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The male–female interactions in pollination mediate pollen hydration and germination,
pollen tube growth and fertilization. Reactive oxygen species (ROS) derived from both
male and female tissues play regulatory roles for the communication between the pollen/
pollen tube and female tissues at various stages, such as pollen hydration and germination
on the stigma, pollen tube growth in the pistil and pollen tube reception in the female
gametophyte. In this minireview, we primarily summarize the recent progress on the roles
of ROS signaling in male–female interactions during pollination and discuss several ROS-
regulated downstream signaling pathways for these interactions. Furthermore, several
ROS-involved downstream pathways are outlined, such as Ca2+ signaling, cell wall
cytomechanics, the redox modification of CRP, and cell PCD. At the end, we address
the roles of ROS in pollen tube guidance and fertilization as future questions that
merit study.
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HIGHLIGHTS

ROS as signal function in male–female interactions during pollination, including pollen hydration
and germination on the stigma, pollen tube growth in the pistil and pollen tube reception in the
female gametophyte.
INTRODUCTION

Pollination is a critical step for sexual plant reproduction. After landing on the stigma, the pollen undergoes
adhesion and hydration before it germinates to create a pollen tube. The polar tip growth of the pollen tube
guides it through thematernal tissues toward the female gametophyte.Onarrival at the female gametophyte,
the rupture of the pollen tube releases two sperms in a degenerated synergid cell for fertilization. The
interactions between the pollen (pollen tube) and maternal tissues (stigma, style, ovule and female
gametophyte) are critical for pollen hydration and germination, pollen tube growth in the pistil tissues,
guidance to the female gametophyte, reception of the female gametophyte and sperm-egg cell fusion
(Johnson et al., 2019; Lopes et al., 2019). Reactive oxygen species (ROS; e.g., O2•−, H2O2, OH•,

1O2) in cells
that serve as signaling molecules are involved in various biological processes (Waszczak et al., 2018). ROS
play roles in plant development, stress responses, and sexual plant reproduction, such as pollen
.org February 2020 | Volume 11 | Article 1771
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development, pollen tube tip growth, embryo sac development and
fertilization (Cárdenas et al., 2006; Liu et al., 2009; Martin et al., 2013;
Lassig et al., 2014; Xie et al., 2014;Huang et al., 2019; Jiménez-Quesada
et al., 2019). In contrast, under heat stress conditions, the increased
ROS in pollen tubes inhibits tube growth, and flavonols control the
pollen tube growth and integrity by regulating ROS homeostasis
(Muhlemann et al., 2018). During pollination, ROS derived from
both the pollen and female tissues are involved in their
communications at various stages. In this review, we summarize the
recent progress of the ROS signaling roles concentrating on themale–
female interactions in pollination.
ROS INVOLVED IN POLLEN HYDRATION
AND GERMINATION ON THE STIGMA

Pollen grains undergo adhesion and hydration after landing on
the surface of the stigma and germinate to create pollen tubes.
The pollen–stigma interaction is critical for pollen adhesion,
hydration and germination, and many factors, such as proteins
and lipids located on the surface of pollen, have been shown to be
involved in this process (Hiscock and Allen, 2008; Dresselhaus
and Franklin-Tong, 2013; Doucet et al., 2016). Arabidopsis
KINbg is a plant-specific subunit of the SNF1-related protein
kinase 1 complex, which functions in the biogenesis of
mitochondria and peroxisomes in pollen (Gao X.-Q. et al.,
2016). In the null mutant of Arabidopsis KINbg, the ROS levels
of the pollen grains are reduced, and the pollen adhesion and
hydration on the stigma surface is compromised. Additionally,
the ROS signal might regulate the expression of the inward
shaker K+ channel SPIK in pollen, which is important for pollen
hydration and germination on the stigma and pollen tube growth
in the pistil (Mouline et al., 2002; Li et al., 2017). Thus, the ROS
signaling that originates from the interior of the pollen grains
mediates the pollen–stigma interactions (Figure 1A).

The compromised adhesion and germination of the pollen
grains on the non-stigma surfaces indicate that the stigma factors
are important for the pollen–stigma interaction (Ma et al., 2012).
ROS accumulation is found in the stigmas of various angiosperm
species, including Magnolia (a primitive angiosperm) and
Arabidopsis (McInnis et al., 2006; Zafra et al., 2016). Stigma
receptivity is correlated with the activity of ROS-related enzymes,
such as superoxide dismutase and peroxidase (McInnis et al.,
2005; Sharma and Bhatla, 2013), indicating that ROS
accumulation in the stigma is a self-regulated process.
Recently, the ROS accumulation controlled by flavonoids and
the ROS metabolic enzymes were identified in the stigma of
ornamental kale (Brassica oleracea var. acephala), a self-
incompatible (SI) species (Lan et al., 2017). The decreased ROS
levels in the ornamental kale stigma after treatment with
exogenous flavonoid (kaempferol) do not compromise the SI
response of the stigma, but the attachment and germination of
the compatible pollen is drastically reduced. In contrast, the
adherence of pollen grains that trigger the decrease of ROS in the
stigma and nitric oxide (NO) from the adhesive pollen as the
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inducing factor for ROS decrease have been suggested (Hiscock
et al., 2007; Serrano et al., 2011; Sharma and Bhatla, 2013), which
further supports the suggestion that regulation of the ROS in the
stigma is involved in the signaling for pollen–stigma interactions
(Hiscock and Allen, 2008; Zafra et al., 2016). Therefore, a
possible scenario is that the levels of higher ROS in the mature
stigma are favorable for the early stage of the pollen–stigma
interaction, e.g., pollen adhesion and hydration, and the decrease
in the ROS in the stigma after pollen landing might provide a
surrounding for compatible pollen tube growth in the stigma
tissue (Figure 1A).
ROS REGULATE POLLEN TUBE GROWTH
IN THE PISTIL

The facilitation of the pollen tube growth in the pistil tissues by
the apoplastic ROS has been well studied. Arabidopsis respiratory
burst oxidase homologs (RBOHs) are plasma membrane-
localized NAD(P)H oxidases, which are essential for pollen
tube penetration into the transmitting tract of pistil by
mediating apoplastic ROS production in the growing tip of the
pollen tube (Kaya et al., 2014; Kaya et al., 2015). The pollen tube
of the rbohh,j double mutant exhibits bursting in vitro and
retarded growth in the pistil. In contrast, in the self-
incompatible pollen tube, the increase in ROS levels triggers
programmed cell death (PCD) and the self-incompatibility
response (Serrano et al., 2015) (Figure 1B).

An Arabidopsis receptor complex was reported to control the
maintenance of pollen tube integrity during its growth in the
style, which is composed of pollen-specific CrRLK1L subfamily
receptor-like kinases ANXUR1/2 (ANX1/2), Buddha's Paper Seal
1/2 (BUPS1/2) and LORELEI-like-GPI-anchored protein 2/3
(LLG2/3). This complex is localized in the apical membrane of
the pollen tube and functions by perceiving the autocrine peptide
ligands, rapid alkalinization factor 4/19 (RALF4/19) (Boisson-
Dernier et al., 2009; Miyazaki et al., 2009; Ge et al., 2017; Mecchia
et al., 2017; Feng et al., 2019; Ge et al., 2019b). The pollen tube of
the ralf4,19 double mutant also displays precocious rupture in
vitro and inhibited growth in the transmitting tract, which is
similar to that of the llg2,3, bups1,2 and anx1,2 double mutants.
However, RALF4 induced the production of ROS in the pollen
tube that stimulates the pollen tube growth and inhibits the
pollen burst in vitro (Feng et al., 2019). An Arabidopsis llg2,3
double mutant pollen tube exhibited reduced ROS levels and
burst after germination in vitro, and the application of exogenous
H2O2 rescued the rupture of the pollen tube (Feng et al., 2019).
As suggested (Boisson-Dernier et al., 2013), the LLG-BUPS-ANX
receptor complex functions upstream of RBOHH/J and regulates
their activities to coordinate ROS production and Ca2+

homeostasis in regulating the pollen tube growth in the pistil.
In this process, the activities of RBOHs are mediated by
RopGEF-ROP downstream of ANX1/2 (Zhu et al., 2018; Feng
et al., 2019) (Figure 1B).

The NADPH oxidases RBOHs that serve as the primary sources
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of apoplastic/cytoplasmic ROS in the pollen tube are widely studied
inmale–female interactions. However, little is known about the roles
of ROS from other sources, such as the mitochondrion, peroxisome,
and various oxidases. In addition hypoxia induces ROS production
and RBOHH expression in plants (Pucciariello and Perata, 2017;
Yamauchi et al., 2017). The transmitting tract provides a hypoxic
Frontiers in Plant Science | www.frontiersin.org 3
surrounding for the pollen tube growth within it, which results from
the restricted oxygen diffusion and active carbohydrate metabolism
in the growing pollen tube (Goetz et al., 2017). We found evidence
for this in the fact that the expression of ethanol degradation-related
genes has changed in the pollinated stigma and style (Xu et al., 2013;
Yue et al., 2014). Considering the availability of oxygen in the pollen
February 2020 | Volume 11 | Article 177
FIGURE 1 | ROS in male–female interactions. (A) Pollen hydration and germination on the stigma. In Arabidopsis pollen, KINbg mediates the biogenesis of
mitochondrion and ROS levels, which regulate pollen hydration and germination on the stigma. In this process, the expression of SPIK might be regulated by ROS
signaling, by which ROS signaling mediates K+ transport and pollen hydration on the stigma. ROS accumulation is found in receptive stigma, which is important for
pollen attachment, but its decrease is required for the germination of compatible pollen. The ROS levels of the stigma are controlled by various oxidoreductase and
flavonoids and could also be regulated by NO from the pollen. (B) Pollen tube growth in the pistil. NAD(P)H oxidase RBOHH/J-mediated apoplastic ROS production
in the growing tip of the pollen tube is important for pollen tube integrity and growth in the pistil by regulating the activities of calcium channels (such as the CNGCs),
the secretion of HRGPs (such as LRXs), and the metabolism of wall materials (such as pectin and callose). A type one protein phosphatase (AUN1/2) and plasma
membrane-localized receptor-like cytoplasmic kinase MRI also function downstream of ROS signaling in pollen tube growth. The RALF-LLG-BUPS-ANX receptor–
ligand interaction is involved in the active regulation of RBOHs and ROS generation, which is mediated by ROPGEFs and ROPs. Pistil-derived STIG1 induces the
ROS production of the growing pollen tube in the transmitting tract mediated by LePRK2 and PI(3)P. Apoplastic ROS of the pollen tube might induce PCD of the
transmitting tract by mediating CNGC activity and Ca2+ signaling. (C) Pollen tube reception in the female gametophyte. Pollen tube rupture in the synergid is
controlled by ROS from RBOHs in the female gametophyte. LRE and ENODLs serve as the co-receptors of FER to regulate the activity of RBOHs and ROS
generation in the synergid, and RAC/ROP might mediate this process. RALF34 primarily derived from the inner integument controls the pollen tube rupture in
degenerated synergid by binding to the BUPS/ANX receptor complex in the pollen tube, during which ROS might act downstream of the BUPS/ANX receptor
complex. (? indicates the putative regulation.).
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tube, the ROS metabolism of the pollen tube growing in the
transmitting tract might be different from that of the growing
tubes in vitro.
ROS ARE REQUIRED FOR POLLEN TUBE
RECEPTION IN THE FEMALE
GAMETOPHYTE

The pollen tube grows into the micropyle and ruptures in a
degenerated synergid to release two sperm cells that are ready for
fertilization, which is under the control of the interaction
between the pollen tube and synergid (Leydon et al., 2015).
The pollination induces a ROS burst inside the embryo sac
(Martin et al., 2013). It has been proven that the pollen tube
rupture in the synergid is controlled by ROS from NADPH
oxidases in the female gametophyte (Duan et al., 2014).
FERONIA (FER), a universally expressed CrRLK1L family
member, mediates the pollen tube rupture by inducing ROS
generation at the entrance of the female gametophyte.
Glycosylphosphatidylinositol-anchored protein LORELEI
(LRE) and early nodulin-like protein functions (ENODLs)
might be the co-receptors for FER signaling, which is also
involved in ROS generation in the synergid (Duan et al., 2014;
Li C. et al., 2015; Hou et al., 2016; Zhong and Qu, 2019). In the lre
mutant, the ovule showed reduced levels of ROS, and the pollen
tube revealed an overgrowth phenotype in the mutant ovule
(Duan et al., 2014). However, the ectopic expression of LRE in
the pollen tube could rescue the pollen tube rupture in the ovule
of lremutant (Liu et al., 2016). Thus, the LRE-FER signaling that
was recovered could induce an instantaneous burst of ROS in the
synergid cells that is adequate for pollen tube reception. The
interactions between RAC/ROPs and FER and LRE indicate that
RAC/ROPs mediate the activation of NADPH oxidase for ROS
generation (Duan et al., 2010; Duan et al., 2014). Therefore, a
FER-RAC/ROP-NADPH oxidase-ROS signaling pathway exists
in the interactions between the pollen tube and female
gametophyte (Li C. et al., 2015; Nissen et al., 2016). In
addition, an ovule-expressed RALF peptide, RALF34, induces
pollen tube rupture in vitro. RALF34 binds both BUPS1/2 and
ANX1/2 in vitro, indicating that RALF34 may play its roles via
the BUPS/ANX receptor complex (Ge et al., 2017). RBOHH- and
RBOHJ-mediated ROS function downstream of the BUPS/ANX
receptor complex that regulates pollen tube growth in the pistil
(Boisson-Dernier et al., 2013). Thus, ROS may be involved in the
RALF34-BUPS/ANX receptor complex signaling in the pollen
tube rupture in the synergid cells (Figure 1C).
ROS TRIGGER DOWNSTREAM
RESPONSES

RBOH-derived ROS that mediate pollen tube integrity are
required for either pollen tube growth in the pistil or pollen
Frontiers in Plant Science | www.frontiersin.org 4
tube reception in the female gametophyte. Ca2+ and Ca2+-
mediated protein phosphorylation functions in the activation
of RBOHH and RBOHJ in pollen tube growth (Kaya et al., 2014).
It has been suggested that Ca2+ binding triggers the production
of ROS, which can also act on Ca2+ channels (Wudick and Feijó,
2014). However, the ROS-activated Ca2+ channels in the pollen
tube are elusive. The cyclic nucleotide gated channel (CNGC)
family functions as Ca2+ channels in pollen tube growth and
guidance (Tunc-Ozdemir et al., 2013; Gao Q.-F. et al., 2016). The
pollen tube of a cngc7,8 double mutant shows a similar
phenotype with that of the rbohj,h double mutant: bursting in
vitro and sterility (Tunc-Ozdemir et al., 2013; Lassig et al., 2014).
Thus, the activity of the CNGCs might be regulated by ROS in
pollen tube growth, although experiments are required to test
this hypothesis. The ROS-induced opening of the Ca2+ channels
is required for pollen tube reception (Duan et al., 2014; Wudick
and Feijó, 2014). The auto-inhibited Ca2+ ATPase 9 and CNGCs
might be the downstream targets of ROS in pollen tube rupture
(Schiøtt et al., 2004; Tunc-Ozdemir et al., 2013; Gao Q.-F. et al.,
2016). ATUNIS1/2 (AUN1/2), a type one protein phosphatase,
was identified to act downstream of ANX and RBOHH/J, and its
activity is inhibited by ROS, which enables AUN1/2 to play its
role as a negative regulator in pollen tube integrity (Franck et al.,
2018). MARIS (MRI) is a plasma membrane-localized receptor-
like cytoplasmic kinase that acts downstream of ROS and is
mediated by both the ANXs and RBOHH/J in controlling pollen
tube integrity and growth in the pistil (Boisson-Dernier et al.,
2015; Liao et al., 2016). However, the manner in which AUN1/2
and MRI mediate the ROS signaling in pollen tube growth
remains unknown (Figures 1B, C).

The regulation of pollenwall cytomechanics by ROS is suggested,
e.g., •OH is involved in the loosening of the pollen intine in the
germination pore region that might facilitate the enlargement of the
pollen volume during hydration (Smirnova et al., 2014). However,
little is known about howROS regulate thewall cytomechanics of the
growing pollen tube. ROS upregulation of pectin synthesis, PME
activity and pectin demethylesterification in the root and other
tissues was reported (Messenger et al., 2009; Xiong et al., 2015).
The pollen tubewall is enriched in pectins, and pectinmethylesterase
activity is critical for pollen tube integrity and its growth in the
transmitting tract (Jiang et al., 2005). RALF4 not only induces ROS
production in the pollen tube but alters the composition of the pollen
tube wall, such as callose and pectin, which are correlated with the
pollen tube integrity and growth (Mecchia et al., 2017; Feng et al.,
2019). A llg2,3 double mutant pollen tube showed reduced ROS
levels and altered pectin and callose deposition at the tip wall of the
pollen tube (Feng et al., 2019). Thus, ROS might be implicated in
pollen tube integrity by regulating the metabolism of wall materials,
such as pectin and callose (Figure 1B). Before the arrival of pollen
tube at the synergid, the micropylar end of the synegid accumulates
ROS that is controlled by FER (Duan et al., 2014; Li C. et al., 2015).
The ROS in synergids might be involved in the development of a
filiform apparatus, as suggested in phloem in which a ROS signal
induces the formation of wall ingrowths in the transfer cells
(Andriunas et al., 2013). After the arrival of the pollen tube, the
February 2020 | Volume 11 | Article 177
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high level of ROS at the micropylar end of the synegid might
function in the regulation of pollen tube integrity by its
implication in the metabolism of wall materials.

To facilitate the penetration of the pollen tube into the pistil
tissues, cell wall modification and softening and cell separation in
pistil tissues is required (Marsollier and Ingram, 2018).
Hydroxyproline-rich glycoproteins (HRGPs), such as leucine-
rich repeat extensins (LRXs), are localized at the pollen tube
surface and in the intercellular matrix. It has been suggested that
these proteins function to separate the cell walls of pistil tissues,
by serving as lubricating functions for pollen tube growth in the
pistil (Marsollier and Ingram, 2018; Sede et al., 2018). Stigma-
specific protein 1 (STIG1), a cysteine-rich protein expressed in
pistil tissues in tobacco and petunia, promotes pollen tube
growth (Verhoeven et al., 2005; Huang et al., 2014). STIG1
controls the secretion of the HRGP-rich extracellular matrix
and the ROS production of the pollen tube in both PI(3)P-
dependent and LePRK2-dependent manners. There might be a
linkage between the pistil factor-induced ROS elevation in the
pollen tube and the HRGP secretion-facilitated pollen tube
growth in the pistil tissues. Arabidopsis GRIM REAPER (GRI)
is a secreted protein that is similar to STIG1. GRI promotes the
superoxide production that triggers cell death (Wrzaczek et al.,
2015). Thus, STIG1-promoted pollen tube growth in the pistil
tissues might function via mediating ROS-induced PCD of the
transmitting tract, as in the rice style (Xu et al., 2017). Rice
OsCNGC13, a pistil-preferentially expressed CNGC member,
plays roles in Ca2+ signal-inducing pistil PCD, which facilitates
the penetration of the pollen tube in the pistil (Xu et al., 2017).
Considering that pollination is an inducer for the PCD of
transmitting tissue (Wang et al., 1996; Xu et al., 2017), it is
tempting to study whether the apoplastic ROS of the pollen tube
growing in transmitting tissue could diffuse into the pistil tissue
to trigger the OsCNGC13 activity and pistil PCD in rice
(Figure 1B).

Redox regulation for thiol/disulfide-containing proteins is
involved in sexual plant reproduction (Traverso et al., 2013).
ROS that act as signaling molecules function in the oxidation of a
critical cysteine thiol group within redox-sensitive proteins
(Reczek and Chandel, 2015; Sevilla et al., 2015). Cysteine-rich
peptides (CRPs) expressed in either male or female reproductive
tissues and cysteine-rich proteins as receptor complex subunits,
such as LRE family members (LRE and LLG1-3) (Liu et al., 2016;
Feng et al., 2019), are involved in male–female interactions, as
was recently reviewed (Zhong and Qu, 2019). The modified
eight-cysteine motif in the LRE is required for pollen tube
reception (Liu et al., 2016). Recently, the N-terminus of the
RALF23 peptides was identified to be involved in the binding to
LLGs to assemble the LLG-FRE receptor complex to regulate
immune signaling (Xiao et al., 2019), but the functions of the C-
terminal region of RALF23 peptides with the conserved cysteine
residues are unknown (Ge et al., 2019a; Ge et al., 2019b).
Whether ROS functions in the redox modification and activity
regulation of the cysteine-rich peptides and proteins in male–
female interactions merits further investigation.
Frontiers in Plant Science | www.frontiersin.org 5
ARE ROS INVOLVED IN POLLEN TUBE
GUIDANCE GROWTH AND
FERTLIZATION?

There are less data about the roles of ROS in pollen tube
guidance growth and fertilization. CRPs secreted from the
female gametophyte as a signal are required for pollen tube
guidance (Takeuchi and Higashiyama, 2012; Li H.-J. et al., 2015;
Meng et al., 2019; Zhong et al., 2019). Arabidopsis pollen-
expressed GPI-AP COBRA-LIKE 10 (COBL10) and its
modification play roles in the guidance of pollen tube growth
(Li et al., 2013; Cheung et al., 2014; Dai et al., 2014). The
Arabidopsis COBRA-LIKE protein family harbors at least 12
conserved cysteine residues, and several intramolecular disulfide
bonds in COBL10 were predicted (Supplemental Data 1).
Whether ROS is involved in the thiol-based redox modification
of these CRP proteins and these modifications function in pollen
tube guidance growth await further study. In addition, small
cysteine-rich EGG CELL 1 proteins secreted from the egg cell in
Arabidopsis are necessary for sperm cell activation in male–
female gamete interactions for fertilization (Sprunck et al., 2012;
Cyprys et al., 2019). As mentioned previously, the cysteine
residues in CRPs are the potential targets of ROS signaling;
thus, the implication of ROS in pollen tube guidance and
fertilization is expected by mediating the redox modification of
the CRPs. Higher ROS levels in the central cell of the female
gametophyte before fertilization has been reported in
Arabidopsis (Martin et al., 2013). Cytosolic ascorbate
peroxidase (cAPX) is a central component in the metabolism
of ROS. Abundant cAPXs in rice egg cells were identified,
indicating that ROS scavenging is required for fertilization
(Uchiumi et al., 2007). Thus, an open question is how the ROS
signaling in the gametes (egg and central cell) is implicated in
male–female gamete recognition in fertilization.
FUTURE DIRECTIONS

In recent years, ROS that function as critical signal molecules
have resulted in significant advances in various stages of
pollination, including the interactions between the pollen and
stigma, pollen tube and transmitting tract, pollen tube and
female gametophyte. However, there are still many gaps in
understanding the ROS action as a signaling molecule in male–
female interactions. For example, it remains to be studied
whether ROS are involved in pollen tube guidance growth and
fertilization. In most of the previous studies, ROS burst in pollen
tube and embryo sac is generated by plasma membrane-localized
NADPH oxidases. In fact, other subcellular compartments
generate ROS in plant cells, such as cytosol, chloroplasts,
mitochondria, and peroxisomes (Mignolet-Spruyt et al., 2016).
However, the roles of these ROS sources in the male–female
interactions during pollination are less known now. ROS
homeostasis is under the control of diverse antioxidant system,
such as thioredoxin and glutathione (Zhang et al., 2018). The
February 2020 | Volume 11 | Article 177
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mutations of Arabidopsis NADPH-dependent thioredoxin
reductase A and glutathione reductase 1 disturb the
transmission of male gametophyte, although the pollen
development is normal (Marty et al., 2009). These indicate that
the ROS homeostasis in pollen tube governed by thioredoxin and
glutathione is critical for pollen tube growth in pistil or
fertilization. Thus, the regulation of ROS homeostasis in male–
female interactions can be expected.
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