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Breeding higher yielding forage species is limited by current manual harvesting and visual
scoring techniques used for measuring or estimation of biomass. Automation and remote
sensing for high throughput phenotyping has been used in recent years as a viable
solution to this bottleneck. Here, we focus on using RGB imaging and deep learning for
white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) yield
estimation in a mixed sward. We present a new convolutional neural network (CNN)
architecture designed for semantic segmentation of dense pasture and canopies with
high occlusion to which we have named the local context network (LC-Net). On our testing
data set we obtain a mean accuracy of 95.4% and a mean intersection over union of
81.3%, outperforming other methods we have found in the literature for segmenting clover
from ryegrass. Comparing the clover/vegetation fraction for visual coverage and harvested
dry-matter however showed little improvement from the segmentation accuracy gains.
Further gains in biomass estimation accuracy may be achievable through combining RGB
with complimentary information such as volumetric data from other sensors, which will
form the basis of our future work.

Keywords: forage yield, clover, ryegrass, biomass, semantic segmentation, deep learning
INTRODUCTION

The increase in demand for meat and dairy over the last few decades has led to an intensification of
forage based farming. Breeding for the improvement of forage yield and nutrient composition of
grassland forage species adds value to these industries (Smith and Spangenberg, 2014; Capstaff and
Miller, 2018; Gebremedhin et al., 2019). The length of time required to develop stable new forage
cultivars can however take up to 10–15 years (Lee et al., 2012). One of the bottlenecks in this process
Abbreviations: CNN, convolutional neural network; DM, dry matter; FCN, fully convolutional network for semantic
segmentation (Shelhamer et al., 2016); HSV, hue, saturation, value; IoU, intersection over union; LC-Net, local context
network; LCPP, local context pyramid pooling; LED, light emitting diode; LiDAR, light detection and ranging; MSICS,
multiple scanning imaging capacity system; RGB, red, green, and blue; RTK-GPS, real-time kinematic global positioning
system; SIG, synthetic image generation.
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is that growth rates and yield measurements for these forage
species are generally done by visual scoring and/or manual
harvesting. Both of these practices require a considerable
amount of time and labour to perform, which in turn limits
the size of breeding trials (Araus et al., 2018; Gebremedhin et al.,
2019). With advances in sensors, computing technologies, and
more recently in artificial intelligence tools and methods, there
has been a surge of interest around automated and high
throughput phenotyping techniques for overcoming this
bottleneck (Walter et al., 2012; Araus et al., 2018).

Numerous techniques have been developed over the last 15 years
for assessing clover and ryegrass forage yield using image data.
(Bonesmo et al., 2004) developed a method for pixel-level
segmentation of clover and ryegrass using thresholding and
morphological filtering on RGB images. This method was applied
to predicting the visible area of clover within a specified region. They
showed that their automated method could achieve correlation of
R2 = 0.81 compared to marking out the same areas manually. This
method was extended by (Himstedt et al., 2012) through performing
segmentation in the HSV colour space. They then combined this
information with a linear model for different legumes to estimate the
legume biomass. Although high correlations between measured and
predicted legume content were observed (R2 = 0.90–0.94), the
validation set only consisted of 44 data points spread between their
different legumes and monoculture examples. They also limited their
validation method to swards with less than 2,800 kgDM/ha.
(Mortensen et al., 2017) also investigated improvements to this
method by looking at different ways of combining the colour
information in RGB space. They were also able to obtain a
biomass correlation of R2 = 0.93 with a multivariate linear model
trained separately for mixed sward grown from different seed
mixtures. This was done using a similar sized validation set,
however spanning a larger forage dry matter range (up to 3,084
kgDM/ha). An issue all of these researchers found with the
morphological approach is that the erosion operations have a
tendency to eliminate small clover leaves producing a bias —
especially in younger pasture. There are also significant differences
between the camera setup, lighting, and image resolutions in each of
their setups—requiring tuning of the parameters provided in
(Bonesmo et al., 2004) and derivative methods to use them.
(Skovsen et al., 2017) investigated use of deep learning for
segmentation of clover and ryegrass. They trained the fully
convolutional network for semantic segmentation (FCN) model
(Shelhamer et al., 2014) using synthetic pasture data constructed
from clover, ryegrass, and weed leaves cropped from photographs.
The network was shown to have a significantly higher segmentation
accuracy than the method in (Bonesmo et al., 2004)—with a pixel
accuracy of 83.4% and mean intersection over union (IoU) of 65.5%.
(Skovsen et al., 2017) did not regress their segmentation results
directly to the clover drymatter as done by othersmentioned. Instead
their analysis was limited to the correlation of clover-vegetation
fraction between dry matter measurements and estimated
coverage area.

The use of deep learning in place of traditional machine
vision techniques has become increasingly common since
(Krizhevsky et al., 2012) demonstrated that CNNs are
Frontiers in Plant Science | www.frontiersin.org 2
unreasonably effective for solving image classification type
problems. Over the last five years, significant efforts have been
made toward adapting CNNs to image segmentation. The
majority of these networks follow the same general procedure:
the image is first down-sampled while extracting semantic
information, followed by up-samping and extrapolation of the
semantic information back to the image's original size. The
simplest segmentation network (FCN) makes coarse
predictions from down-sampled features, then uses learned
deconvolutions, skip-connections, and bilinear interpolation to
upscale the predictions back to the original image size Shelhamer
et al., 2016). SegNet built on this by following a more explicit
encoder-decoder architecture, replacing deconvolutions with
inverse-pooling operations that are subsequently followed by
convolution layers (Badrinarayanan et al., 2016). The latest
iteration of the DeepLab architecture (DeepLabV3+) is
currently one of the more popular networks being used for
high accuracy image segmentation. This replaces some of the
down-sampling steps with separable atrous convolutions—
which achieve the same effect without losing spatial resolution.
They also reinforce the predictions using an additional decoder
and global context information for the image (Chen et al., 2018).
For a more general review on deep learning based image
segmentation, we direct the reader to (Garcia-Garcia et al., 2017).

FCN was the first deep learning network architecture
developed for pixel-level segmentation. In the two years
between since its introduction and subsequent application to
pasture segmentation there have been dozens of networks
developed that can achieve significantly higher segmentation
accuracy (Garcia-Garcia et al., 2017). State of the art networks
such as DeepLabV3+, PSPNet, and EncNet all achieve an mean
IoU above 80% on standard computer vision benchmark datasets
(Zhao et al., 2017; Chen et al., 2018; Zhang et al., 2018). It is
worth noting however that the benchmarks these networks are
developed generally focus on urban settings—and therefore are
not guaranteed to perform as well for agricultural applications.
These benchmarks often contain images with objects sparsely
distributed with relatively little occlusion. Pasture images
however have objects densely clustered with a high degree
of occlusion.

We reported on a mobile multisensor platform for high
throughput phenotyping of ryegrass to augment selective
breeding (Ghamkhar et al., 2018). Here, we build upon the
work of (Skovsen et al., 2017) and (Ghamkhar et al., 2018),
with the aim of improving the accuracy of clover/ryegrass
segmentation. The focus of this paper is on the measurement
of percentage white clover (Trifolium repens L.) and perennial
ryegrass (Lolium perenne L.) yields in mixed sward using top-
down view RGB images and deep learning. We introduce a new
CNN architecture which we have named local context network
(LC-Net) which applies design principles from the
aforementioned networks to segmentation of complex
agricultural images. We show that LC-Net can differentiate
clover and ryegrass with a significantly higher accuracy than
previously applied deep learning based methods reported by
(Skovsen et al., 2017).
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MATERIALS AND METHODS

Data Collection
All data used in the manuscript was collected at the AgResearch
Lincoln farm in Canterbury, New Zealand (−43.667799,
172.470908). Data used for training our neural network was
gathered from location's A and B in Figure 1. A mixed sward
trial at location C was used for independently comparing the
RGB segmentation results to dry matter harvest measurements.
All three of these locations contained varying mixtures of
perennial ryegrass and white clover. Data was collected using
our mobile data collection platform for forage assessment—the
Multiple Scanning Imaging Capacity System (MSICS) described
by (Barrett et al., 2018).

Mobile Data-Capture Platform
The MSICS contains a range of different sensors—including
RGB, LiDAR, as well as VNIR and SWIR hyperspectral
cameras, RTK-GPS, and a wheel encoder (Figure 2). The
MSICS contains two hoods, each with controlled lighting
specificly designed for the sensors mounted within the
respective hood. The Teledyne Dalsa Genie Nano C1920 RGB
camera used for this work is mounted in the second hood along
with the LiDAR (Figure 3A). The underside of the hood is lined
with a custom rig of focused high-powered RGB LED lights that
illuminate the ground directly below the camera (Figure 3B).
During these experiments the RGB camera was setup to acquire
14 frames per second. During data-capture the MSICS was
driven at speeds ranging from 0.14 ms–1 to 0.37 ms–1.

Training Data
The data used for training our neural network was collected at
location's A and B in Figure 1. RGB data was acquired while the
Frontiers in Plant Science | www.frontiersin.org 3
MSICS was driven at full speed (approx. 0.4 ms–1) randomly
across the mixed sward in each location. Note that the MSICS
only had lighting installed on one side of the hood when data was
collected at location B. The result of this is that approximately
half of the data has deeper shadows than the other half. We
retained this data in the final training set to improve the
network's robustness to variable lighting conditions.

Validation Trial
A mixed sward trial at site C (Figure 1) containing ryegrass and
clover was used for comparing visual clover fraction estimates to
harvest measurements. The clover used in this trial are half white
sib white clover (Trifolium repens L.) breeding lines along with
two commercial checks, planted in October 2017. The grass
cultivar is Rohan perennial ryegrass, which was sown in April
2017. Efforts have been made to minimise weed presence in the
trial. Irrigation has not been used. The trial is row-column
layout, with two replicates of 240 plots (a total of 480 plots).
Each plot is approx 1.5 m by 1.5 m in size. The trial is scored
when it reaches 2,800 kg/ha– 3,200 kg/ha (approximately 8–10
times per year), and then cattle grazed. The whole trial is scored
for growth (total clover biomass) then a selection of plots, which
are a fair representative of the whole trial are selected for harvest
measurements. This equates to 20%–30% of the trial plots
harvested, or approximately three representatives of each score
per replicate. The trial was between 12 and 18 months old when
the data for this paper was collected.

RGB data was collected for a subset of the harvested plots
during two separate scoring events. First, a total of 30
measurements were taken on the 22nd January 2019, and then
another 40 measurements were conducted on the 15th April
2019. Of these, five were taken at the edge of the trial to increase
the amount of data collected with low clover fraction. Measured
FIGURE 1 | All data was collected at the AgResearch farm in Lincoln, New Zealand (Lat:-43.627799, Long:172.470908). Data used for training the neural network
was collected from sites A and B. An independent mixed sward trial at site C was used for validating against harvest measurements. Satellite image retrieved from
Google Maps (16 April 2019) and follows attribution guidelines for redistribution.
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FIGURE 3 | (A) Interior of Hood 2 on the multiple scanning imaging capacity system (MSICS) showing the custom lighting setup alongside the LiDAR an red, green,
and blue (RGB) camera. (B) A typical image captured from the RGB camera during operation.
FIGURE 2 | The multiple scanning imaging capacity system (MSICS) used for high throughput phenomic screening of forage. Hood 1 contains SWIR and VNIR
hyperspectral cameras. Hood 2 contains light detection and ranging (LiDAR) and red, green, and blue (RGB) sensors. Each hood contains its own custom lighting
setup. A black skirt is installed around the base of the hoods to block out ambient light. An encoder is installed on the back wheel for measuring distance. The
MSICS also incorporates real-time kinematic global positioning system (RTK-GPS) technology to enable geo-referencing.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 1594
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plots were chosen specifically to have a wide range of biomass
and proportion of clover/ryegrass.

For each harvested plot, a 25 cm × 25 cm quadrat was placed
on the plot in a position that visually corresponded to the plot's
growth score (Figure 6). After RGB data was collected, the mixed
material inside each quadrat was harvested using electric shears
and packaged. Following this, clover and grass were separated
from each sample before being dried and weighed.

Training Dataset
To train convolutional neural networks, thousands of labelled
images are typically needed. This problem is exacerbated for
image segmentation where a label is required for every pixel.
Although techniques for semisupervised and unsupervised
learning do exist, their success varies between different
problems. Therefore, we decided to construct our data set
using two different labelling approaches. The majority of the
data set is built from synthetic data that has been constructed
using a variant of the synthetic image generation (SIG) method
used by (Skovsen et al., 2017). Here samples of individual plants
and leaves are cropped from RGB images captured by the
MSICS, then randomly overlapped to create new images where
the label is already known. Augmentations such as scaling, flips,
and gamma transformations are also applied to these samples to
further increase diversity of images in the dataset. This process
enables the synthesis of thousands of unique labelled images
from a relatively few number of samples. We have also included a
number of partially labelled images to provide some examples
that are more realistic and target configurations that are not
easily simulated—such as clusters of small gaps in the pasture
canopy, object boundaries, and complex shadowing effects. Each
partially labelled image was augmented with vertical and
horizontal flips to quadruple the amount of partially
labelled data.

Our final training data set is made of 4,500 training images
and 600 testing images as shown in Table 1. Samples used for
generating synthetic data for the training and testing data sets
were kept separate to avoid cross-contamination. Each image in
this dataset have both a height and width of 100 pixels. We also
experimented with larger image sizes, however the 100×100 size
provided a good balance between training speed and
image complexity.

Synthetic Image Generation
The SIG process we followed was similar to that used by
(Skovsen et al., 2017). Each synthetic image contains a random
background (soil image), and between 2 and 20 random samples
that are augmented and overlaid in random positions. The
selection probability for clover and grass samples was
Frontiers in Plant Science | www.frontiersin.org 5
subjectively adjusted to account for the average sizes of each to
ensure a balanced distribution of ratio and sparseness. Sample
augmentations included: horizontal and vertical flips;
scale ±25%; gamma ±10%; and saturation ±25%. The ground
sample distance for our data is approximately 2–3 pixels per mm.
As such we have omitted rotation augmentations of our samples
as it disrupted the texture information at this resolution. We also
apply Gaussian drop shadows to approximately half of our
synthetic images to darken underlying soil and leaves. Instead
of simulating shadows that are realistic for our data-capture
system, we vary the extent and intensity of the Gaussian drop
shadows in order to improve our networks robustness to
different lighting conditions. Examples of our synthetic data
are shown in Figure 4. Unlike Skovsen et al. who focused on
making photo-realistic synthetic images, we have embraced the
inelegance of simple stitching as a further form of data lighting
augmentation. We also identify the boundary pixels in each
sample so that they can be ignored during network training to
reduce influence of edge artefacts.

Local Context Network
LC-Net follows an encoder-decoder structure (Figure 5), taking
design inspiration from a number of recent segmentation
networks. The input image is encoded using the first five
blocks of VGG16 (Simonyan and Zisserman, 2015). We have
also followed standard practice of removing the max-pooling
layer from final block. The decoder part of the network has two
branches. The primary branch contains an FC block (equivalent
role to the Fully Connected layers of VGG16) and three Decoder
blocks which have skip connections to the corresponding
encoding blocks. The second branch takes the features from
the last VGG16 block and feeds them through a custom pyramid
pooling module we have designed, which we have named local
context pyramid pooling (LCPP). The output of the LCPP
module is then resized to be the same size as the output of the
primary branch (both in spatial and feature dimensions) and
concatenated to it. This is then put through mixing convolution
layers for combining the information from each branch before
the logits are calculated. At this point the output has a stride of 2
and the up-sampling is completed with bilinear interpolation.
Final predictions are then made by applying softmax activation
to this output.

FC Block
This consists of three 3×3 convolutions then a 1x1 convolution.
Each convolution is followed by ReLU activation then batch
normalisation. We choose the number of output channels for
these convolutions to be 1,024 as we generally find VGG16's
original 4,096 feature length to be excessive for problems
targeting a small number of classes.

Decoder Block
The output from the previous layer is bilinearly resized to match
the output size of the corresponding VGG16 block output. These
are then concatenated and passed through two mixing
convolution layers. There are different numbers of channels for
each input into the concatenation—this causes the less developed
TABLE 1 | Composition of the training and testing data sets.

Clover Ryegrass Background Synthetic Partial Total

Training Set 308 230 54 2700 450 (x4) 4500
Testing Set 50 50 50 400 50 (x4) 600
Each set contained independent clover, ryegrass, and background samples. The amount
of partially labelled data was quadrupled using flip augmentations.
February 2020 | Volume 11 | Article 159

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bateman et al. Assessment of Mixed Sward Using CNNs
features in the earlier VGG16 blocks to have less influence on the
semantic information in the final output.

Mixing Convolution
These follow the same design principle shown by the DeepLabV3
+ decoder; i.e. it is beneficial to follow concatenation operations
with several convolutions to properly combine the features. We
use a 3×3 convolution followed by ReLU activation then batch
Frontiers in Plant Science | www.frontiersin.org 6
normalisation for this. The number of output channels is fixed to
128 for all mixing convolutions in this network.

LCPP Module
The input to this module is sent separately through two average
pooling layers with kernel sizes 3×3 and 5×5. “Same” padding is
used to maintain spatial shape. The outputs of these pooling
layers are then concatenated before being sent through two 1×1
FIGURE 5 | The local context network architecture using a VGG16 backbone and local context pyramid pooling.
FIGURE 4 | Example of synthetic image generation. Plant samples use the labelling convention: red = object of interest; blue = pixels to include but ignored during
training—such as edges or ambiguous pixels; black = excluded from sample. The synthetically generated labels (right) use a convention based on the (Everingham
et al., 2012) colour scheme: red = clover; green = grass; black = background; white = pixels marked to be ignored during training.
February 2020 | Volume 11 | Article 159
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convolution + ReLU activation + batch normalisation blocks.
The length of the features returned by these convolutions are the
same as the module input.

It has been demonstrated by other networks (Chen et al.,
2018) that predictions can be improved by incorporating the
global context vector (the image described by single rich feature
vector with zero spatial extent) into the final decision process.
However, it would be ambiguous to apply this with forage images
of different sizes and scales (i.e., visually forage is relatively
densely packed and continuous across the extent of the image).
The LCPP module is designed to play the role of the global
context vector in this situation. It does this by incorporating
multiple context vectors that are local to large regions of the
image at different scales. The dependencies on image size and
scale are limited as a result.

Network Training
LC-Net was trained to classify pixels to three classes—Clover,
Ryegrass, and Background. The background class includes
regions containing soil and exceptionally dark shadows. Pixels
of other pastoral species are explicitly ignored during training—
therefore will have indeterminate classification during inference.
ImageNet initialisation was used for the VGG16 layers
(Tensorflow, 2016). The other weights were initialised using
standard Xavier initialisation. The network was trained for 400
epochs with a batch size of 24, using Adam optimisation, partial
categorical cross-entropy loss and a learning rate of 5e-5.
Training LC-Net with the above data set took 3.5 h on a
desktop PC using a GTX 1080Ti GPU and an Intel i7-
7700K CPU.

Data Postprocessing
Segmentation networks provide a prediction score for each class
in every pixel which is used to determine the classification for
that pixel. After processing each image with the network, we
Frontiers in Plant Science | www.frontiersin.org 7
defined any pixel with a prediction confidence less than 80% to
be background (i.e., uncertain predictions). All other pixels were
defined as as either clover or ryegrass depending on which the
had the highest prediction confidence for the respective pixel.

When processing the data for the validation trial the harvest
frame did not fit in the camera field of view in the driving
direction. Furthermore, the height of the hood was adjustable—
meaning that the camera footprint (i.e., pixels/mm) needed to be
calculated dynamically. A rasterising-like approach to stitching
the RGB data was taken as per below.

First cross-correlation between adjacent images was
performed to determine the number of overlapped pixels. The
overlap strip was then divided into 22 strips, taking the central
row of pixels as the representative for each strip. This was then
followed by using the wheel encoder information to determine
the distance travelled in this overlap region, and therefore the
relative position of each strip. The pixels/mm along each strip is
determined from information obtained by the LiDAR unit on the
MSICS. These samples were then averaged in a raster grid with a
pixel size of 1.2 × 1.2 mm. An example of this rasterising process
applied to both an RGB image and its associated segmentation
mask is shown in Figure 6. The rasterised RGB image was not
processed with LC-Net. Instead, LC-Net is used to create
segmentation masks for the raw RGB images. The same
rasterising parameters calculated for stitching the raw RGB
images is also used to stitch the associated segmentation masks.
RESULTS

Network Training
In addition to LC-Net, two more networks were trained for
comparison (Table 2 and Figure 7). We used two standard
metrics to assess the quality of each network—mean pixel
FIGURE 6 | (A) visual and (B) segmentation images for one of the validation trial plots after rasterising. Each image has a pixel size of 1.2 × 1.2 mm2. The harvest
frame has ambiguous segmentation as the convolutional neural network (CNN) has not been trained to recognise it.
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accuracy and mean IoU. Both of these metrics are class weighted
averages. Due to the non-linear behaviour of these metrics the
mean IoU was the more informative one during training after the
pixel accuracy exceeded 90%.

FCN was trained for one of the comparison networks. Although
data from (Skovsen et al., 2017) consists of higher resolution images,
the FCNmodel we trained in our study significantly higher accuracy
—with an IoU close to that reported for benchmark datasets
(Shelhamer et al., 2016). As illustrated in Figure 7, FCN lacks the
Frontiers in Plant Science | www.frontiersin.org 8
ability to properly delineate fine filament like structures or corners,
which is fundamental limitation of this architecture.

To show the benefits provided by the LCPP module, the LC-
Net architecture both with and without the LCPP branch.
Despite the LCPP module only improving the mean IoU by
2.2%, there is a significant boost in performance as presented in
Figure 7. Clover in the segmentation are more filled in; and
prominent gaps in the grass from the network without LCPP are
filled in when LCPP is included. Overall, the full LC-Net
outperformed all other networks tested for this application.

To test the robustness of our training process and dataset we
applied a stratified 5-fold cross validation to each of the tested
networks (Figure 8). We split each sub dataset (17/07/2018
samples, 05/12/2018 samples, and partially labelled)
independently and aggregated the respective folds. This was so
the samples with different lighting conditions would not be mixed
in the synthetic data generation process. The accuracy and mIoU
for these cross validation runs are on average a few percent lower
than obtained from the original dataset configuration (Table 2).
However, the overall network ranking remains unchanged. Note
FIGURE 7 | A red, green, and blue (RGB) image that has been captured by the multiple scanning imaging capacity system (MSICS) at site C, and processed using
each of the trained networks—fully convolutional network for semantic segmentation (FCN), local context network (LC-Net) [without the local context pyramid pooling
(LCPP) module], and the full LC-Net. The segmentation masks show clover (red), grass (green), and background (black). The background class includes soil, very
dark shadows, and pixels that have less than an 80% confidence score in their classification.
TABLE 2 | Comparison of networks trained for clover-ryegrass segmentation.

Method mAcc mIoU mAcc (CV) mIoU (CV)

FCN (Skovsen et al., 2017) 83.4 65.5 – –

FCN 92.7 74.8 92.0 73.4
LC-Net (without LCCP) 93.7 79.1 93.4 77.3
LC-Net 95.4 81.3 95.0 79.0
The mean pixel accuracy (mAcc) and mean intersection over union (mIoU) metrics are
class-weighted averages. The first two columns are results for our original dataset
configuration. The last two columns are averaged results from a stratified fivefold cross-
validation (CV).
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the original dataset configuration used approximately 11% more
samples in the training set than the cross validation. This indicates
that further improvements may still be gained through increasing
the number of samples in the dataset.

Sward Composition
To assess the improvement in estimating sward composition
using LC-Net over FCN we used 70 data points from our
validation trial. A small number of data points were excluded
from this analysis due to insufficient data for to completing the
rasterising process. The fraction of clover estimated from the
RGB images were taken as the ratio of clover pixels to clover and
ryegrass pixels as identified by the respective networks. The
clover fraction for the harvest measurements is obtained from
the equivalent calculation using dry weights instead of pixels.
Frontiers in Plant Science | www.frontiersin.org 9
As shown in Figure 9, the clover fraction correlation obtained
from LC-Net (R2 = 0.825) is only marginally better than what
was obtained for FCN (R2 = 0.793). Overall this similarity is not
surprising since they provide approximations to the same
coverage areas. Data points with similar forage density are also
spread relatively evenly throughout the scatter cloud, which
suggests that a significant component of the variation is due to
occlusion of underlying vegetation by the top layer of pasture.
DISCUSSION

Deep Learning methods have a tendency to produce results that
appear much better compared to traditional methods, especially on
classification type problems. However, since the field of deep
FIGURE 8 | Mean accuracy (A) and mean intersection over union (B) results for each fold for models trained using stratified fivefold cross-validation. Results are
relatively consistent between folds for each model.
FIGURE 9 | Comparison of the clover-vegetation ratio obtained from RGB images and harvested dry matter measurements. (A) Red, green, and blue (RGB) results
from the fully convolutional network for semantic segmentation (FCN) network has a linear correlation of R2 = 0.793 with harvested dry matter. (B) RGB results from
the local context network (LC-Net) and has a linear correlation of R2 = 0.825 with harvested dry matter.
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learning is advancing at a very high rate it is challenging for other
fields to uptake state-of-the-art techniques into new applications.
The first pre-print of the FCN network was published two years
before it was applied to segmenting ryegrass from clover
(Shelhamer et al., 2014; Skovsen et al., 2017). During this time
dozens of new segmentation networks were published that
significantly outperformed FCN (Garcia-Garcia et al., 2017). Also,
most CNN architectures have been developed on standard
computer vision benchmark data sets, many of which are focused
on urban settings. Agricultural applications can offer challenges that
are either not present or less prominent than those found in these
benchmarks. For example, the object detection networks such as
Faster R-CNN and YOLO are now commonly applied to fruit and
weed detection. However, these networks have severe limitations
around how many objects they can detect which can cause
problems when looking at a tree with hundreds of targets—
requiring them to be applied in innovative ways. Based on our
experience in this research, global context information for proximal
pasture images contain sufficient ambiguity to make it challenging
to robustly incorporate it into networks for this application. During
the development of LC-Net we trialled DeepLabV3+ (a state-of-the-
art network which utilises global context) on this problem. We
found that it required both a fixed ground sample distance and a
consistent input image size between both the training and
deployment versions of the model. This restriction is not practical
as it is too time consuming and costly to train and maintain a
different model for every potential hardware configuration we may
need to use. The LCPP module is a pragmatic alternative to global
context—providing similar benefit without being restrictive on the
development of our data-collection platform.

For this work we did not restricted ourselves to using
predefined CNN architectures, instead we developed our own
specifically for the application of canopy segmentation in an
agricultural context. In this paper we have applied used this new
architecture (LC-Net) for analysing pasture. The design of LC-Net
is influenced by a number of different networks. Although we
don't use separable convolutions, the decoder modules and mixing
convolutions are derived from the structures used for DeepLabV3
+. The network also trained more robustly when we used skip-
connections during up-sampling rather than atrous convolutions
—although it is not clear whether this observation is specific to our
application. We also used a pyramid pooling module of our own
design (LCPP) to incorporate local context information at
different scales instead using a single global context. By
including a context layer in our network, we effectively force it
to make a high level visual score and incorporate that into the
decision process. Another advantage of LCPP is that it uses pre-
defined pooling operations, therefore requires significantly fewer
trainable parameters than other pyramid pooling techniques. The
description for LCPP we have given is very specific, however it
follows a generic formula. It can be adapted by changing the
number of pooling layers along with different kernel sizes and/or
changing the number of convolutions and feature sizes following
the concatenation. The design of this module will almost certainly
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need tuning for specific applications/data depending on factors
such as relative object size. This aspect is being investigated
further. Our experience working with CNNs is that those built
upon VGG16 are easier to train for canopy assessment compared
to deeper networks such as Xception (Chollet, 2017) and ResNet
(Kaiming et al., 2016). This is the primary reason for choosing
VGG16 as the backbone of the first iteration of our LC-Net. In
addition to pasture, we are also currently investigating extensions
of LC-Net for segmentation of orchard and vineyard canopy
applications, in addition to how well it performs on the
standard benchmark data sets.

We showed that LC-Net significantly out-performs FCN for
segmenting clover from ryegrass in mixed swards. Comparing
our FCN results and those of (Skovsen et al., 2017) two major
differences are noticeable. First, our images have half the ground
sample distance of theirs. Given that FCN has an output stride of
8, the edges of objects in its predictions should be more uncertain
with our data. Second, (Skovsen et al., 2017) included a class for
predicting weeds whereas we have not. They used very few
examples of weeds in their training data which negatively
impacted their reported accuracy. It is likely their FCN model
would have an accuracy similar to ours if either more weed
examples were added to their data set—or if the weed was class
removed entirely. Over the following season we are planning to
incorporate other plants into our dataset so we can also adapt our
network to be effective in weedy conditions.

We are planning to publish the dataset associated with this
work separately. Before doing so however, there are several
additions and improvements that we believe would add
significant value—which include labelling data from different
seasons, and inclusion of additional plants/weeds. It is worth
noting that the dataset we have compiled for this study is highly
specific to the camera and lighting setup we have used. For
example, a few minor tests we performed demonstrated that our
network is not generalised for natural lighting conditions (a drop
in mIoU of roughly 30 − 40%). As such, networks trained by our
dataset will likely perform poorly on data collected from setups
substantially different from our own.

Comparing LC-Net and FCN models by the correlation
between visual and harvested clover ratios, we see little
difference in the results. Work by (McRoberts et al., 2016) and
(Rayburn, 2014) using more traditional methods showed that it
is also possible to obtain reasonable estimation through
classification with coarse super-pixels and sparse subsampling.
This indicates that significant boosts in pixel-level segmentation
accuracy only translates to small (sometimes negligible)
improvements in clover-vegetation fraction estimation with
RGB imaging. There are two situations we identify that could
benefit from higher segmentation accuracy: (1) when combining
visual information with that of other sensors such as LiDAR to
which can potentially compensate for the lack of plant density,
volume, and occlusion information; and (2) when assessing
pasture for more species than just clover and ryegrass. We are
currently investigating both of these areas. Another motivation
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for using deep learning models is that they are in many cases
simpler to work with, maintain, and extend when compared to
more traditional feature crafting methods.

An observation of significance we made during training each
of these networks was that training and testing losses could not
be used to monitor for overfitting. After approximately 20–30
epochs in every training run the testing loss starts to increase (a
typical sign of the network memorising the training set), however
the accuracy and IoU metrics continued to improve regularly.
This increase in validation loss seemed to be focused around the
edges of the leaves in the images. Due to the mesh-like structure
of pasture there is an unusually high proportion of class
boundary pixels to interior pixels (%56 in our training data)
that therefore provide a significant contribution to the loss. The
synthetic images in our data set has been constructed in a
manner that provides little information to the network about
what true edges look like. This peculiarity may be resolved
through improvements to how the training set is labelled,
however the cost is likely higher than the benefit from doing
so. The networks trained appear to work well in practice despite
the elevated loss, and the accuracy metrics did not indicate
overfitting nor appear to be significantly affected by this.

Overall, our results for assessing clover fraction using
convolutional neural networks are comparable to those
obtained by (Skovsen et al., 2017). We have demonstrated that
relationship between visual and harvested clover fraction is
reproducible using different networks, lighting setup, camera,
image resolution, less photogenic synthetic data, and different
postprocessing procedures.
CONCLUSIONS

A new CNN architecture (LC-Net) designed for segmentation of
agricultural canopies is showing promise for component
identification in mixed sward. This architecture can segment
clover and ryegrass in RGB images with higher accuracy than any
other methods publicly available for the same application. We
have also achieved this with half of the image resolution (pixels/
mm) used by the next best method. Our comparisons between
visual and harvested dry matter clover-vegetation ratios indicate
that these improvements in segmentation accuracy do not yield
similar improvements to biomass estimation. However, we
predict that refined segmentation is necessary for improving
biomass predictions when it is combined with information from
other sensors.
Frontiers in Plant Science | www.frontiersin.org 11
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.
AUTHOR CONTRIBUTIONS

CB was the primary developer of LC-Net along with writing the
associated code, performing the analysis, and writing the paper.
JF and JH aided in the development of LC-Net through
discussions around critical design choices and software
debugging. JH also contributed to the literature review. Data
collection and preprocessing was performed by CB, KI, AHe, and
AHi. KI and MH developed the RGB image capture software
used, the LED rig, and configured the setup. BJ installed the RGB
hardware into the MSICS and was involved in the integration
design decisions. SG oversaw and managed MSICS hardware
changes and developments. KG guided the style of the
manuscript writing and managed and directed the overall
programme of research. All authors contributed to review and
editing of the paper.
FUNDING

This work was supported by Pastoral Genomics, a joint venture
co-funded by DairyNZ, Beef+Lamb New Zealand, Dairy
Australia, AgResearch Ltd, New Zealand Agriseeds Ltd,
Grasslands Innovation Ltd, and the Ministry of Business,
Innovation and Employment (New Zealand).
ACKNOWLEDGMENTS

The authors would like to thank Sophie Rebbeck for managing
the Lincoln Agritech coordination and contracts with
AgResearch colleagues. Sophie Rebbeck and Ian Boddy, for
discussions about simple description of LC-Net and
AgResearch engineering team involved in the construction of
the MSICS machine.
REFERENCES

Araus, J., Kefauver, S., Zaman-Allah, M., Olsen, M., and Cairns, J. (2018).
Translating high-throughput phenotyping into genetic gain. Trends Plant
Sci. 23, 451–466. doi: 10.1016/j.tplants.2018.02.001

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2016). SegNet: a deep
convolutional encoder-decoder architecture for image segmentation. CoRR
abs/1511.00561.

Barrett, B., Favelle, M., Ghamkhar, K., and Carena, M. (2018). Developing new
tools for pasture plant. J. New Z. Grasslands 80, 225–262.
Bonesmo, H., Kaspersen, K., and Kjersti Bakken, A. (2004). Evaluating an image
analysis system for mapping white clover pastures. Plant Sci. 54, 76–82.
doi: 10.1080/09064710410024462

Capstaff, N., and Miller, A. (2018). Improving the yield and nutritional quality of
forage crops. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00535

Chen, L., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-
decoder with atrous separable convolution for semantic image segmentation,
in: Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018. pp. 833–851, Proceedings, Part VII.
doi: 10.1007/978-3-030-01234-2\_49
February 2020 | Volume 11 | Article 159

https://doi.org/10.1016/j.tplants.2018.02.001
https://doi.org/10.1080/09064710410024462
https://doi.org/10.3389/fpls.2018.00535
https://doi.org/10.1007/978-3-030-01234-2\_49
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bateman et al. Assessment of Mixed Sward Using CNNs
Chollet, F. (2017).Xception: deep learning with depthwise separable convolutions,
in: IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/
CVPR.2017.195

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2012).
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://
www.pascal-network.org/challenges/VOC/voc2012/workshop/ind.html.

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-
Rodriguez, J. (2017). A review on deep learning techniques applied to semantic
segmentation. arXiv preprint arXiv:1704.06857.

Gebremedhin, A., Badenhorst, P., Wang, J., Spangenberg, G., and Smith, K. (2019).
Prospects for measurement of dry matter yield in forage breeding programs
using sensor technologies. Agronomy 9. doi: 10.3390/agronomy9020065

Ghamkhar, K., Irie, K., Hagedorn, M., Hsiao, W.-H., Fourie, J., Gebbie, S., et al.
(2018). Using LIDAR for Forage Yield Measurement of Perennial Ryegrass
(Lolium perenne L.) Field Plots. Breed. Grasses Protein Crops In Era Genomics,
203–208. doi: 10.1007/978-3-319-89578-9_37

Himstedt, M., Fricke, T., and Wachendorf, M. (2012). The benefit of color
information in digital image analysis for the estimation of legume
contribution in legume-grass mixtures. Crop Sci. 52, 943–950. doi: 10.2135/
cropsci2011.04.0189

Kaiming, H., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition, in: IEEE Conference on Computer Vision and Pattern
Recognition, . doi: 10.1109/CVPR.2016.90

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet Classification
with Deep Convolutional Neural Networks.” in Advances in Neural
Information Processing Systems 25. Eds. F. Pereira, C. J. C. Burges, L. Bottou
and K. Q. Weinberger (Curran Associates, Inc.), 1097–1105.

Lee, J., Matthew, C., Thom, E., and Chapman, D. (2012). Perennial ryegrass
breeding in New Zealand: a dairy industry perspective. Crop Pasture Sci. 63,
107–127. doi: 10.1071/CP11282

McRoberts, K., Benson, B., Mudrak, E., Parsons, D., and Cherney, D. (2016).
Application of local binary patterns in digital images to estimate botanical
composition in mixed alfalfa-grass fields. Comput. Electron. In Agric. 123, 95–
103. doi: 10.1016/j.compag.2016.02.015

Mortensen, A., Karstoft, H., Søegaard, K., Gislum, R., and Jørgensen, R. (2017).
Preliminary results of clover and grass coverage and total dry matter estimation
in clover-grass crops using image analysis. J. Imaging 3. doi: 10.3390/
jimaging3040059

Rayburn, E. (2014). Measuring legume content in pastures using digital
photographs. Forage Grazinglands 12, 1–6. doi: 10.1016/j.compag.2016.02.015

Shelhamer, E., Long, J., and Darrell, T. (2014). Fully convolutional networks for
semantic segmentation Https://arxiv.org/abs/1411.4038v1, (pre-print).

Shelhamer, E., Long, J., and Darrell, T. (2016). Fully convolutional networks for
semantic segmentation. CoRR abs/1605.06211.
Frontiers in Plant Science | www.frontiersin.org 12
Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition, in: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Skovsen, S., Dyrmann, M., Mortensen, A., Steen, K., Green, O., Eriksen, J., et al.
(2017). Estimation of the botanical composition of clover-grass leys from RGB
images using data simulation and fully convolutional neural networks. Sensors
(Switzerland) 17. doi: 10.3390/s17122930

Smith, K., and Spangenberg, G. (2014). Forage breeding for changing
environments and production systems: an overview. Crop Pasture Sci. 65, i–
ii. doi: 10.1071/CPv65n11_FO

Tensorflow (2016). http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz.
Walter, A., Studer, B., and Kölliker, R. (2012). Advanced phenotyping offers

opportunities for improved breeding of forage and turf species. Ann. Bot. 110,
1271–1279. doi: 10.1093/aob/mcs026

Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., et al. (2018). Context
Encoding for Semantic Segmentation 7151–7160. doi: 10.1109/CVPR.2018.00747

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene parsing
network 6230–6239. doi: 10.1109/CVPR.2017.660

Conflict of Interest: The authors declare that this study received funding from
Pastoral Genomics—a joint venture co-funded by DairyNZ, Beef+Lamb New
Zealand, Dairy Australia, AgResearch Ltd, New Zealand Agriseeds Ltd, Grasslands
Innovation Ltd, and the Ministry of Business, Innovation and Employment (New
Zealand). Pastoral Genomics has interests in developing technology that has
potential to be commercialised for adding value to the forage breeding industry,
and have involvement in setting the overall goals and vision of the Pastoral
Genomics research programme. This relationship did not influence study design,
data collection and analysis, decision to publish, or preparation of the manuscript.
Lincoln Agritech Ltd. and Red Fern Solutions are independent research
organisations that were subcontracted to conduct part of this research.
Development of the LC-Net architecture was internally funded by Lincoln
Agritech Limited. All other authors declare no competing interests.

The handling editor is currently organizing a Research Topic with one of the
authors KG and confirms the absence of any other collaboration.

Copyright © 2020 Bateman, Fourie, Hsiao, Irie, Heslop, Hilditch, Hagedorn, Jessep,
Gebbie and Ghamkhar. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
February 2020 | Volume 11 | Article 159

https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/ind.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/ind.html
https://doi.org/10.3390/agronomy9020065
https://doi.org/10.1007/978-3-319-89578-9_37
https://doi.org/10.2135/cropsci2011.04.0189
https://doi.org/10.2135/cropsci2011.04.0189
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1071/CP11282
https://doi.org/10.1016/j.compag.2016.02.015
https://doi.org/10.3390/jimaging3040059
https://doi.org/10.3390/jimaging3040059
https://doi.org/10.1016/j.compag.2016.02.015
https://arxiv.org/abs/1411.4038v1
https://doi.org/10.3390/s17122930
https://doi.org/10.1071/CPv65n11_FO
http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz
https://doi.org/10.1093/aob/mcs026
https://doi.org/10.1109/CVPR.2018.00747
https://doi.org/10.1109/CVPR.2017.660
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Assessment of Mixed Sward Using Context Sensitive Convolutional Neural Networks
	Introduction
	Materials and Methods
	Data Collection
	Mobile Data-Capture Platform
	Training Data
	Validation Trial

	Training Dataset
	Synthetic Image Generation
	Local Context Network
	FC Block
	Decoder Block
	Mixing Convolution
	LCPP Module

	Network Training
	Data Postprocessing

	Results
	Network Training
	Sward Composition

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


