

Chloroplast Calcium Signaling in the Spotlight

Lorella Navazio^{1,2†}, Elide Formentin^{1,2†}, Laura Cendron¹ and Ildikò Szabò^{1,2*}

¹ Department of Biology, University of Padova, Padova, Italy, ² Botanical Garden, University of Padova, Padova, Italy

Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca²⁺ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca²⁺ signals and contribute to the fine tuning of cytoplasmic Ca²⁺ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca²⁺ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca²⁺-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intrachloroplast Ca²⁺ transients, as well as recent advances in the identification and characterization of Ca²⁺-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca²⁺ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.

Keywords: chloroplasts, organellar calcium signaling, calcium-permeable channels, calcium transporters, calcium binding proteins, genetically encoded calcium indicators, chloroplast calcium uniporter

INTRODUCTION

Calcium is a fundamental intracellular messenger involved in a wide range of different signaling pathways in all eukaryotes. In plants, Ca^{2+} has been shown to participate in the transduction of a large variety of environmental stimuli of both abiotic and biotic nature (Dodd et al., 2010). A complex Ca^{2+} homeostatic and signaling machinery allows for a tight regulation of the intracellular concentration of the ion ([Ca^{2+}]) and its variations during signal transduction (Kudla et al., 2018). Plant organellar Ca^{2+} signaling is a rapidly expanding field of investigation, also thanks to the

OPEN ACCESS

Edited by:

Jürgen Soll, Ludwig Maximilian University of Munich, Germany

Reviewed by:

Markus Teige, University of Vienna, Austria Cornelia Spetea, University of Gothenburg, Sweden

> ***Correspondence:** Ildikò Szabò

ildiko.szabo@unipd.it [†]These authors have contributed equally to this work

Specialty section:

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

Received: 09 December 2019 Accepted: 07 February 2020 Published: 11 March 2020

Citation:

Navazio L, Formentin E, Cendron L and Szabò I (2020) Chloroplast Calcium Signaling in the Spotlight. Front. Plant Sci. 11:186. doi: 10.3389/fpls.2020.00186

1

increasing availability of novel genetically encoded Ca²⁺ indicators, specifically targeted to different intracellular compartments (Costa et al., 2018). In addition to the vacuole, considered as the main stimulus-releasable Ca2+ store in the plant cell, other organelles, *i.e.* chloroplasts, have recently come to the fore. The detection of stimulus-specific intra-chloroplast Ca²⁺ signals in response to different environmental cues has highlighted the contribution of chloroplasts to shaping cytosolic Ca²⁺ signatures. In this mini-review we present the most recent research works dealing with the monitoring of chloroplast Ca²⁺ concentration and its changes during signal transduction events. Moreover, we focus on the recently reported identification and biochemical characterization of some molecular players involved in chloroplast Ca²⁺ handling. Current evidence for a crucial role of chloroplasts as stress sensors and future avenues of investigation in this promising field are also discussed.

THE EMERGING ROLE OF CHLOROPLAST CALCIUM SIGNALING IN THE TRANSDUCTION OF BIOTIC AND ABIOTIC STRESS SIGNALS

Chloroplasts have long been known to be involved in intracellular Ca^{2+} homeostasis and signaling. The regulatory role played by these organelles on intracellular Ca^{2+} handling is two-fold: i) a tight control of intra-organellar $[Ca^{2+}]$ is essential for the proper functioning of the chloroplast physiology, *e.g.* the regulation of photosynthesis, as well as other chloroplast-localized processes (Stael et al., 2012b; Rocha and Vothknecht, 2012; Nomura and Shiina, 2014; Hochmal et al., 2015); ii) transient changes in stromal $[Ca^{2+}]$ ($[Ca^{2+}]_{str}$), evoked in response to different stress stimuli, in turn can shape intracellular Ca^{2+} signals, thereby affecting Ca^{2+} -mediated signaling circuits.

After the pioneering work conducted by Johnson et al. (Johnson et al., 1995) and Sai and Johnson (Sai and Johnson, 2002), who monitored [Ca²⁺] in the chloroplast stroma by means of a chloroplast-targeted aequorin chimera, precise measurements of Ca²⁺ levels inside the different chloroplast subcompartments have been lacking for a long time. However, in the last few years the increasing availability of specifically targeted Ca²⁺ reporters has rapidly expanded the possibility of accurately monitoring organellar Ca²⁺ dynamics. The set up of a toolkit of aequorin-based probes targeted to the different subcompartments of chloroplasts (outer and inner envelope membranes, stroma, thylakoids) has allowed for the elucidation of stimulus-specific intra-organellar Ca²⁺ signals and their contribution to fine-tuning cytosolic Ca²⁺ signatures (Mehlmer et al., 2012; Sello et al., 2016; Sello et al., 2018). A complementary approach based on the design of a cameleon probe directed to the chloroplast stroma further permitted Ca²⁺ imaging in single chloroplasts, highlighting organelleautonomous Ca²⁺ transients (Loro et al., 2016). The

establishment of aequorin reporters targeted to the thylakoid lumen and thylakoid membrane highlighted the ability of thylakoids to store 3- to 5-fold higher $[Ca^{2+}]$ with respect to the stroma (about 500 nM in the thylakoid lumen *versus* $100\div150$ nM in the stroma, in resting conditions in the dark), as well as their contribution to the modulation of intrachloroplast Ca²⁺ signals (Sello et al., 2018).

Chloroplast Ca^{2+} signals have been shown to be triggered by a large number of different stimuli of both biotic and abiotic nature. Elicitors of plant defence responses, such as the fungalderived protein cryptogein and the plant cell wall-derived pectin fragments oligogalacturonides, were found to evoke transient Ca²⁺ elevations in the chloroplast stroma of Nicotiana tabacum and Arabidopsis thaliana plant cell suspension cultures (Manzoor et al., 2012; Sello et al., 2018). Moreover, the bacterial flagellin peptide flg22 was demonstrated to trigger a chloroplast Ca²⁺ response in the chloroplast stroma of Arabidopsis rosette leaves, peaking later than the cytosolic Ca²⁺ elevation (Nomura et al., 2012; Nomura and Shiina, 2014). In this latter work, a striking chloroplast-mediated transcriptional reprogramming during plant immune responses was demonstrated, uncovering an unanticipated link between chloroplast and nuclear plant innate immunity via ROS and Ca²⁺ signaling (Stael et al., 2015). The calcium-sensing receptor CAS, a thylakoid-localized protein of not yet well-defined function, was found to be involved in the generation of the flg22-induced stromal Ca²⁺ transient and chloroplast-mediated activation of defence gene expression (Nomura et al., 2012).

Different abiotic cues, such as cold, oxidative, salt and osmotic stresses were found to evoke stimulus-specific Ca^{2+} signals in the chloroplast stroma (Nomura et al., 2012; Sello et al., 2016; Sello et al., 2018; Teardo et al, 2019). Whereas these stimuli were shown to activate Ca^{2+} responses in both chloroplasts and nongreen plastids (Sello et al., 2016), the light-to-dark transition was found to elicit a chloroplast-specific response (Sello et al., 2016; Loro et al., 2016). Although the precise mechanisms underlying dark-induced chloroplast Ca^{2+} fluxes remain to be unravelled, the circadian gating of dark-induced chloroplast and cytosolic Ca^{2+} elevations has recently been demonstrated (Martí Ruiz et al., 2020), uncovering an intriguing link between eukaryotic circadian clocks and chloroplasts.

In contrast to the above-mentioned stimuli, that have been demonstrated to trigger Ca^{2+} transients in both chloroplasts and the cytosol, increases in absolute temperature were found to evoke Ca^{2+} responses specific to chloroplasts, as no corresponding elevations were detected in the cytosol (Lenzoni and Knight, 2019). Interestingly, also in this case the chloroplast Ca^{2+} response was found to be partially dependent on CAS (Lenzoni and Knight, 2019).

Taken together, the above findings strongly highlight the ability of chloroplasts to perceive and transduce environmental signals in a Ca^{2+} -dependent manner. However, compared to the large amount of information progressively cumulating on the generation of chloroplast Ca^{2+} signals, information about Ca^{2+} -permeable channels/transporters localized at chloroplast membranes has long lagged behind.

CURRENT KNOWLEDGE OF THE MOLECULAR PLAYERS INVOLVED IN Ca²⁺ HANDLING IN CHLOROPLASTS

The extent, duration and frequency (*i.e.* signature) of free Ca²⁺ elevation in the cytosol ($[Ca^{2+}]_{cvt}$) acts as a signal to be implemented in the transducing machinery of the cell. Different stimuli are followed by different Ca2+ signatures, leading in turn to different specific responses, in terms of gene expression, protein activity and localization. The Ca²⁺ signature is shaped by the activity of Ca²⁺permeable channels and transporters regulating the ion entry into and exit from the cytosol, respectively. Ca²⁺-permeable channels are grouped in five families: cyclic nucleotide-gated channels (CNGCs), glutamate receptors-like channels (GLRs), two-pore channels (TPCs), mechanosensitive channels (MCAs), hyperosmolality gated channels (OSCAs) (Demidchik et al., 2018). Ca²⁺ transport off the cytosol to restore the resting $[Ca^{2+}]_{cvt}$ is mediated by energydriven pumps/transporters belonging to the P-type ATPases, such as P1B-type calcium/heavy metal cation-transporting ATPase (AtHMA1), P2A-type calcium cation-transporting ATPase (ECAs) and P2B-type calcium cation-transporting ATPase (ACAs) (García Bossi et al., 2020). Other Ca²⁺ transporters are grouped in the CaCA family (CAX-type proton:calcium cation exchanger, CCX-type cation:calcium cation exchanger, MHX-type proton:magnesium cation exchanger, NCL/EF-CAX-type cation exchanger, EF-CAXtype cation exchanger) (Pittman and Hirschi, 2016) and CaCA2 family (PAM71-type manganese/calcium cation transporter).

The transduction of the Ca²⁺ signal is mediated by Ca²⁺ -dependent/binding proteins. The Arabidopsis genome encodes for 250 proteins harbouring at least one Ca²⁺ binding domain (EF-hand), hence acting as putative Ca²⁺ sensors [*e.g.* (Ranty et al., 2016)]. Calmodulins (CaMs), calmodulin-like (CaMLs), calcineurin B-like proteins (CBLs) and Ca²⁺-dependent protein kinases (CPKs) all harbour EF hand motifs. Ca²⁺ sensors directly (CPKs) or indirectly (CaMs, CaMLs, CBLs) [*e.g.* (Sanyal et al., 2015; Kudla et al., 2018)] modulate protein subcellular localization (*e.g.* transcription factors). The redundancy of sensor isoforms allows the discrimination between different signals and carry the specificity of the message brought by the Ca²⁺ signature.

To our knowledge, Ca^{2+} -binding proteins acting as buffers in the chloroplast have not yet been identified. Nevertheless, organellar Ca^{2+} buffering mechanisms are likely to play an essential role, generating heterogeneity in local Ca^{2+} concentrations inside chloroplasts. How Ca^{2+} is stored in the chloroplast remains an open question for future investigations, aimed to unravel whether Ca^{2+} interacts with specific Ca^{2+} binding proteins or with the thylakoid surface, which harbours a significant amount of phosphorylated proteins that have been suggested to bind calcium ions (Rocha and Vothknecht, 2012; Stael et al., 2012a; Stael et al., 2012b).

The major part of research carried out so far has focused on the analysis of the cytosolic Ca^{2+} signature, but the possibility to study Ca^{2+} dynamics in organelles by targeting Ca^{2+} probes to plastids has recently allowed the understanding of the existence of organellar Ca^{2+} transients in response to external stimuli. These findings pose the question of the identity of players involved in shaping and transducing the Ca^{2+} signal coming from organelles. The existence of peculiar and dedicated pathways for Ca^{2+} handling in organelles can be a possibility, and/or the machinery may comprise some already known players that may localize to chloroplasts as well (Finazzi et al., 2015; Pottosin and Shabala, 2015; Carraretto et al., 2016).

Recently, two proteins belonging to the family of the mitochondrial calcium uniporter (MCU) have been found to mediate Ca^{2+} transport across the mitochondria and chloroplast membranes, respectively AtMCU1 (Teardo et al., 2017) and AtMCU6 (later renamed AtcMCU (Teardo et al., 2019). In animal cells the only isoform, MCU (De Stefani et al., 2011; Baughman, 2011) is responsible for Ca^{2+} loading into mitochondria, thus helping recovery of resting $[Ca^{2+}]_{cyt}$. New evidence supports the involvement of MCU isoforms in shaping the organellar Ca^{2+} signatures in plants as well (Wagner et al., 2015; Teardo et al., 2017; Selles et al., 2018; Teardo et al., 2019). In particular, cMCU is involved in the generation of the stromal Ca^{2+} transient specific for the osmotic stress and mutants lacking cMCU showed an improved drought tolerance (Stael, 2019; Teardo et al., 2019).

It is now commonly acknowledged that a protein can localize to different cell compartments (Karniely and Pines, 2005), as it has been proven also for proteins involved in Ca^{2+} handling (**Table 1**). AtGLR3.4 and AtGLR3.5, two Ca^{2+} -permeable channels belonging to the GLR family, have a dual localization, at the plasma membrane and chloroplasts the former (Teardo et al., 2010; Teardo et al., 2011), in mitochondria and chloroplasts the latter (Teardo et al., 2015). Both seem to play a role in ABA signaling under abiotic stress (Cheng et al., 2018; Ju et al., 2020), although their direct involvement in organellar Ca^{2+} signaling under abiotic stress has to be investigated more in depth.

Querying the protein databases Uniprot (The UniProt Consortium, 2019), SUBA4 (Hooper et al., 2017) and Aramemnon (Schwacke et al., 2003) for *A. thaliana* records with plastidial localization and using "calcium" as keyword, 682 hits can be found in SUBA4, only 43 in Aramemnon and 42 in Uniprot. **Table 1** shows all those proteins belonging to the above-mentioned classes of channels/transporters, sensors and kinases involved in Ca^{2+} signature formation and signaling, whose plastidial localization has been predicted or demonstrated by MS/MS or by fusion to fluorescent proteins (FP).

23 out of 47 proteins belong to Ca^{2+} channels/transporters: 6 are confirmed to be located in plastid membranes either by biochemical and cell biology methods or by mass spectrometry. Among them, for AtcMCU, AtGLR3.4 and AtGLR3.5 a role in stress response was suggested. Altogether, these channels/ transporters can be involved in the formation of the plastidial Ca^{2+} transients, along with the putative calcium-transporting protein PAM71/BICAT (Frank et al., 2019). However, this latter protein seems to play a prevalent role in manganese homeostasis rather than in calcium homeostasis (Schneider et al., 2016;

TABLE 1 | List of proteins involved in Ca^{2+} handling predicted to be located in plastids.

Gene ID	Protein Name	Description	Protein family	Predicted Localization (Aramemnon or SUBA4)	Experimental Localization (FP, MS/MS)	involved in	references
Ca ²⁺ senso	rs						
At1g18890	AtCPK10	Calcium- dependent protein kipase 10	Calcium Dependent Protein Kinase	plastid, mitochondrion, cytosol, nucleus	nucleus	drought, ABA, stomatal closure	Zou et al., 2010; Liu et al., 2017
At1g35670	AtCPK11	Calcium- dependent protein kinase 11	Calcium Dependent Protein Kinase	plastid, mitochondrion, cytosol, nucleus	nucleus, cytosol, PM	pollen tube growth, salt and drought induced, salt and ABA signaling	Urao et al., 1994; Rodriguez Milla et al., 2006; Zhu et al., 2007; Benschop et al., 2007; Ito et al., 2011; Zhao et al., 2013
At2g17890	AtCPK16	Calcium- dependent protein kinase 16	Calcium Dependent Protein Kinase	plastid, mitochondrion, cytosol	PM		Dammann et al., 2003; Stael et al., 2011
At2g31500	AtCPK24	Calcium- dependent protein kinase 24	Calcium Dependent Protein Kinase	plastid, mitochondrion, cytosol, nucleus	nucleus, PM	pollen tube growth	Gutermuth et al., 2013; Zhao et al., 2013
At2g38910	AtCPK20	Calcium- dependent protein kinase 20	Calcium Dependent Protein Kinase	plastid, nucleus, membrane	plastid, PM		Dammann et al., 2003; Behrens et al., 2013; Gutermuth et al., 2013
At3g10660	AtCPK2	Calcium- dependent protein kinase 2	Calcium Dependent Protein Kinase	plastid, nucleus, mitochondrion, cytosol	PM		Gutermuth et al., 2013
At4g04695	AtCPK31	Calcium- dependent protein kinase 31	Calcium Dependent Protein Kinase	nucleus, plastid, cytosol, mitochondrion	plastid, PM	arsenite uptake	Helm et al., 2014; Ji et al., 2017
At4g04720	AtCPK21	Calcium- dependent protein kinase 21	Calcium Dependent Protein Kinase	PM, cytosol, mitochondrion, plastid, nucleus	РМ	interacts with SLAC1, ABI1, SLAH3, GORK	Dammann et al., 2003; Alexandersson et al., 2004; Nelson et al., 2006; Benschop et al., 2007; Marmagne et al., 2007; Mitra et al., 2009; Keinath et al., 2010; Geiger et al., 2010; Zhang and Peck, 2011; Elmore et al., 2012; Nikolovski et al., 2012; Bernfur et al., 2013; Demir et al., 2013; Zargar et al., 2015; De Michele et al., 2016; van Kleeff et al., 2018
At4g09570	AtCPK4	Calcium- dependent protein kinase 4	Calcium Dependent Protein Kinase	cytosol, nucleus, mitochondrion, plastid	PM, cytosol, nucleus	ABA and salt response; interacts with plastid proteins	Dammann et al., 2003; Zhu et al., 2007; Mitra et al., 2009; Uno et al., 2009; Ito et al., 2011; Li et al., 2018
At4g21940	AtCPK15	Calcium- dependent protein kinase 15	Calcium Dependent Protein Kinase	cytosol, plastid, nucleus, mitochondrion	PM		Li et al., 2012; Bernfur et al., 2013
At4g23650	AtCPK3	Calcium- dependent protein kinase 3	Calcium Dependent Protein Kinase	plastid, mitochondrion, cytosol, nucleus	cytosol, nucleus, PM, Golgi, tonoplast	stomatal closure	Dammann et al., 2003; Alexandersson et al., 2004; Dunkley et al., 2006; Mori et al., 2006; Nelson et al., 2006; Benschop et al., 2007; Mitra et al., 2009; Keinath et al., 2010; Ito et al., 2011; Elmore et al., 2012; Li et al., 2012; Nikolovski et al., 2012; Latz et al., 2013; Zargar et al., 2015; Heard et al., 2015; De Michele et al., 2016
At4g36070	AtCPK18	Calcium- dependent protein kinase 18	Calcium Dependent Protein Kinase	plastid, mitochondrion, peroxisome, PM			
At5g04870	AtCPK1/ AtAK1	Calcium- dependent protein kinase 1	Calcium Dependent Protein Kinase	plastid, nucleus, cytosol, mitochondrion	peroxisome, MVB, cytosol, PM	salt and drought	Dammann et al., 2003; Chen et al., 2010; Drakakaki et al., 2012; De Michele et al., 2016; Huang et al., 2018
At5g12180	AtCPK17	Calcium- dependent protein kinase 17	Calcium Dependent Protein Kinase	cytosol, nucleus, mitochondrion, plastid	PM	pollen tube tip growth	Myers et al., 2009; Gutermuth et al., 2013; Bernfur et al., 2013

Gene ID	Protein Name	Description	Protein family	Predicted Localization (Aramemnon or SUBA4)	Experimental Localization (FP, MS/MS)	involved in	references
At5g12480	AtCPK7	Calcium- dependent protein kinase 7	Calcium Dependent Protein Kinase	plastid, mitochondrion, cytosol, nucleus	PM, Golgi	root hydraulic conductivity	Dammann et al., 2003; Marmagne et al., 2007; Benschop et al., 2007; Elmore et al., 2012; Heard et al., 2015: Li et al., 2015
At5g19360	AtCPK34	Calcium- dependent protein kinase 34	Calcium Dependent Protein Kinase	cytosol, nucleus, mitochondrion, plastid	PM	pollen tube tip growth	Myers et al., 2009; Gutermuth et al., 2013; Bernfur et al., 2013
At5g19450	AtCPK8	Calcium- dependent protein kinase 8	Calcium Dependent Protein Kinase	cytosol, nucleus, mitochondrion, plastid	РМ	ABA signaling and H_2O_2 homeostasis in guard cells	Dammann et al., 2003; Nühse et al., 2003; Nühse et al., 2004; Benschop et al., 2007; Chen et al., 2010; Keinath et al., 2010; Zhang and Peck, 2011; Elmore et al., 2012; Zargar et al., 2015; Zou et al., 2015
At5g24430	AtCRK4	Calcium- dependent protein kinase 4	Calcium Dependent Protein Kinase	plastid, nucleus, cytosol, mitochondrion	РМ		Benschop et al., 2007; Marmagne et al., 2007; Chen et al., 2010; Keinath et al., 2010; Zhang and Peck, 2011; Li et al., 2012; Szymanski et al., 2015; De Michele et al., 2016
At5g66210	AtCPK28	Calcium- dependent protein kinase 28	Calcium Dependent Protein Kinase	cytosol, plastid, mitochondrion, nucleus	PM	plant immunity	Dammann et al., 2003; Benschop et al., 2007; Elmore et al., 2012; Monaghan et al., 2014; Monaghan et al., 2015; Matschi et al., 2015; De Michele et al., 2016
At2g15680	AtCML30	Calmodulin-like protein 30	Calmodulin-like protein	plastid, mitochondrion, cytosol, PM	mitochondrion		Chigri et al., 2012
At2g41410	AtCML35	Probable calcium- binding protein CML35	Calmodulin-like protein	plastid, mitochondrion, nucleus, cytosol, PM	PM, vacuole	dark induced	Lee et al., 2005; Benschop et al., 2007; Whiteman et al., 2008; Elmore et al., 2012; Li et al., 2012; De Michele et al., 2016
At2g43290	AtCML5	Calmodulin-like protein 5	Calmodulin-like protein	plastid, mitochondrion, nucleus, cytosol, PM, FB_extracellular	ER, Golgi	dark and touch induced	Lee et al., 2005; Ruge et al., 2016
At3g10190	AtCML36	Calmodulin-like protein 36	Calmodulin-like protein	plastid, nucleus, mitochondrion, cvtosol	PM	ACA8 activation	Benschop et al., 2007; Astegno et al., 2017
At3g29000	AtCML45	Calmodulin-like protein 45	Calmodulin-like protein	plastid, mitochondrion, Golgi, cytosol, PM, ER			
At3g50770	AtCML41	Probable calcium- binding protein CML41	Calmodulin-like protein	plastid, mitochondrion, cytosol			
At4g26470	AtCML21	Calmodulin-like protein 21		cytosol, PM, mitochondrion, nucleus, plastid	cell wall		Nguyen-Kim et al., 2016
At5g04170	AtCML50	Probable calcium- binding protein CML50	Calmodulin-like protein	plastid, extracellular space, ER, mitochondrion, PM, nucleus	cell wall		Nguyen-Kim et al., 2016
At5g39670	AtCML46	Calmodulin-like protein 46	Calmodulin-like protein	cytosol, plastid, mitochondrion, ER, Golgi, nucleus, extraellular			
At5g42380	AtCML37	Calcium-binding protein CML37	Calmodulin-like protein	plastid, nucleus, cytosol, PM, mitochondrion	cytosol, nucleus	drought, wounding	Vanderbeld and Snedden, 2007; Inzè et al., 2012; Scholz et al., 2014; Scholz et al., 2015
At4g32060	AtMICU	Calcium uptake protein, mitochondrial		PM, mitochondrion, plastid	mitochondrion	regulation of Ca ²⁺ uniporters (MCUs)	Wagner et al., 2015; Teardo et al., 2017
At4g33000	AtCBL10	Calcineurin B-like protein 10	Calcineurin B- like protein	plastid, mitochondrion, PM, ER	PM, tonoplast	salt tolerance	Mitra et al., 2009; Ma et al., 2019; Yang et al., 2019

Gene ID	Protein Name	Description	Protein family	Predicted Localization (Aramemnon or SUBA4)	Experimental Localization (FP, MS/MS)	involved in	references
At5g23060	AtCAS	Calcium sensing receptor	Calcium sensing receptor	plastid, mitochondrion	plastid, thylakoid, Golgi, mitochondrion, nucleus	high light, stomatal regulation, drought tolerance	Vainonen et al., 2008; Weinl et al., 2008; Behrens et al., 2013; Helm et al., 2014; Tomizioli et al., 2014; Wang et al., 2014; Heard et al., 2015; Fakih et al., 2016; Fromm et al., 2016; Melonek et al., 2016; Senkler et al., 2017; Cutolo et al., 2019
Ca ⁻⁺ transp		nels Sodium/coloium		plastid mitachandrian	PM topoplast	floworing time	Nikolovski ot al. 2012: Elmoro et al.
11900210	AUNOL	exchanger	type cation exchanger	Golgi, cytosol, PM, ER	r w, tonopiast	auxin signaling, salt stress	2012; Li et al., 2016; Wang et al., 2012; Yoshida et al., 2013; Szymanski et al., 2015; Zargar et al., 2015; Li et al., 2016
At2g34020		Putative EF-CAX- type cation exchanger	EF-CAX-type cation exchanger	PM, plastid, mitochondrion, ER, Golgi			
At2g38170	AtCAX1	High-affinity calcium/proton cation exchanger	CAX-type proton:calcium cation exchanger	plastid, mitochondrion, Golgi, PM, tonoplast	tonoplast	Cd ²⁺ tolerance; pH regulation; hormone signaling; guard cell dynamics; stress response	Cheng et al., 2003; Conn et al., 2011; Cho et al., 2012; Baliardini et al., 2015; Hocking et al., 2017
At3g14070	AtCCX3/ CAX9	Cation/calcium exchanger 3	CCX-type cation:calcium cation exchanger	plastid, mitochondrion, Golgi, PM, ER	endomembrane		Morris et al., 2008
At3g51860	AtCAX3	High-affinity calcium/proton cation exchanger	CAX-type proton:calcium cation exchanger	plastid, mitochondrion, Golgi, PM, tonoplast	tonoplast	pH regulation; hormone signaling; guard cell dynamics	Manohar et al., 2011; Cho et al., 2012; Hocking et al., 2017
At5g01490	AtCAX4	High-affinity calcium/proton cation exchanger	CAX-type proton:calcium cation	plastid, ER, PM, tonoplast	tonoplast	Cd ²⁺ accumulation	Cheng et al., 2002; Mei et al., 2009
At2g23790	AtMCU3	Putative channel component of MCUC calcium	Component of MCU calcium uniporter	plastid, mitochondrion, nucleus	tonoplast		Yoshida et al., 2013
At4g36820	AtMCU4	Putative channel component of MCUC calcium	Component of MCU calcium uniporter	mitochondrion, chloroplast, nucleus	mitochondrion		Teardo et al., 2017
At5g66650	AtMCU6/ AtcMCU	Putative channel component of MCUC calcium	complex Component of MCU calcium uniporter complex	plastid, mitochondrion	plastid, mitochondrion	drought, hypoxia	Teardo et al., 2019; Lee and Bailey- Serres, 2019
At1g05200	AtGLR3.4	Putative GLR-type amino acid-gated calcium cation channel	GLR-type ligand-gated cation channel	PM, plastid, ER, Golgi, mitochondrion	plastid, PM	Ca ²⁺ transport; salt and cold stress; ABA signaling; seed germination; lateral root development	Meyerhoff et al., 2005; Stephens et al., 2008; Teardo et al., 2011; Vincill et al., 2013; Cheng et al., 2018
At2g17260	AtGLR3.1	Putative GLR-type calcium cation- permeable channel	GLR-type ligand-gated cation channel	PM, plastid, ER, Golgi	endomembrane	stomatal closure	Cho et al., 2009; Kong et al., 2016; Nguyen et al., 2018a
At2g32390	AtGLR3.5	Putative GLR-type calcium cation- permeable channel	GLR-type ligand-gated cation channel	PM, plastid, mitochondrion, nucleus	mitochondrion, plastid	Ca ²⁺ transport; ABA signaling; seed germination; stomatal closure	Teardo et al., 2015; Kong et al., 2016; Ju et al., 2020

TABLE 1 | Continued

Gene ID	Protein Name	Description	Protein family	Predicted Localization (Aramemnon or SUBA4)	Experimental Localization (FP, MS/MS)	involved in	references
At5g11210	AtGLR2.5	Putative GLR-type calcium cation- permeable channel	GLR-type ligand-gated cation channel	plastid, mitochondrion, PM	PM		Mitra et al., 2009
At1g69450	AtOSCA2.4	Early-responsive to dehydration stress protein (ERD4)	OSCA1/2/3-type Ca ²⁺ -permeable hyperosmolality- gated channel	chloroplast, mitochondrion, PM, Golgi	PM		Yuan et al., 2014
At3g54510	AtOSCA2.5	Hyperosmolality- gated calcium- permeable channel	OSCA1/2/3- type Ca ²⁺ - permeable hyperosmolality-	mitochondrion, plastid, nucleus, Golgi,ER, PM	ER, mitochondrion, plastid		Lee et al., 2011
At4g02900	AtOSCA1.7	Hyperosmolality- gated calcium- permeable channel	Gated channel OSCA1/2/3-type Ca ²⁺ -permeable hyperosmolality- gated channel	mitochondrion, plastid, nucleus, Golgi,ER, PM			
At4g35870	AtOSCA4.1/ AtGFS10	Calcium- permeable channel-like protein	OSCA4-type unspecified channel	chloroplast, mitochondrion, PM, Golgi, nucleus	Golgi		Heard et al., 2015
At4g37270	AtHMA1	Thapsigargin- sensitive calcium/ heavy metal cation- transporting P1B- type ATPase	P1B-type heavy metal cation- transporting ATPase	plastid, mitochondrion, PM	chloroplast envelope	photosynthesis	Seigneurin-Berny et al., 2006; Higuchi et al., 2009; Ferro et al., 2010; Nikolovski et al., 2012; Tomizioli et al., 2014
At1g27770	AtACA1	Calcium- transporting ATPase	P2B-type calcium cation- transporting ATPase	plasma membrane, plastid, cytosol, ER, mitochondrion, nucleus	plastid, ER, PM, tonoplast, microtubule		Huang et al., 1993; Dunkley et al., 2006; Benschop et al., 2007; Mitra et al., 2009; Zhang and Peck, 2011; Yoshida et al., 2013; Hamada et al., 2013
At3g21180	AtACA9	Calcium- transporting ATPase	P2B-type calcium cation- transporting ATPase	plasma membrane, plastid, cytosol, ER, mitochondrion, nucleus	plasma membrane, plastid, cytosol	pollen development,	Schiott et al., 2004; Tomizioli et al., 2014
At4g37640	AtACA2	Calcium- transporting ATPase	P2B-type calcium cation- transporting ATPase	PM, ER, plastid, mitochondrion, vacuole	Golgi, ER, PM	salt tolerance in yeast	Dunkley et al., 2006; Benschop et al., 2007; Anil et al., 2008; Zhang and Peck, 2011; Nikolovski et al., 2012; Heard et al., 2015
At5g53010		Calcium- transporting ATPase, putative	P2B-type calcium cation- transporting ATPase	mitochondrion, PM, ER	plastid		Tomizioli et al., 2014
At1g64150	AtBICAT1/ AtPAM71/ AtCCHA1	Putative calcium/ manganese cation transporter	PAM71-type manganese/ calcium cation transporter	plastid, mitochondrion	thylakoid membrane	Mn ²⁺ homeostasis, phototropic growth, chloroplast Ca ²⁺ homeostasis, photosynthesis	Wang et al., 2016; Schneider et al., 2016; Frank et al., 2019
At4g13590	AtBICAT2/ AtCMT1	Putative calcium/ manganese cation transporter	PAM71-type manganese/ calcium cation transporter	plastid, mitochondrion	chloroplast envelope	Mn ²⁺ homeostasis, phototropic growth, chloroplast Ca ²⁺ homeostasis, photosynthesis	Ferro et al., 2010; Zybailov et al., 2008; Ferro et al., 2010; Tomizioli et al., 2014; Eisenhut et al., 2018; Zhang et al., 2018; Frank et al., 2019
At1g64850			Calcium- binding EF hand family protein	vacuole, mitochondrion, plastid, nucleus, vacuole	plastid, peroxisome		Reumann et al., 2009; Ferro et al., 2010; Nikolovski et al., 2012

TABLE 1 | Continued

Gene ID	Protein Name	Description	Protein family	Predicted Localization (Aramemnon or SUBA4)	Experimental Localization (FP, MS/MS)	involved in	references
At2g42590	AtGRF9	14-3-3-like protein GF14 mu	14-3-3 protein	nucleus, cytosol, mitochondrion, PM	cytosol, plastid, vacuole, nucleus, PM, peroxisome, Golgi	root growth in water stress, leaf development,cold stress	Mayfield et al., 2012; He et al., 2015; Liu et al., 2017; Omidbakhshfard et al., 2018
At4g08810	AtSUB1		Calcium binding protein	plastid, nucleus, ER, Golgi,	Golgi	cryptochrome and phytochrome coaction	Guo et al., 2001; Parsons et al., 2012
At4g34070			Calcium- binding EF- hand family protein	plastid, mitochondrion, Golgi, ER, cytosol, extracellular			
At4g38810			Calcium- binding EF- hand family protein	plastid, nucleus, mitochondrion, cytosol			

The experimental determined localization comes from MS/MS analyses or fluorescent protein fusion (FP). Articles referring to the original data are reported. In bold proteins proved to be located in chloroplasts. In italics genes involved in stress response. PM, plasma membrane; ER, endoplasmic reticulum.

Zhang et al., 2018). In addition to Ca²⁺ channels and transporters, Ca²⁺ sensors, namely 21 proteins, are predicted to be located in plastids. However, only three have been confirmed so far: AtCPK20, AtCPK31, and AtCAS. It is worth to mention that CPK20, besides the plastidial localization that was confirmed by MS/MS approaches (Behrens et al., 2013), showed a plasma membrane localization when fused to reporter genes or coexpressed with other CPK members (Gutermuth et al., 2013). CPK31 has also been shown to localize at the plasma membrane when interacting with the arsenite transporter NIP1;1 (Ji et al., 2017). In addition, localization of many CPKs with chloroplasttargeting sequence can be affected by N-acylation. For example, AtCPK20 and 31 are located in the chloroplast, only if its Nacylation is prevented (Stael et al., 2011). Interestingly, AtGRF9, a Ca²⁺-regulated 14-3-3 protein, although not predicted to be located in chloroplasts, has been demonstrated to be present in many compartments, including plastids. This regulatory protein is involved in root and leaf development under water stress (He et al., 2015) and leaf development in general (Omidbakhshfard et al., 2018), but its role in chloroplasts has not yet been explored.

The presence of members of protein families involved in Ca^{2+} transport/sensing supports the idea of a core-machinery determining the observed Ca^{2+} transients in the chloroplast stroma, and putatively in the thylakoid lumen as well. Ca^{2+} sensors are indeed present in plastids, although their activity in deciphering organellar Ca^{2+} signatures has not been fully demonstrated so far. Nevertheless, a recent work points to CAS as mediator of light response and photoacclimation (Cutolo et al., 2019).

The multiple localizations shown by some proteins in **Table 1** awaits further investigation. Recent evidence is pointing to the hypothesis of an inter-connection between organelles and nucleus for material exchanging or signal propagation (Kmiecik et al., 2016). The presence of the Ca^{2+} handling machinery in multiple positions can be part of the retrograde signaling in response to adverse environmental conditions (Pornsiriwong et al., 2017).

STRUCTURAL AND FUNCTIONAL COMPARISON BETWEEN MCU ISOFORMS FROM DIFFERENT ORGANISMS AND THE CHLOROPLAST-LOCALIZED HOMOLOGUE IN PLANTS

As mentioned above, AtcMCU is one of the very few molecular entities among the plastidial Ca²⁺ channels/transporters shown to work as a Ca²⁺-permeable ion channel, to mediate indeed Ca²⁺ flux across chloroplast envelope and to participate in the drought stress response in Arabidopsis. While many organisms have only one MCU isoform (Bick et al., 2012), Arabidopsis harbours 6 different isoforms: 5 with clear predicted subcellular localization to mitochondria, whereas AtMCU6/At5g66650 has a predicted localization to either chloroplasts and/or to mitochondria. Localization prediction was confirmed for AtMCU1/At1g09575 (Teardo et al., 2017), AtMCU2/At1g57610 (Wagner et al., 2015; Selles et al., 2018), AtMCU3/At2g23790 (Carraretto et al., 2016). For AtMCU6 an interesting situation was observed: in tissues harbouring mature chloroplasts, AtMCU6 was efficiently targeted to these photosynthetic organelles, whereas in roots the protein was found in mitochondria (Teardo et al., 2019). Thus, either plastid-specific partners promote targeting of AtMCU6/AtcMCU or targeting depends on the metabolic state of a given cell. However, among the possible partners (https://string-db.org/ network/3702.AT5G66650.1) no proteins with unique localization to chloroplasts are present. Thus, the mechanism by which dual localization occurs awaits clarification.

The N-terminal domain (NTD) of AtcMCU harbours motifs rich in acidic residues, one of which (107-118) playing a role in Ca^{2+} uptake by cMCU, as demonstrated by mutagenesis studies (D107A/E118K mutant) and Ca^{2+} uptake assays in an aequorinbased *E. coli* system (Teardo et al., 2019). Two groups independently set up the same system to study MCU activity, namely that exploiting *E. coli* stably expressing aequorin (Teardo et al., 2019) or the fluorescent Ca^{2+} reporter GCaMP2 (Fan et al., 2018). This valuable tool allows a quick screening of the effect of MCU residues' mutations and of chemical modulators on the Ca^{2+} flux-mediating activity and may become a method of choice for further structure-function studies.

One common feature of MCU homologs from fungi and Arabidopsis is that they can function as Ca²⁺-permeable channels on their own in contrast to vertebrates, where the uniporter is a complex (MCUC) consisting of multiple subunits, including: 1) the channel forming unit (MCU) with two transmembrane segments and a conserved DXXE sequence forming the Ca²⁺ selectivity filter (see Figure 1); 2) regulatory EF-hand proteins MICU1-3; 3) a small, single-pass transmembrane protein, EMRE (Essential MCU REgulator) [for review see e.g.(Wagner et al., 2016)]. The structure of MCU homologs from various organisms has been recently solved: 1) from Fusarium graminearum and Metarhizium acridum revealing a dimer assembly of MCU (Fan et al., 2018); 2) from Neurospora crassa (Yoo et al., 2018); 3) from Neosartorya fischeri (Nguyen et al., 2018b); and from 4) zebrafish and Cyphellophora europaea (Baradaran et al., 2018). All these homologues share high sequence similarity in their transmembrane domains, show a similar pore architecture and a high structural similarity of the NTDs (despite relatively low sequence homology). The amino acid sequence is more similar between Arabidopsis and Dictyostelium discoideum than between AtMCUs and human MCU (Teardo et al., 2017). This

similarity apparently translates also to the tertiary structure of the two proteins, at least regarding the N-terminal domain, whose structure has been recently resolved for Dictyostelium MCU, proving its divergent evolution (doi: https://doi.org/10. 1101/848002) (see **Figure 1**).

In plants and fungi, the pore-forming unit MCU alone is able to allow Ca²⁺ flux, without the need of EMRE, as confirmed by different groups (Tsai et al., 2016; Teardo et al., 2017; Fan et al., 2018; Teardo et al., 2019). In fact, homologs of EMRE are not present in these organisms. The cryo-EM structure of the human MCU-EMRE complex (Wang et al., 2019) suggests that NTD mediates the dimerization of two human MCU tetramers, thereby modulating the function of the channel [although deletion of NTD does not affect Ca²⁺ flux (Lee et al., 2015)]. In contrast to other MCUs, an (R/K)/Q/(R/K/D)/K/L motif is found in the L2 (Oxenoid et al., 2016) (now called CC2a for coiledcoiled domain 2a) (Wang et al., 2019) region of Arabidopsis, Dictyostelium and NfMCU (Teardo et al., 2017; Wang et al., 2019), all being able to form functional MCU without EMRE. It has been proposed that the extended side chain of HsMCU R297 (missing in the above MCUs) on CC2a connects the gateforming juxtamembrane loop (JML) of MCU to EMRE by forming hydrogen bonds with the hydroxyl group of highly conserved T285 (on the JML of MCU) and a valine residue of EMRE. Interaction between CC2a and EMRE has been proposed as a crucial factor determining the conductivity of the channel formed by MCU tetramers. On the other hand, in the EMREindependent Dictyostelium MCU, deletion of either CC1 or CC2

FIGURE 1 | Structural features of chloroplast MCU from Arabidopsis thaliana, modelled by Phyre V 2.0. From the left to the right: (panel A) cartoon view of the superposition of MCU structure from *Neurospora crassa* (cryoEM, 3.7 Å resolution, PDB:6DT0, grey), used as a reference, and predicted *A. thaliana* cMCU transmembrane tetrameric assembly (coloured chains); (panel B, C) details of the transmembrane (TM) and coiled-coil domain (CCD) tetrameric assembly and selectivity filter (panel C), where the four chains are shown in yellow, orange, pale violet and green. The key acidic residues within the highly conserved motif (WDXXEP, where X is any hydrophobic residue) of cMCU are highlighted in sticks, as well as the coordinated calcium ion, shown as dark grey sphere; (panel D) superposition of the model of one monomer of *A. thaliana* cMCU channel (orange and red) and *N. crassa* MCU tetramers (light grey); cMCU model shown here includes the transmembrane domain (TM), part of the coil-coiled region and the N-terminal domain (NTD), the last predicted according to our previous homology searches and its similarity toward *Dictyostelium discoideum* NTD (PDB:522H, doi: https://doi.org/10.1101/848002). The superposition underlines the divergence from metazoan NTDs and other structure-known fungal homologues such as NcMCU, CeMCU, MaMCU, and NfMCU.

caused the loss of function of MCU (Yamamoto et al., 2019), suggesting that these two domains are crucial for MCU function independently of their ability to bind EMRE. Altogether, determination of structural differences among various MCUs accounting for the requirement of EMRE for channel function requires further work.

CONCLUSIONS AND PERSPECTIVES

In these last few years there has been a surge of papers on Ca^{2+} signaling in chloroplasts, witnessing the crucial role increasingly attributed to these plant-unique organelles in the orchestration of the complex Ca^{2+} signaling network of the plant cell. We foresee that the newly available experimental tools to investigate the role of thylakoids in Ca^{2+} -mediated signal transduction, the molecular identification of Ca^{2+} channels/transporters in chloroplast membranes and the determination of the structure of transmembrane proteins by cryo-EM will lead to a rapid development of this exciting field of plant research. Future plant organellar Ca^{2+} signaling studies should also focus on non-photosynthetic plastids, which have

REFERENCES

- Alexandersson, E., Saalbach, G., Larsson, C., and Kjellbom, P. (2004). Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking. *Plant Cell Physiol.* 45, 1543–1556. doi: 10.1093/pcp/pch209
- Anil, V. S., Rajkumar, P., Kumar, P., and Mathew, M. K. (2008). A plant Ca²⁺ pump, ACA2, relieves salt hypersensitivity in yeast. Modulation of cytosolic calcium signature and activation of adaptive Na+ homeostasis. *J. Biol. Chem.* 283 (6), 3497–3506. doi: 10.1074/jbc.M700766200
- Astegno, A., Bonza, M. C., Vallone, R., La Verde, V., D'Onofrio, M., Luoni, L., et al. (2017). Arabidopsis calmodulin-like protein CML36 is a calcium Ca²⁺ sensor that interacts with the plasma membrane Ca(2+)-ATPase isoform ACA8 and stimulates its activity. *J. Biol. Chem.* 292, 15049–15061. doi: 10.1074/ jbc.M117.787796
- Baliardini, C., Meyer, C. L., Salis, P., Saumitou-Laprade, P., and Verbruggen, N. (2015). CATION EXCHANGER1 Cosegregates with Cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis Spp. *Plant Physiol.* 169, 549–559. doi: 10.1104/ pp.15.01037
- Baradaran, R., Wang, C., Siliciano, A. F., and Long, S. B. (2018). Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. *Nature* 559, 580–584. doi: 10.1038/s41586-018-0331-8
- Baughman, J. M. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. *Nature* 476, 341–345. doi: 10.1038/nature10234
- Behrens, C., Blume, C., Senkler, M., Eubel, H., Peterhansel, C., and Braun, H. P. (2013). The 'protein complex proteome' of chloroplasts in Arabidopsis thaliana. J. Proteomics 91, 73–83. doi: 10.1016/j.jprot.2013.07.001
- Beltran, J., Wamboldt, Y., Sanchez, R., Labrant, E. W., Kundariya, H., Virdi, K. S., et al. (2018). Specialized plastids trigger tissue-specific signaling for systemic stress response in plants. *Plant Physiol.* 178, 672–683. doi: 10.1104/pp.18.00804
- Benschop, J. J., Mohammed, S., O'Flaherty, M., Heck, A. J., Slijper, M., and Menke, F. L. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. *Mol. Cell Proteomics* 6, 1198–1214. doi: 10.1074/mcp.M600429-MCP200
- Bernfur, K., Larsson, O., Larsson, C., and Gustavsson, N. (2013). Relative abundance of integral plasma membrane proteins in Arabidopsis leaf and

recently been proposed to trigger tissue-specific signaling involved in mounting plant systemic stress response (Beltran et al., 2018). Furthermore, the potential interplay of chloroplasts with other intracellular Ca^{2+} -mobilizable stores should also be taken into consideration, in view of the wellknown structural and functional interactions established by plastids with other organelles (Mathur et al., 2012).

AUTHOR CONTRIBUTIONS

LN, EF, and IS jointly contributed to the writing of this manuscript. LC designed the structural model of cMCU presented in **Figure 1**. All authors reviewed and approved the final version of the submitted manuscript.

FUNDING

This work was supported by HFSP RG0052 to IS and the University of Padova (PRID 2018, BIRD180317) to LN.

root tissue determined by metabolic labeling and mass spectrometry. *PloS One* 8, e71206. doi: 10.1371/journal.pone.0071206

- Bick, A. G., Calvo, S. E., and Mootha, V. K. (2012). Evolutionary diversity of the mitochondrial calcium uniporter. *Science* 336, 886. doi: 10.1126/ science.1214977
- Carraretto, L., Teardo, E., Checchetto, V., Finazzi, G., Uozumi, N., and Szabo, I. (2016). Ion channels in plant bioenergetic organelles chloroplast and mitochondria: from molecular identification to function. *Mol. Plant* 9, 371– 395. doi: 10.1016/j.molp.2015.12.004
- Chen, Y., Hoehenwarter, W., and Weckwerth, W. (2010). Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. *Plant J.* 63 (1), 1–17. doi: 10.1111/j.1365-313X.2010.04218.x
- Cheng, N. H., Pittman, J. K., Shigaki, T., and Hirschi, K. D. (2002). Characterization of CAX4, an Arabidopsis H(+)/cation antiporter. *Plant Physiol.* 128, 1245–1254. doi: 10.1104/pp.010857
- Cheng, N. H., Pittman, J. K., Barkla, B. J., Shigaki, T., and Hirschi, K. D. (2003). The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. *Plant Cell* 15 (2), 347–364. doi: 10.1105/tpc.007385
- Cheng, Y., Zhang, X., Sun, T., Tian, Q., and Zhang, W. H. (2018). Glutamate receptor Homolog3.4 is involved in regulation of seed germination under salt stress in Arabidopsis. *Plant Cell Physiol.* 59, 978–988. doi: 10.1093/pcp/ pcy034
- Chigri, F., Flosdorff, S., Pilz, S., Kolle, E., Dolze, E., Gietl, C., et al. (2012). The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. *Plant Mol. Biol.* 78, 211–222. doi: 10.1007/s11103-011-9856-z
- Cho, D., Kim, S. A., Murata, Y., Lee, S., Jae, S. K., Nam, H. G., et al. (2009). Deregulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca²⁺-programmed stomatal closure. *Plant J.* 58 (3), 437– 449. doi: 10.1111/j.1365-313X.2009.03789.x
- Cho, D., Villiers, F., Kroniewicz, L., Lee, S., Seo, Y. J., Hirschi, K. D., et al. (2012). Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. *Plant Physiol.* 160 (3), 1293–1302. doi: 10.1104/ pp.112.201442
- Conn, S. J., Gilliham, M., Athman, A., Schreiber, A. W., Baumann, U., Moller, I., et al. (2011). Cell-specific vacuolar calcium storage mediated by CAX1

regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. *Plant Cell* 23, 240–257. doi: 10.1105/tpc.109.072769

- Costa, A., Navazio, L., and Szabo, I. (2018). The contribution of organelles to plant intracellular Calcium signaling. J. Exp. Bot. 69, 4175–4193. doi: 10.1093/jxb/ery185
- Cutolo, E., Parvin, N., Ruge, H., Pirayesh, N., Roustan, V., Weckwerth, W., et al. (2019). The high light response in Arabidopsis requires the Calcium sensor protein CAS, a target of STN7- and STN8-Mediated phosphorylation. *Front. Plant Sci.* 10, 974. doi: 10.3389/fpls.2019.00974
- Dammann, C., Ichida, A., Hong, B., Romanowsky, S. M., Hrabak, E. M., Harmon, A. C., et al. (2003). Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. *Plant Physiol.* 132, 1840–1848. doi: 10.1104/ pp.103.020008
- De Michele, R., McFarlane, H. E., Parsons, H. T., Meents, M. J., Lao, J., Gonzalez Fernandez-Nino, S. M., et al. (2016). Free-flow electrophoresis of plasma membrane vesicles enriched by two-phase partitioning enhances the quality of the proteome from arabidopsis seedlings. J. Proteome Res. 15, 900–913. doi: 10.1021/acs.jproteome.5b00876
- De Stefani, D., Raffaello, A., Teardo, E., Szabo, I., and Rizzuto, R. (2011). A fortykilodalton protein of the inner membrane is the mitochondrial calcium uniporter. *Nature* 476, 336–340. doi: 10.1038/nature10230
- Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., and Pottosin, I. (2018). Calcium transport across plant membranes: mechanisms and functions. *New Phytol.* 220, 49–69. doi: 10.1111/nph.15266
- Demir, F., Horntrich, C., Blachutzik, J. O., Scherzer, S., Reinders, Y., Kierszniowska, S., et al. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. *Proc. Natl. Acad. Sci.* U. S. A 110, 8296–8301. doi: 10.1073/pnas.1211667110
- Dodd, A. N., Kudla, J., and Sanders, D. (2010). The language of calcium signaling. Annu. Rev. Plant Biol. 61, 593–620. doi: 10.1146/annurev-arplant-070109-104628
- Drakakaki, G., van de Ven, W., Pan, S., Miao, Y., Wang, J., Keinath, N. F., et al. (2012). Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. *Cell Res.* 22, 413–424. doi: 10.1038/ cr.2011.129
- Dunkley, T. P., Hester, S., Shadforth, I. P., Runions, J., Weimar, T., Hanton, S. L., et al. (2006). Mapping the Arabidopsis organelle proteome. *Proc. Natl. Acad. Sci. U. S. A* 103, 6518–6523. doi: 10.1073/pnas.0506958103
- Eisenhut, M., Hoecker, N., Schmidt, S. B., Basgaran, R. M., Flachbart, S., Jahns, P., et al. (2018). The plastid envelope CHLOROPLAST MANGANESE TRANSPORTER1 is essential for manganese homeostasis in Arabidopsis. *Mol. Plant* 11 (7), 955–969. doi: 10.1016/j.molp.2018.04.008
- Elmore, J. M., Liu, J., Smith, B., Phinney, B., and Coaker, G. (2012). Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. *Mol. Cell Proteomics* 11, M111.014555. doi: 10.1074/mcp.M111.014555
- Fakih, Z., Ahmed, M. B., Letanneur, C., and Germain, H. (2016). An unbiased nuclear proteomics approach reveals novel nuclear protein components that participates in MAMP-triggered immunity. *Plant Signal Behav.* 11, e1183087. doi: 10.1080/15592324.2016.1183087
- Fan, C., Fan, M., Orlando, B. J., Fastman, N. M., Zhang, J., XU, Y., et al. (2018). Xray and cryo-EM structures of the mitochondrial calcium uniporter. *Nature* 559, 575–579. doi: 10.1038/s41586-018-0330-9
- Ferro, M., Brugiere, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., et al. (2010). AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. *Mol. Cell Proteomics* 9 (6), 1063–1084. doi: 10.1074/ mcp.M900325-MCP200
- Finazzi, G., Petroutsos, D., Tomizioli, M., Flori, S., Sautron, E., Villanova, V., et al. (2015). Ions channels/transporters and chloroplast regulation. *Cell Calcium* 58, 86–97. doi: 10.1016/j.ceca.2014.10.002
- Frank, J., Happeck, R., Meier, B., Hoang, M. T. T., Stribny, J., Hause, G., et al. (2019). Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. *New Phytol.* 221, 866–880. doi: 10.1111/nph.15407
- Fromm, S., Senkler, J., Eubel, H., Peterhansel, C., and Braun, H. P. (2016). Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. J. Exp. Bot. 67 (10), 3079– 3093. doi: 10.1093/jxb/erw165

- García Bossi, J., Kumar, K., Barberini, M. L., Domínguez, G. D., Rondón Guerrero, Y. D. C., Marino-Buslje, C., et al. (2020). The role of P-type IIA and P-type IIB Ca²⁺-ATPases in plant development and growth. *J. Exp. Bot.* 71, 1239–1248. doi: 10.1093/jxb/erz521
- Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., et al. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. *Proc. Natl. Acad. Sci. U. S. A* 107, 8023–8028. doi: 10.1073/pnas.0912030107
- Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis Ca²⁺binding protein involved in cryptochrome and phytochrome coaction. *Science* 291, 487–490. doi: 10.1126/science.291.5503.487
- Gutermuth, T., Lassig, R., Portes, M. T., Maierhofer, T., Romeis, T., Borst, J. W., et al. (2013). Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20. *Plant Cell* 25, 4525–4543. doi: 10.1105/tpc.113.118463
- Hamada, T., Nagasaki-Takeuchi, N., Kato, T., Fujiwara, M., Sonobe, S., Fukao, Y., et al. (2013). Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. *Plant Physiol.* 163, 1804– 1816. doi: 10.1104/pp.113.225607
- He, Y., Wu, J., Lv, B., Li, J., Gao, Z., Xu, W., et al. (2015). Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. J. Exp. Bot. 66 (8), 2271–2281. doi: 10.1093/jxb/erv149
- Heard, W., Sklenar, J., Tome, D. F., Robatzek, S., and Jones, A. M. (2015). Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection. *Mol. Cell Proteomics* 14, 1796–1813. doi: 10.1074/mcp.M115.050286
- Helm, S., Dobritzsch, D., Rodiger, A., Agne, B., and Baginsky, S. (2014). Protein identification and quantification by data-independent acquisition and multi-parallel collision-induced dissociation mass spectrometry (MS(E)) in the chloroplast stroma proteome. J. Proteomics 98, 79–89. doi: 10.1016/j.jprot.2013.12.007
- Higuchi, M., Ozaki, H., Matsui, M., and Sonoike, K. (2009). A T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in Arabidopsis thaliana has a defect in the water-water cycle of photosynthesis. *J. Photochem. Photobiol. B.* 94 (3), 205–213. doi: 10. 1016/j.jphotobiol.2008.12.002
- Hochmal, A. K., Schulze, S., Trompelt, K., and Hippler, M. (2015). Calciumdependent regulation of photosynthesis. *Biochim. Biophys. Acta* 1847, 993– 1003. doi: 10.1016/j.bbabio.2015.02.010
- Hocking, B., Conn, S. J., Manohar, M., Xu, B., Athman, A., Stancombe, M. A., et al. (2017). Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses. J. Exp. Bot. 68, 4171–4183. doi: 10.1093/jxb/erx209
- Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., and Millar, A. H. (2017). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. *Nucleic Acids Res.* 45, D1064–d1074. doi: 10.1093/nar/gkw1041
- Huang, L., Berkelman, T., Franklin, A. E., and Hoffman, N. E. (1993). Characterization of a gene encoding a Ca(2+)-ATPase-like protein in the plastid envelope. *Proc. Natl. Acad. Sci. U. S. A* 90 (21), 10066–10070. doi: 10.1073/pnas.90.21.10066
- Huang, K., Peng, L., Liu, Y., Yao, R., Liu, Z., Li, X., et al. (2018). Arabidopsis calcium-dependent protein kinase AtCPK1 plays a positive role in salt/ drought-stress response. *Biochem. Biophys. Res. Commun.* 498 (1), 92–98. doi: 10.1016/j.bbrc.2017.11.175
- Inzè, A., Vanderauwera, S., Hoeberichts, F. A., Vandorpe, M., van Gaever, T., and van Breusegem, F. (2012). A subcellular localization compendium of hydrogen peroxide-induced proteins. *Plant Cell Environ.* 35, 308–320. doi: 10.1111/ j.1365-3040.2011.02323.x
- Ito, J., Batth, T. S., Petzold, C. J., Redding-Johanson, A. M., Mukhopadhyay, A., Verboom, R., et al. (2011). Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. *J. Proteome Res.* 10 (4), 1571–1582. doi: 10.1021/pr1009433
- Ji, R., Zhou, L., Liu, J., Wang, Y., Yang, L., Zheng, Q., et al. (2017). Calciumdependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana. *PloS One* 12, e0173681. doi: 10.1371/journal.pone.0173681
- Johnson, C. H., Knight, M. R., Kondo, T., Masson, P., Sedbrook, J., Haley, A., et al. (1995). Circadian oscillations of cytosolic and chloroplastic free calcium in plants. *Science* 269, 1863–1865. doi: 10.1126/science.7569925

- Ju, C., Kong, D., Lee, Y., Ge, G., Song, Y., Liu, J., et al. (2020). Methionine Synthase 1 Provides Methionine for Activating AtGLR3.5 Ca2+ Channel and Regulating Germination in Arabidopsis. J. Exp. Bot. 71, 178–187. doi: 10.1093/jxb/erz431
- Karniely, S., and Pines, O. (2005). Single translation-dual destination: mechanisms of dual protein targeting in eukaryotes. *EMBO Rep.* 6, 420–425. doi: 10.1038/sj.embor.7400394
- Keinath, N. F., Kierszniowska, S., Lorek, J., Bourdais, G., Kessler, S. A., Shimosato-Asano, H., et al. (2010). PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285 (50), 39140–39149. doi: 10.1074/jbc.M110.160531
- Kmiecik, P., Leonardelli, M., and Teige, M. (2016). Novel connections in plant organellar signaling link different stress responses and signaling pathways. J. Exp. Bot. 67, 3793–3807. doi: 10.1093/jxb/erw136
- Kong, D., Hu, H. C., Okuma, E., Lee, Y., Lee, H. S., Munemasa, S., et al. (2016). L-Met Activates Arabidopsis GLR Ca(2+) Channels Upstream of ROS Production and Regulates Stomatal Movement. *Cell Rep.* 17 (10), 2553–2561. doi: 10.1016/j.celrep.2016.11.015
- Kudla, J., Becker, D., Grill, E., Hedrich, R., Hippler, M., Kummer, U., et al. (2018). Advances and current challenges in calcium signaling. *New Phytol.* 218, 414– 431. doi: 10.1111/nph.14966
- Latz, A., Mehlmer, N., Zapf, S., Mueller, T. D., Wurzinger, B., Pfister, B., et al. (2013). Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). *Mol. Plant* 6, 1274–1289. doi: 10.1093/mp/sss158
- Lee, T. A., and Bailey-Serres, J. (2019). Integrative Analysis from the Epigenome to Translatome Uncovers Patterns of Dominant Nuclear Regulation during Transient Stress. *Plant Cell* 31, 2573–2595. doi: 10.1105/tpc.19.00463
- Lee, D., Polisensky, D. H., and Braam, J. (2005). Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. *New Phytol.* 165, 429–444. doi: 10.1111/j.1469-8137.2004.01238.x
- Lee, J., Lee, H., Kim, J., Lee, S., Kim, D. H., Kim, S., et al. (2011). Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signal-anchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells. *Plant Cell* 23 (4), 1588–1607. doi: 10.1105/tpc.110.082230
- Lee, Y., Min, C. K., Kim, T. G., Song, H. K., Lim, Y., Kim, D., et al. (2015). Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. *EMBO Rep.* 16, 1318–1333. doi: 10.15252/embr.201540436
- Lenzoni, G., and Knight, M. R. (2019). Increases in Absolute Temperature Stimulate Free Calcium Concentration Elevations in the Chloroplast. *Plant Cell Physiol.* 60, 538–548. doi: 10.1093/pcp/pcy227
- Li, B., Takahashi, D., Kawamura, Y., and Uemura, M. (2012). Comparison of plasma membrane proteomic changes of Arabidopsis suspension-cultured cells (T87 Line) after cold and ABA treatment in association with freezing tolerance development. *Plant Cell Physiol.* 53 (3), 543–554. doi: 10.1093/pcp/ pcs010
- Li, G., Boudsocq, M., Hem, S., Vialaret, J., Rossignol, M., Maurel, C., et al. (2015). The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity. *Plant Cell Environ.* 38 (7), 1312–1320. doi: 10.1111/pce.12478
- Li, P., Zhang, G., Gonzales, N., Guo, Y., Hu, H., Park, S., et al. (2016). Ca(2+) -regulated and diurnal rhythm-regulated Na(+) /Ca(2+) exchanger AtNCL affects flowering time and auxin signaling in Arabidopsis. *Plant Cell Environ*. 39 (2), 377–392. doi: 10.1111/pce.12620
- Li, Z., Takahashi, Y., Scavo, A., Brandt, B., Nguyen, D., Rieu, P., et al. (2018). Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. *Proc. Natl. Acad. Sci. U. S. A* 115, E4522-e4531. doi: 10.1073/ pnas.1719659115
- Liu, N., Hake, K., Wang, W., Zhao, T., Romeis, T., and Tang, D. (2017). CALCIUM-DEPENDENT PROTEIN KINASE5 associates with the truncated nlr protein TIR-NBS2 to contribute to exo70B1-mediated immunity. *Plant Cell* 29, 746–759. doi: 10.1105/tpc.16.00822
- Loro, G., Wagner, S., Doccula, F. G., Behera, S., Weinl, S., Kudla, J., et al. (2016). Chloroplast-specific in Vivo Ca2+ imaging using yellow cameleon fluorescent

protein sensors reveals organelle-autonomous Ca2+ signatures in the Stroma. *Plant Physiol.* 171, 2317–2330. doi: 10.1104/pp.16.00652

- Ma, X., Gai, W. X., Qiao, Y. M., Ali, M., Wei, A. M., Luo, D. X., et al. (2019). Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics 20, 775. doi: 10.1186/s12864-019-6125-z
- Manohar, M., Shigaki, T., Mei, H., Park, S., Marshall, J., Aguilar, J., et al. (2011). Characterization of Arabidopsis Ca2+/H+ exchanger CAX3. *Biochemistry* 50, 6189–6195. doi: 10.1021/bi2003839
- Manzoor, H., Chiltz, A., Madani, S., Vatsa, P., Schoefs, B., Pugin, A., et al. (2012). Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors. *Cell Calcium* 51, 434– 444. doi: 10.1016/j.ceca.2012.02.006
- Marmagne, A., Ferro, M., Meinnel, T., Bruley, C., Kuhn, L., Garin, J., et al. (2007). A high content in lipid-modified peripheral roteins and integral receptor kinases features in the arabidopsis plasma membrane proteome. *Mol. Cell Proteomics* 6, 1980–1996. doi: 10.1074/mcp.M700099-MCP200
- Martí Ruiz, M. C., Jung, H. J., and Webb, A. A. R. (2020). Circadian gating of darkinduced increases in chloroplast- and cytosolic-free calcium in Arabidopsis. *New Phytol.* 225, 1993–2005 doi: 10.1111/nph.16280
- Mathur, J., Mammone, A., and Barton, K. A. (2012). Organelle extensions in plant cells. J. Integr. Plant Biol. 54, 851–867. doi: 10.1111/j.1744-7909.2012.01175.x
- Matschi, S., Hake, K., Herde, M., Hause, B., and Romeis, T. (2015). The calciumdependent protein kinase CPK28 regulates development by inducing growth phase-specific, spatially restricted alterations in jasmonic acid levels independent of defense responses in Arabidopsis. *Plant Cell* 27 (3), 591–606. doi: 10.1105/tpc.15.00024
- Mayfield, J. D., Paul, A. L., and Ferl, R. J. (2012). The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system. *J. Exp. Bot.* 63 (8), 3061–3070. doi: 10.1093/jxb/ers022
- Mehlmer, N., Parvin, N., Hurst, C. H., Knight, M. R., Teige, M., and Vothknecht, U. C. (2012). A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J. Exp. Bot. 63, 1751–1761. doi: 10.1093/jxb/err406
- Mei, H., Cheng, N. H., Zhao, J., Park, S., Escareno, R. A., Pittman, J. K., et al. (2009). Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. *New Phytol.* 183, 95–105. doi: 10.1111/j.1469-8137.2009.02831.x
- Melonek, J., Oetke, S., and Krupinska, K. (2016). Multifunctionality of plastid nucleoids as revealed by proteome analyses. *Biochim. Biophys. Acta* 1864, 1016–1038. doi: 10.1016/j.bbapap.2016.03.009
- Meyerhoff, O., Muller, K., Roelfsema, M. R., Latz, A., Lacombe, B., Hedrich, R., et al. (2005). AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. *Planta* 222, 418–427. doi: 10.1007/s00425-005-1551-3
- Mitra, S. K., Walters, B. T., Clouse, S. D., and Goshe, M. B. (2009). An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes. J. Proteome Res. 8, 2752–2767. doi: 10.1021/pr801044y
- Monaghan, J., Matschi, S., Shorinola, O., Rovenich, H., Matei, A., Segonzac, C., et al. (2014). The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. *Cell Host. Microbe* 16, 605–615. doi: 10.1016/j.chom.2014.10.007
- Monaghan, J., Matschi, S., Romeis, T., and Zipfel, C. (2015). The calciumdependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. *Plant Signal Behav.* 10, e1018497. doi: 10.1080/15592324.2015.1018497
- Mori, I. C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y. F., Andreoli, S., et al. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell Stype anion- and Ca(2+)-permeable channels and stomatal closure. *PloS Biol.* 4, e327. doi: 10.1371/journal.pbio.0040327
- Morris, J., Tian, H., Park, S., Sreevidya, C. S., Ward, J. M., and Hirschi, K. D. (2008). AtCCX3 is an Arabidopsis endomembrane H+ -dependent K+ transporter. *Plant Physiol.* 148, 1474–1486. doi: 10.1104/pp.108.118810
- Myers, C., Romanowsky, S. M., Barron, Y. D., Garg, S., Azuse, C. L., Curran, A., et al. (2009). Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. *Plant J.* 59, 528–539. doi: 10.1111/j.1365-313X.2009.03894.x
- Nelson, C. J., Hegeman, A. D., Harms, A. C., and Sussman, M. R. (2006). A quantitative analysis of Arabidopsis plasma membrane using trypsin-catalyzed

(18)O labeling. Mol. Cell Proteomics 5 (8), 1382-1395. doi: 10.1074/ mcp.M500414-MCP200

- Nguyen, C. T., Kurenda, A., Stolz, S., Chetelat, A., and Farmer, E. E. (2018a). Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. *Proc. Natl. Acad. Sci. U. S. A* 115, 10178–10183. doi: 10.1073/ pnas.1807049115
- Nguyen, N. X., Armache, J. P., Lee, C., Yang, Y., Zeng, W., Mootha, V. K., et al. (2018b). Cryo-EM structure of a fungal mitochondrial calcium uniporter. *Nature* 559, 570–574. doi: 10.1038/s41586-018-0333-6
- Nguyen-Kim, H., San Clemente, H., Balliau, T., Zivy, M., Dunand, C., Albenne, C., et al. (2016). Arabidopsis thaliana root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. *Proteomics* 16, 491–503. doi: 10.1002/pmic.201500129
- Nikolovski, N., Rubtsov, D., Segura, M. P., Miles, G. P., Stevens, T. J., Dunkley, T. P., et al. (2012). Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. *Plant Physiol.* 160, 1037–1051. doi: 10.1104/pp.112.204263
- Nomura, H., and Shiina, T. (2014). Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. *Mol. Plant* 7, 1094–1104. doi: 10.1093/mp/ssu020
- Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., et al. (2012). Chloroplast-mediated activation of plant immune signaling in Arabidopsis. *Nat. Commun.* 3, 926. doi: 10.1038/ncomms1926
- Nühse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2003). Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. *Mol. Cell Proteomics* 2 (11), 1234–1243. doi: 10.1074/mcp.T300006-MCP200
- Nühse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2004). Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. *Plant Cell* 16 (9), 2394–2405. doi: 10.1105/ tpc.104.023150
- Omidbakhshfard, M. A., Fujikura, U., Olas, J. J., Xue, G. P., Balazadeh, S., and Mueller-Roeber, B. (2018). GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. *PloS Genet.* 14, e1007484. doi: 10.1371/journal.pgen.1007484
- Oxenoid, K., Dong, Y., Cao, C., Cui, T., Sancak, Y., Markhard, A. L., et al. (2016). Architecture of the mitochondrial calcium uniporter. *Nature* 533, 269–273. doi: 10.1038/nature17656
- Parsons, H. T., Christiansen, K., Knierim, B., Carroll, A., Ito, J., Batth, T. S., et al. (2012). Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. *Plant Physiol.* 159, 12–26. doi: 10.1104/pp.111.193151
- Pittman, J. K., and Hirschi, K. D. (2016). CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signaling. *Plant Biol.* (*Stuttg*) 18, 741–749. doi: 10.1111/plb.12460
- Pornsiriwong, W., Estavillo, G. M., Chan, K. X., Tee, E. E., Ganguly, D., Crisp, P. A., et al. (2017). A chloroplast retrograde signal, 3'-phosphoadenosine 5'phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. *Elife* 6, e23361. doi: 10.7554/eLife.23361
- Pottosin, I., and Shabala, S. (2015). Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. *Mol. Plant* 9, 356–370. doi: 10.1016/j.molp.2015.10.006
- Ranty, B., Aldon, D., Cotelle, V., Galaud, J. P., Thuleau, P., and Mazars, C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. *Front. Plant Sci.* 7, 327. doi: 10.3389/fpls.2016.00327
- Reumann, S., Quan, S., Aung, K., Yang, P., Manandhar-Shrestha, K., Holbrook, D., et al. (2009). In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with *in vivo* subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. *Plant Physiol.* 150, 125– 143. doi: 10.1104/pp.109.137703
- Rocha, A. G., and Vothknecht, U. C. (2012). The role of calcium in chloroplastsan intriguing and unresolved puzzle. *Protoplasma* 249, 957–966. doi: 10.1007/ s00709-011-0373-3
- Rodriguez Milla, M. A., Uno, Y., Chang, I. F., Townsend, J., Maher, E. A., Quilici, D., et al. (2006). A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. *FEBS Lett.* 580 (3), 904–911. doi: 10.1016/j.febslet.2006.01.013

- Ruge, H., Flosdorff, S., Ebersberger, I., Chigri, F., and Vothknecht, U. C. (2016). The calmodulin-like proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence. J. Exp. Bot. 67, 3985–3996. doi: 10.1093/jxb/erw101
- Sai, J., and Johnson, C. H. (2002). Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. *Plant Cell* 14, 1279–1291. doi: 10.1105/tpc.000653
- Sanyal, S. K., Pandey, A., and Pandey, G. K. (2015). The CBL-CIPK signaling module in plants: a mechanistic perspective. *Physiol. Plant* 155, 89–108. doi: 10.1111/ppl.12344
- Schiott, M., Romanowsky, S. M., Baekgaard, L., Jakobsen, M. K., Palmgren, M. G., and Harper, J. F. (2004). A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. *Proc. Natl. Acad. Sci. U. S. A* 101 (25), 9502–9507. doi: 10.1073/pnas.0401542101
- Schneider, A., Steinberger, I., Herdean, A., Gandini, C., Eisenhut, M., Kurz, S., et al. (2016). The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the Thylakoid Membrane in Arabidopsis. *Plant Cell* 28, 892–910. doi: 10.1105/ tpc.15.00812
- Scholz, S. S., Vadassery, J., Heyer, M., Reichelt, M., Bender, K. W., Snedden, W. A., et al. (2014). Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. *Mol. Plant* 7, 1712–1726. doi: 10.1093/mp/ssu102
- Scholz, S. S., Reichelt, M., Vadassery, J., and Mithofer, A. (2015). Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. *Plant Signal Behav.* 10 (6), e1011951. doi: 10.1080/ 15592324.2015.1011951
- Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., et al. (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. *Plant Physiol.* 131, 16–26. doi: 10.1104/pp.011577
- Seigneurin-Berny, D., Gravot, A., Auroy, P., Mazard, C., Kraut, A., Finazzi, G., et al. (2006). HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. *J. Biol. Chem.* 281, 2882–2892. doi: 10.1074/jbc.M508333200
- Selles, B., Michaud, C., Xiong, T. C., Leblanc, O., and Ingouff, M. (2018). Arabidopsis pollen tube germination and growth depend on the mitochondrial calcium uniporter complex. *New Phytol.* 219, 58–65. doi: 10.1111/nph.15189
- Sello, S., Perotto, J., Carraretto, L., Szabo, I., Vothknecht, U. C., and Navazio, L. (2016). Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures. *J. Exp. Bot.* 67, 3965–3974. doi: 10.1093/jxb/erw038
- Sello, S., Moscatiello, R., Mehlmer, N., Leonardelli, M., Carraretto, L., Cortese, E., et al. (2018). Chloroplast Ca(2+) Fluxes into and across Thylakoids revealed by Thylakoid-Targeted Aequorin Probes. *Plant Physiol.* 177, 38–51. doi: 10.1104/ pp.18.00027
- Senkler, J., Senkler, M., Eubel, H., Hildebrandt, T., Lengwenus, C., Schertl, P., et al. (2017). The mitochondrial complexome of Arabidopsis thaliana. *Plant J.* 89, 1079–1092. doi: 10.1111/tpj.13448
- Stael, S., Bayer, R. G., Mehlmer, N., and Teige, M. (2011). Protein N-acylation overrides differing targeting signals. *FEBS Lett.* 585, 517–522. doi: 10.1016/ j.febslet.2011.01.001
- Stael, S., Rocha, A. G., Wimberger, T., Anrather, D., Vothknecht, U. C., and Teige, M. (2012a). Cross-talk between calcium signaling and protein phosphorylation at the thylakoid. J. Exp. Bot. 63, 1725–1733. doi: 10.1093/jxb/err403
- Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U. C., and Teige, M. (2012b). Plant organellar calcium signaling: an emerging field. *J. Exp. Bot.* 63, 1525–1542. doi: 10.1093/jxb/err394
- Stael, S., Kmiecik, P., Willems, P., van der Kelen, K., Coll, N. S., Teige, M., et al. (2015). Plant innate immunity-sunny side up? *Trends Plant Sci.* 20, 3–11. doi: 10.1016/j.tplants.2014.10.002
- Stael, S. (2019). Chloroplast calcium signaling quenches a thirst. Nat. Plants 5, 559-560. doi: 10.1038/s41477-019-0435-7
- Stephens, N. R., Qi, Z., and Spalding, E. P. (2008). Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. *Plant Physiol.* 146, 529–538. doi: 10.1104/pp.107.108134
- Szymanski, W. G., Zauber, H., Erban, A., Gorka, M., Wu, X. N., and Schulze, W. X. (2015). Cytoskeletal components define protein location to membrane

microdomains. Mol. Cell Proteomics 14, 2493-2509. doi: 10.1074/mcp.M114.046904

- Teardo, E., Segalla, A., Formentin, E., Zanetti, M., Marin, O., Giacometti, G. M., et al. (2010). Characterization of a plant glutamate receptor activity. *Cell Physiol. Biochem.* 26, 253–262. doi: 10.1159/000320525
- Teardo, E., Formentin, E., Segalla, A., Giacometti, G. M., Marin, O., Zanetti, M., et al. (2011). Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane. *Biochim. Biophys. Acta* 1807, 359–367. doi: 10.1016/ j.bbabio.2010.11.008
- Teardo, E., Carraretto, L., de Bortoli, S., Costa, A., Behera, S., Wagner, R., et al. (2015). Alternative splicing-mediated targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to mitochondria affects organelle morphology. *Plant Physiol.* 167, 216–227. doi: 10.1104/pp.114.242602
- Teardo, E., Carraretto, L., Wagner, S., Formentin, E., Behera, S., de Bortoli, S., et al. (2017). Physiological characterization of a plant mitochondrial Calcium Uniporter in Vitro and in Vivo. *Plant Physiol.* 173, 1355–1370. doi: 10.1104/pp.16.01359
- Teardo, E., Carraretto, L., Moscatiello, R., Cortese, E., Vicario, M., Festa, M., et al. (2019). A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. *Nat. Plants* 5, 581–588. doi: 10.1038/s41477-019-0434-8
- Tomizioli, M., Lazar, C., Brugiere, S., Burger, T., Salvi, D., Gatto, L., et al. (2014). Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. *Mol. Cell Proteomics* 13, 2147–2167. doi: 10.1074/mcp.M114.040923
- Tsai, M. F., Phillips, C. B., Ranaghan, M., Tsai, C. W., Wu, Y., Willliams, C., et al. (2016). Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex. *Elife* 5, e15545. doi: 10.7554/eLife.15545
- Uno, Y., Rodriguez Milla, M. A., Maher, E., and Cushman, J. C. (2009). Identification of proteins that interact with catalytically active calciumdependent protein kinases from Arabidopsis. *Mol. Genet. Genomics* 281 (4), 375–390. doi: 10.1007/s00438-008-0419-1
- Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N., and Shinozaki, K. (1994). An Arabidopsis thaliana cDNA encoding Ca(2+)-dependent protein kinase. *Plant Physiol*. 105, 1461–1462. doi: 10.1104/pp.105.4.1461
- Vainonen, J. P., Sakuragi, Y., Stael, S., Tikkanen, M., Allahverdiyeva, Y., Paakkarinen, V., et al. (2008). Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. *FEBS J.* 275, 1767–1777. doi: 10.1111/j.1742-4658.2008.06335.x
- van Kleeff, P. J. M., Gao, J., Mol, S., Zwart, N., Zhang, H., Li, K. W., et al. (2018). The Arabidopsis GORK K(+)-channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins. *Plant Physiol. Biochem.* 125, 219–231. doi: 10.1016/j.plaphy.2018.02.013
- Vanderbeld, B., and Snedden, W. A. (2007). Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. *Plant Mol. Biol.* 64, 683–697. doi: 10.1007/s11103-007-9189-0
- Vincill, E. D., Clarin, A. E., Molenda, J. N., and Spalding, E. P. (2013). Interacting glutamate receptor-like proteins in Phloem regulate lateral root initiation in Arabidopsis. *Plant Cell* 25, 1304–1313. doi: 10.1105/tpc.113.110668
- Wagner, S., Behera, S., de Bortoli, S., Logan, D. C., Fuchs, P., Carraretto, L., et al. (2015). The EF-Hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. *Plant Cell* 27, 3190–3212. doi: 10.1105/tpc.15.00509
- Wagner, S., de Bortoli, S., Schwarzlander, M., and Szabo, I. (2016). Regulation of mitochondrial calcium in plants versus animals. *J. Exp. Bot.* 67, 3809–3829. doi: 10.1093/jxb/erw100
- Wang, P., Li, Z., Wei, J., Zhao, Z., Sun, D., and Cui, S. (2012). A Na+/Ca2+ exchanger-like protein (AtNCL) involved in salt stress in Arabidopsis. J. Biol. Chem. 287 (53), 44062–44070. doi: 10.1074/jbc.M112.351643
- Wang, W. H., Chen, J., Liu, T. W., Chen, J., Han, A. D., Simon, M., et al. (2014). Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. J. Exp. Bot. 65 (1), 223–234. doi: 10.1093/jxb/ert362
- Wang, C., Xu, W., Jin, H., Zhang, T., Lai, J., Zhou, X., et al. (2016). A putative chloroplast-localized Ca(2+)/H(+) Antiporter CCHA1 is involved in calcium and pH Homeostasis and required for PSII function in Arabidopsis. *Mol. Plant* 9 (8), 1183–1196. doi: 10.1016/j.molp.2016.05.015
- Wang, Y., Nguyen, N. X., She, J., Zeng, W., Yang, Y., Bai, X. C., et al. (2019). Structural mechanism of EMRE-dependent gating of the human mitochondrial

Calcium Uniporter. Cell 177, 1252-1261.e13. doi: 10.1016/j.cell.2019.03.050

- Weinl, S., Held, K., Schlücking, K., Steinhorst, L., Kuhlgert, S., Hippler, M., et al. (2008). A plastid protein crucial for Ca2+-regulated stomatal responses. *New Phytol.* 179, 675–686. doi: 10.1111/j.1469-8137.2008.02492.x
- Whiteman, S. A., Serazetdinova, L., Jones, A. M., Sanders, D., Rathjen, J., Peck, S. C., et al. (2008). Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. *Proteomics* 8 (17), 3536–3547. doi: 10.1002/pmic.200701104
- Yamamoto, T., Ozono, M., Watanabe, A., Maeda, K., Nara, A., Hashida, M., et al. (2019). Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake. *Biochim. Biophys. Acta Bioenerg.* 1860, 148061. doi: 10.1016/ j.bbabio.2019.148061
- Yang, Y., Zhang, C., Tang, R. J., Xu, H. X., Lan, W. Z., Zhao, F., et al. (2019). Calcineurin B-Like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis. *Int. J. Mol. Sci.* 20, pii: E2421. doi: 10.3390/ijms20102421
- Yoo, J., Wu, M., Yin, Y., Herzik, M. A.Jr., Lander, G. C., and Lee, S. Y. (2018). Cryo-EM structure of a mitochondrial calcium uniporter. *Science* 361, 506– 511. doi: 10.1126/science.aar4056
- Yoshida, K., Ohnishi, M., Fukao, Y., Okazaki, Y., Fujiwara, M., Song, C., et al. (2013). Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. *Plant Cell Physiol.* 54, 1571–1584. doi: 10.1093/pcp/pct107
- Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., et al. (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. *Nature* 514, 367–371. doi: 10.1038/nature13593
- Zargar, S. M., Kurata, R., Inaba, S., Oikawa, A., Fukui, R., Ogata, Y., et al. (2015). Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross-talk between excess zinc and iron deficiency. *Proteomics* 15, 1196–1201. doi: 10.1002/pmic.201400467
- Zhang, Z. J., and Peck, S. C. (2011). Simplified enrichment of plasma membrane proteins for proteomic analyses in Arabidopsis thaliana. *Proteomics* 11, 1780– 1788. doi: 10.1002/pmic.201000648
- Zhang, B., Zhang, C., Liu, C., Jing, Y., Wang, Y., Jin, L., et al. (2018). Inner envelope CHLOROPLAST MANGANESE TRANSPORTER 1 supports manganese homeostasis and phototrophic growth in Arabidopsis. *Mol. Plant* 11, 943–954. doi: 10.1016/j.molp.2018.04.007
- Zhao, L. N., Shen, L. K., Zhang, W. Z., Zhang, W., Wang, Y., and Wu, W. H. (2013). Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. *Plant Cell* 25 (2), 649–661. doi: 10.1105/tpc.112.103184
- Zhu, S. Y., Yu, X. C., Wang, X. J., Zhao, R., Li, Y., Fan, R. C., et al. (2007). Two calciumdependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. *Plant Cell* 19, 3019–3036. doi: 10.1105/tpc.107.050666
- Zou, J. J., Wei, F. J., Wang, C., Wu, J. J., Ratnasekera, D., Liu, W. X., et al. (2010).
 Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress.
 Plant Physiol. 154, 1232–1243. doi: 10.1104/pp.110.157545
- Zou, J. J., Li, X. D., Ratnasekera, D., Wang, C., Liu, W. X., Song, L. F., et al. (2015). Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. *Plant Cell* 27 (5), 1445–1460. doi: 10.1105/tpc.15.00144
- Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., et al. (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. *PloS One* 3, e1994. doi: 10.1371/journal.pone.0001994

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Navazio, Formentin, Cendron and Szabò. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.