et al., 2013; Lee
et al., 2015; Meng et al., 2015). EPF1, the first such peptide to be
identified, is mainly dependent on ERL1 to ensure the correct
spacing and meristemoid differentiation (Figure 2) (Hara et al.,
2007; Lee et al., 2012). EPF2 is detected primarily by ER, which
FIGURE 1 | Diagram depicting cell fate transitions during the stomatal development in Arabidopsis. A subset of protodermal cells (faint red) acquire the fate of an
MMC (brick red) and undergo asymmetric entry division, producing a meristemoid (red) and SLGC (white). Meristemoids undergo asymmetric amplifying divisions to
increase the number of SLGCs while also self-renewing. Eventually, meristemoids differentiate into GMCs (yellow). Each GMC symmetrically divides to yield a pair of
highly specialized GCs (green). SLGCs can also initiate stomatal development through oriented asymmetric spacing divisions.
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subsequently represses stomatal lineage initiation through the
activation of the downstream MAPK cascade (Hara et al., 2009;
Hunt and Gray, 2009; Lee et al., 2012; Lee et al., 2015). In contrast to
EPF1 and EPF2, STOMAGEN/EPFL9 is a positive peptide that
competes with EPF2 for ER association without triggering the
downstream MAPK response (Hunt et al., 2010; Kondo et al.,
2010; Sugano et al., 2010; Lee et al., 2015; Lin et al., 2017). In this
way, STOMAGEN prevents the inhibitory activity of EPF2 (Lee
et al., 2015) (Figure 2). In the stems, CHALLAH family peptides
activate ERf receptors and inhibit stomatal development (Abrash
and Bergmann, 2010; Abrash et al., 2011; Niwa et al., 2013). This
ligand/receptor-mediated stomatal signaling pathway has also been
reconstructed in mature Nicotiana benthamiana leaf cells (Jewaria
et al., 2013). Epigenetic modifications on EPF2 and ERf genes have
been found to regulate stomatal development. The expression of
EPF2 is regulated by RNA-directed DNA methylation (RdDM),
and the expression of ERf genes is regulated by histonemodification
and DNA methylation (Yamamuro et al., 2014; Wang et al., 2016).
In addition, the subtilisin STOMATAL DENSITY AND
DISTRIBUTION (SDD1), which is predicted to process peptide
precursors that remain elusive, also acts upstream of TMM and
YODA to repress stomatal formation (Berger and Altmann, 2000;
von Groll, 2002; Lampard et al., 2008). The above intralineage
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signals are integrated by SPCH to regulate stomatal initiation and
patterning. Moreover, EPF2, TMM, and ERf receptors are the direct
targets of SPCH (Lau et al., 2014). SPCH and SCRMs directly
activate the EPF2-TMM signaling, which in turn suppresses the
SPCH•SCRM module, thus constituting a negative feedback loop
that inhibits stomatal initiation and ensures the one-cell-spacing
patterning (Lau et al., 2014; Horst et al., 2015) (Figure 2).
SPCH SERVES AS AN ACCEPTOR OF
HORMONAL AND ENVIRONMENTAL
SIGNALS TO REGULATE STOMATAL
DENSITY AND PATTERNING

SPCH directly integrates hormonal and environmental signals for
stomatal formation. SPCH can be directly phosphorylated by the
brassinosteroid (BR) signaling intermediate the glycogen synthase
kinase 3 (GSK3)-like kinase BRINSENSITIVE 2 (BIN2), which is
itself a direct target of SPCH, and this phosphorylation promotes
the degradation of SPCH. Thus, BR promotes stomatal formation
in hypocotyls though suppression of BIN2 mediated SPCH
phosphorylation and degradation (Gudesblat et al., 2012; Yang
FIGURE 2 | SPCH is the molecular key that opens stomatal development and acts as a central molecular hub while specifying stomatal cell fate. SPCH determines
the entry into the stomatal lineage and integrates diverse developmental and environmental signals mediated by the YDA-MKK4/5/7/9-MPK3/6 cascade, BIN2,
CDKA;1, B-GATAs, and PIF4. SPCH also directly regulates asymmetric cell division in the stomatal lineage through activating the transcription of the key polarity
proteins BASL and POLAR. SPCH expression is tightly and spatiotemporally regulated by HD-ZIP IV proteins, cell-to-cell connectivity, microRNA pathway, IDD16,
and RBR. SPCH enhances its own activity by activating itself and SCRMs, thereby maintaining the MMC and meristemoid fate, and suppresses itself by activating
the EPF2-TMM signaling to ensure proper stomatal density and patterning.
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et al., 2015). SPCH can also be directly phosphorylated by Cyclin-
Dependent Kinases A;1 (CDKA;1). Unlike the negative regulation
of SPCH by MAPK- and BIN2-mediated phosphorylation,
CDKA;1 mediated phosphorylation of SPCH at Serine 186
promotes stomatal initiation, revealing that SPCH activity and
stability are fine-tuned via phosphorylation by multiple kinases in
response to various signals (Yang et al., 2015) (Figure 2). Increased
cytokinin (CK) levels or signaling promotes SPCH expression, and
SPCH directly induces the expression of the type-A ARABIDOPSIS
RESPONSE REGULATOR16 (ARR16) and CLAVATA3/
EMBRYO SURROUNDING REGION RELATED 9/10 (CLE9/
10) (Lau et al., 2014; Vaten et al., 2018). ARR16 negatively
regulates CK response and CLE9/10 represses type-A ARRs. The
SPCH-dependent activities of the repressive type-A ARR16/17 and
the secreted peptides CLE9/10 are essential for establishing local
domains of low CK signaling, which inhibits both SLGC division
and stomatal formation (Vaten et al., 2018). ARR16/17 and CLE9/
10 counteract the proliferative effect of SPCH to customize the
epidermal cell-type composition (Vaten et al., 2018). CLE9/10
peptides are also recognized by the receptor kinase HAESA-LIKE
1 (HSL1) to regulate the stomatal lineage cell division; however, the
underlying mechanism is unknown (Qian et al., 2018). The heat-
stress signaling induces the accumulation of PHYTOCHROME-
INTERACTING FACTOR 4 (PIF4) in stomatal precursors. PIF4
can directly bind to SPCH and repress its expression, while the
SPCH protein, in turn, inhibits the expression of PIF4, thus
producing a negative feedback loop to control stomatal
development in fluctuating temperatures (Lau et al., 2018). Red
light can induce the expression of both SPCH and GATA factors of
the B-subfamily (B-GATA) transcription factors. B-GATAs directly
bind to the SPCH promoter and are required for the red-light-
dependent induction of SPCH expression (Klermund et al., 2016).

SPCH also serves as a final acceptor of hormonal and
environmental signals accepted by its upstream signaling factors.
BR has also been shown to inhibit stomatal formation in the leaf
epidermis through the inactivation of BIN2. In this scenario, BIN2
has been found to repress YDA and MKK4/5 activation, promoting
SPCH stabilization (Kim et al., 2012; Khan et al., 2013) (Figure 2).
Another phytohormone, auxin, negatively regulates stomatal
formation partially by activating auxin response factor 5 (ARF5)
and inhibiting AUXIN RESISTANT3 (AXR3). ARF5 suppresses
stomatal formation by directly repressing STOMAGEN expression
in the mesophyll, while AXR3 promotes stomatal production by
functioning upstream of the YDA MAPK cascade in dark-grown
seedlings (Balcerowicz et al., 2014; Le et al., 2014; Zhang et al., 2014)
(Figure 2). Light signals are perceived bymultiple photoreceptors to
promote stomatal formation by inhibiting the RING E3 ubiquitin
ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) (Lau
and Deng, 2012). COP1 acts genetically upstream of YDA to repress
the stomatal development and can also stimulate the degradation of
SCRM proteins through ubiquitin/proteasome pathways in the dark
(Kang et al., 2009; Lee et al., 2017) (Figure 2). In addition, increased
light irradiation increases stomatal density by inducing the
expression of STOMAGEN (Hronkova et al., 2015) (Figure 2).
Elevated atmospheric carbon dioxide (CO2) levels induce the
expression of CO2 RESPONSIVE SECRETED PROTEASE
Frontiers in Plant Science | www.frontiersin.org 4
(CRSP), and the encoded protein can cleave the pro-peptide EPF2
(Figure 2). Thus, high concentrations of CO2may repress stomatal
formation primarily by the EPF2-mediated negative regulation
pathway (Engineer et al., 2014). Osmotic stress decreases stomatal
number by downregulating SPCH protein level. This process is
mediated by the MAPK-SPCH core developmental pathway
(Kumari et al., 2014) (Figure 2). Stomata also serve as bacterial
entry gates (Melotto et al., 2006;Melotto et al., 2017). The pathogen
Pseudomonas syringae invades hosts through stomatal pores and
releases the effectorHopA1 (Melotto et al., 2006; Zhang et al., 2007).
Overexpression ofHopA1 in plant specifically inactivatesMPK3/6,
leading to stomatal clustering (Kim et al., 2012) (Figure 2). In
addition, the inducible overexpression of AvrPto andAvrPtoB, two
effector proteins of P. syringae pv. tomato (Pst), also generates
clustered stomata in Arabidopsis (Meng et al., 2015). AvrPto and
AvrPtoB may promote stomatal formation through impairing the
function of their target SERKs, which act as coreceptors along with
the ER-TMM complex (Figure 2).
SPCH REGULATES ASYMMETRIC CELL
DIVISION IN THE STOMATAL LINEAGE

SPCH induces the expression of BREAKING OF ASYMMETRY IN
THE STOMATAL LINEAGE (BASL) and POLAR in the stomatal
lineage. Both BASL and POLAR proteins exhibit a polarized
peripheral localization during the stomatal lineage asymmetric
cell division (ACD). Phosphorylation of BASL by MPK3/6
enhances its interaction with YDA, leading to the recruitment of
YDA to the cell cortex (Dong et al., 2009; Zhang et al., 2015; Zhang
et al., 2016). Thus, BASL serves as a scaffold protein that spatially
concentrates MAPK signaling in the cortex and segregates MAPK
signaling into SLGCs after ACD (Zhang et al., 2015). The enhanced
YDA-MPK3/6 signaling in SLGCs promotes the phosphorylation
and degradation of SPCH, leading to the differentiation of SLGCs
into pavement cells. However, the low level of YDA-MPK3/6
signaling in meristemoids results in stable SPCH expression,
triggering the subsequent developmental processes (Zhang et al.,
2015). POLAR polarization requires BASL activity (Pillitteri et al.,
2011), and POLAR appears to function together with BASL to
regulate the stomatal lineage ACD by confining BIN2 to the cell
cortex (Houbaert et al., 2018). This regulation can relieve the
inhibition of SPCH by BIN2, thus freeing SPCH to drive ACD
(Houbaert et al., 2018).
SPCH EXPRESSION IS TIGHTLY AND
SPATIOTEMPORALLY REGULATED

The HOMEODOMAIN LEUCINE ZIPPER CLASS IV (HD-ZIP
IV) family genes MERISTEM LAYER 1 (ML1) and
HOMEODOMAIN GLABROUS2 (HDG2) function in
establishing and maintaining epidermal identity. Their ectopic
expression induces the formation of ectopic epidermal layers
with SPCH expression and stomatal formation in internal leaf
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tissues, suggesting that the acquisition of epidermal layer identity
is required for SPCH expression and stomatal lineage fate
(Peterson et al., 2013; Takada et al., 2013).

Plasmodesmatal permeability and cellular integrity in the
epidermis confine SPCH to stomatal lineage cells during stomatal
development (Figure 2). Mutating the callose synthase GLUCAN
SYNTHASE-LIKE 8 (GSL8/CHORUS) or the glycosyltransferase-
like protein KOBITO1 disrupts cellular integrity or increases
plasmodesmata permeability. These defects allow intercellular
movement of SPCH protein in the leaf epidermis, resulting in
clustered stomata formation and disorganized cell divisions in the
stomatal lineage (Guseman et al., 2010; Kong et al., 2012).

A microRNA pathway is presumed to repress stomatal lineage
initiation through regulating SPCH transcripts (Figure 2) (Kutter
et al., 2007; Yang et al., 2014). In addition, IDD16, a C2H2 zinc
finger transcription factor from the INDETERMINATE
DOMAIN (IDD) family, and RETINOBLASTOMA RELATED
(RBR), which is targeted by CDKA;1, have been shown to inhibit
stomatal initiation by directly binding to SPCH and repressing
SPCH transcription (Figure 2) (Weimer et al., 2012; Qi et al.,
2019). The specific downregulation of RBR in GMCs and GCs
leads to excess divisions in differentiated GCs and formation of the
“Stoma-in-Stoma” (SIS) phenotype (Lee et al., 2014b; Matos et al.,
2014). Histone3 K27 trimethylation (H3K27me3) is involved in
maintaining the GC identity (Lee et al., 2019), and its reduced
deposition on the SPCH andMUTE loci is responsible for the SIS
phenotype (Lee et al., 2014b; Matos et al., 2014). Consistent with
this, constitutive expression of CURLY LEAF (CLF), a member of
Polycomb Repressive Complex 2 (PRC2) that functions in
H2K27me3 and other chromatin modifications, suppresses the
SIS phenotype (Lee et al., 2014b). RBR has been shown to interact
with PRC2, FAMA, and FLP/MYB88, which redundantly
functions with FAMA to inhibit GMC division (Desvoyes et al.,
2010; Magyar et al., 2012; Lee et al., 2014a). Both RBR and FAMA
target the promoters of SPCH, EPF1, and FAMA (Matos et al.,
2014). Thus, a model in which RBR and the PRC2 components are
recruited by FAMA to the promoters of SPCH and other stomatal
lineage genes has been presented. This complex represses the re-
expression of those genes and the reinitiation of stomatal lineage
through chromatin modification (Matos et al., 2014).
CONCLUSION AND PERSPECTIVE

In summary, SPCH acts as a central molecular hub that
integrates both developmental and environmental signals
while specifying stomatal cell fate. However, many questions
Frontiers in Plant Science | www.frontiersin.org 5
remain to be addressed. Firstly, more external and internal cues
that are integrated into the SPCH node need to be identified to
further understand how stomatal development adjusts to a
fluctuating environment. Secondly, although SPCH mostly
functions upstream of the stomatal lineage, little is known
about how SPCH transcription is initiated and regulated. In
addition, although the direct target genes of SPCH have been
known for years, most of their functions remain elusive. Lastly,
RNA polymerase II (Pol II) is essential for stomatal patterning
and differentiation (Chen et al., 2016), and it is unknown how
SPCH recruits Pol II for specific gene expression. SPCH is the
core regulator of stomatal density. Genetic manipulation of
stomatal density to improve plant productivity and water
consumption efficiency has been proven to be feasible in
barley and rice (Hughes et al., 2017; Caine et al., 2019).
Future studies focusing on the above questions will provide
invaluable potential targets for genetic improvement of
agriculturally relevant species to promote sustainable
agricultural development.
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