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Untangling the genetic architecture of grain yield (GY) and yield stability is an important
determining factor to optimize genomics-assisted selection strategies in wheat. We
conducted in-depth investigation on the above using a large set of advanced bread
wheat lines (4,302), which were genotyped with genotyping-by-sequencing markers
and phenotyped under contrasting (irrigated and stress) environments. Haplotypes-
based genome-wide-association study (GWAS) identified 58 associations with GY and
15 with superiority index Pi (measure of stability). Sixteen associations with GY were
“environment-specific” with two on chromosomes 3B and 6B with the large effects and
8 associations were consistent across environments and trials. For Pi, 8 associations
were from chromosomes 4B and 7B, indicating ‘hot spot’ regions for stability. Epistatic
interactions contributed to an additional 5–9% variation on average. We further explored
whether integrating consistent and robust associations identified in GWAS as fixed
effects in prediction models improves prediction accuracy. For GY, the model accounting
for the haplotype-based GWAS loci as fixed effects led to up to 9–10% increase in
prediction accuracy, whereas for Pi this approach did not provide any advantage. This is
the first report of integrating genetic architecture of GY and yield stability into prediction
models in wheat.

Keywords: Triticum aestivum, GBS, GWAS, haplotypes, genomic selection

INTRODUCTION

Bread wheat (Triticum aestivum L.) is one of the most important cereal crops for global
food security (FAOSTAT, 2016). With the predicted detrimental effects of climate change
on its production and the projected global demand by 2050, there is a pressing need to
accelerate the development of high yielding varieties (Hellin et al., 2012). Improvement
of grain yield (GY) therefore is a prime target for wheat breeders globally. GY is a
complex trait governed by many loci of small-effects with significant loci × loci interactions
(Arzani and Ashraf, 2017; Sehgal et al., 2017). In addition, strong genotype × environment
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interaction associated with GY makes its genetic improvement
an arduous task.

Latest advances in sequencing technologies, providing
millions of single nucleotide polymorphism (SNP) markers
at a low cost, have revolutionized the field of plant genomics.
Hence, a paradigm shift from marker-based to sequencing-
based genotyping of breeders’ germplasm panels has been
observed in the post-genome sequencing era. Wheat has
particularly benefited from these technological advancements;
dense sets of SNPs are now available from different marker
platforms (90K Illumina iselect, genotyping by sequencing
(GBS), DArTseq, high-density Affymetrix Axiom R© genotyping
array). Due to the transformed genetic toolkit available
in wheat, untangling the genetic architecture of traits by
genome-wide association study (GWAS) and predicting
performance by genomic selection (GS) have become feasible.
Several GWAS analyses have been performed in wheat for
plethora of traits including yield and yield components
(Golabadi et al., 2011; Neumann et al., 2011; Bordes
et al., 2014; Edae et al., 2014; Azadi et al., 2015; Assanga
et al., 2017; Bhusal et al., 2017; Li et al., 2019). However,
outcomes of these studies have hardly been applied in practical
breeding programs.

Genomic selection is another widely used genomics-assisted
approach in which genome-wide markers are used to predict
the breeding value of individuals in a breeding population.
It offers the potential to accelerate genetic gain by increasing
selection accuracy and intensity and shortening the lengths
of breeding cycles. Though GS is a relatively new technology
for wheat breeding, significant success has been achieved in
testing and validating various models for GY and other traits
using markers and pedigrees (de los Campos et al., 2009;
Crossa et al., 2010, 2011, 2016; Heffner et al., 2011; Burgueño
et al., 2012; Pérez-Rodríguez et al., 2012; Rutkoski et al., 2014;
Juliana et al., 2017a,b).

In animal breeding, evidences have accumulated to realize
that integration of prior information of quantitative trait
loci (QTL) in GS models can result in increased prediction
accuracies for traits with complex genetic architecture (Boichard
et al., 2012; Su et al., 2014; Zhang et al., 2014; Brøndum
et al., 2015; Veroneze et al., 2016; Lopes et al., 2017).
A comprehensive simulation study in plants suggested that
by using a few (1–3) major genes/QTL as fixed effects in
GS models, it might be possible to increase the accuracy
of GS for quantitative traits (Bernardo, 2014), if each gene
contributes to ≥10% of the variance. QTL with large effects
(≥10%) have been identified for less complex traits in wheat
(e.g., rust resistance) in bi-parental populations and have
been integrated in GS models as fixed effects to improve
prediction accuracies (Rutkoski et al., 2014). However, such
large effect QTLs are rarely identified for complex traits such
as GY in a typical GWAS study (Sehgal et al., 2016, 2017).
The potential to integrate consistent and robust associations
identified from GWAS as fixed variables in GS models to
improve prediction accuracy for complex traits has not been
investigated comprehensively in plants (Spindel et al., 2016;
He et al., 2016).

In this study, we used a large set of spring bread wheat
lines (4,302) from the CIMMYT Global Wheat Program
(Supplementary Table S1), genotyped with GBS markers and
phenotyped under multiple contrasting environments, to; (a)
untangle the genetic architecture of GY and yield stability; (b)
identify robust GY-QTLs for specific environments and GY-QTLs
with consistent favorable allele across environments and trials;
and (c) evaluate the importance of these QTL in improving
genomic prediction accuracies by integrating them as fixed
effects in GS models.

MATERIALS AND METHODS

Plant Materials and Phenotyping
Plant materials consisted of 4,302 spring bread wheat lines, which
formed the entries of five Elite Yield Trials (EYT) during five
consecutive years (Supplementary Table S1) i.e., EYT2011-12,
EYT2012-13, EYT2013-14, EYT2014-15, and EYT2015-16 and
comprised 643, 905, 983, 942, and 829 lines, respectively. Each
trial year the breeding program selects 1092 new advanced lines
for 2nd year yield testing which is the source for the lines
above. Each year the lines are different except for the checks. All
EYTs were phenotyped at the Norman E. Borlaug experimental
research station (CENEB) in Ciudad Obregon, Mexico. The 1092
lines in each year were divided into 39 experiments, each with
28 entries, 2 checks in an alpha lattice design with 3 replications.
Small size units (30 plots with 28 entries and 2 checks) are used
to minimize the field variation, which simplifies selection. Each
year all 1092 lines were sown in five contrasting environments by
modulating planting date and irrigation, including optimum and
stressed environments, in combination with two management
conditions of raised bed planting (B) or flat planting (F). The
optimum environments included two well-irrigated treatments
with five irrigations (5IR) under bed and flat planting (B-
5IR and F-5IR).

The three stress environments included (i) mild drought
stress; sown in bed and with only two irrigations (B-2IR), (ii)
severe drought stress; sown in flat and with drip irrigation (SD)
and (iii) heat stress; bed sowing with five irrigations (HS; average
Tmax > 32◦C). All trials were sown in mid-November except for
HS, which was sown in the end of February. The plot size in
bed planting was 2.8 m × 1.6 m (two beds of 0.8 m with three
rows each) and in flat planting was 4 m × 1.6m (six rows). Trials
were phenotyped for days to heading (DH), plant height (PH),
and GY in each year. DH was recorded as the number of days
from planting until 50% of the spikes in each plot had completely
emerged above the flag leaves. PH was recorded as the average of
three values for each plot measured in centimeter from the soil
surface to the tip of the spike excluding awns. At maturity whole
plots were harvested to estimate GY per plot. The details of the
phenotyping are also described in Sehgal et al. (2017).

Statistical Analyses of Phenotypic Data
Each combination of EYT and simulated environment was
defined as one trial, resulting in 25 trials (five EYTs × five
environments) for each trait. The data were adjusted for block
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effects within each replication per trial using values from the
two common check varieties in SAS 9.4 using the PROC
GLM function and adjusted entry mean of the genotypes were
calculated for GY.

For DH and PH, the adjusted means were calculated by the
formula Y = (Yij-Yi)+ Yalltrials, where Yij is value of the entry for
a trial, Yi is mean of checks of that trial and Yalltrials is the mean
of checks of all trials.

The summary statistics function in GenStat edition 14th was
used to obtain the minimum and maximum values of each trait
in each trial. ANOVA was performed using a customized script in
R. Two GY stability indices were calculated using GY data from
five environments in each EYT; Lin and Binn’s superiority index
(Pi; Lin and Binns, 1988) and Eberhart and Russell’s coefficient
(ER; Eberhart and Russell, 1966).

Genotyping and Haplotype Construction
All lines were genotyped using GBS at Kansas State University.
GBS was conducted by 192-plexing on Illumina HiSeq2000 with
1 × 100 bp reads and subsequent SNP calling with TASSEL 5v2
pipeline as described in Rutkoski et al. (2016).

From an initial set of 20,794 SNP markers obtained on the
4,302 samples from five EYTs, a set of 8,443 filtered SNPs with
a maximum 40% missing data and a minor allele frequency
(MAF) ≥ 0.15 was used for constructing haplotype blocks.
No further imputations were done with the filtered set of
8,443 SNPs. Since the haplotype blocks were created on all
lines from five EYTs together, a high threshold for MAF i.e.,
MAF≥ 0.15 was applied so that in each EYT a MAF≥ 0.05 could
be achieved. Haplotypes were generated based on the linkage
disequilibrium (LD) parameter D’ using the modified R script
from Gabriel et al. (2002) described in Sehgal et al. (2019).
Briefly, we calculated D’ 95% confidence intervals between SNPs
and categorized each comparison as ‘strong LD,’ ‘inconclusive,’
or ‘strong recombination.’ If 95% of the comparisons in one
block were in ‘strong LD,’ a haplotype block was created. For
two or more SNPs to be classified in ‘strong LD’, the minimum
lower and upper confidence interval values were set to 0.6
and 0.95, respectively. The haplotype blocks were named as
combinations of the prefix ‘HB’ for the haplotype block followed
by a number, which represents the chromosome followed by
a dot and incrementing number of the haplotype blocks along
the chromosome. Two and three-locus interactions were studied
using an in-house script executed in R as described in Sehgal
et al. (2017). For single marker (SNP) GWAS, interactions were
calculated for the associated 125 SNPs and among genome-wide
SNPs. For haplotype-based GWAS, interactions were calculated
for the associated 58 haplotype blocks and among genome-
wide haplotype blocks. For both interaction analyses, p < 0.001
threshold was used as cutoff.

Genome-Wide Association Mapping
Haplotype-based GWAS was conducted in each individual EYT
using Plink version 1.07 (Purcell et al., 2007), while single marker-
based GWAS was conducted in GAPIT V2 (Tang et al., 2016),
both packages executed in R. The covariance matrix was derived
by conducting principal component analysis (PCA) analysis

using the function PRCOMP from the STATS package in R.
The kinship matrix was calculated by the VanRaden algorithm
(VanRaden, 2008). In both analysis (haplotype-based and single
marker-GWAS), a mixed linear model was used with PCA as
fixed variate and kinship as random. The appropriate number
of principal components were assessed based on Bayesian
information criterion (Schwarz, 1978). DH and PH were used
as covariates to reduce confounding effects of phenological
traits. In addition, major flowering genes present in high
frequency in these EYTs i.e., Ppd-D1a and Vrn-B1a were also
used as covariables to avoid any further confounding effects of
flowering genes.

Genomic Prediction Models
All genomic predictions were based on the G-BLUP model, using
the following formula:

y = Xβ+ Zu+ ε (1)

where y is a vector of phenotypes consisting of the adjusted
means, β is a vector of fixed effects (depending upon the model
see the below), u is a vector of random genetic values, e is
the vector of residuals. X and Z are design matrices. The u
was assumed to follow a Gaussian distribution u ∼ N(0, Gσ2

g),
where G was the genomic relationship matrix and σ2

g was the
additive genetic variance. The residuals e was assumed to follow
a Gaussian normal distribution u ∼ N(0, Iσ2

e), where I was the
identity matrix.

In order to include the GWAS results in genomic prediction,
four types of relationship matrices were calculated and used as
part of the G-BLUP models in BGLR package:

(a) The additive relationship matrix (GM) was calculated using
single markers and following the formula:

GM = MMT (2)

where M ∈ {1, 0,−1} depending upon whether a particular
marker carried the homozygous reference, heterozygous or
homozygous alternate allele.

(b) The haplotype based relationship matrix (GH) was
calculated using the following formula:

GH = HHT (3)

where H ∈ {1, 0} depending upon whether particular haplotype
allele was present or absent.

(c) The single marker-based Gaussian Kernel (GMG) – Marker
based Gaussian Kernel was

Gij = exp[−(Dij
/
θ)] (4)

where

Dij = [(
1
4

m)
m∑
k=1

(Sik − Sjk)2]1/2 (5)
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The summary of the four models run is presented in the following table:

Model Fixed effects Relationship
matrix

Description

1 Environment GM Base model

2 Environment GH 501
haplotypes + Epistasis

3 Environment,
predefined
markers

GMG 8,443 single
markers + GWAS
markers + + Epistasis

4 Environment,
predefined
Haplotypes

GHG 501
haplotypes + GWAS
haplotypes++ Epistasis

here θ is scale parameter, m = number of markers, Dij is Euclidian
distance calculated between individuals i and j using the marker
scores S, normalized to the interval [0,1].

(d) The haplotype-based Gaussian Kernel (GHG)

In a similar way to GM , the haplotype based Gaussian
Kernel based matrix was calculated except m is number of
haplotypes and S is haplotype score indicating presence (1)
and absence (0) for particular haplotype allele. Epistatis was
captured in the models using Reproducing Kernel Hilbert
Space (RKHS) regression equation based on Gaussian kernel
(Yong and Jochen, 2015).

Cross Validation
Cross validations were performed by randomly splitting of
observations into 90% training set and 10% test set within
each EYT. The prediction accuracy was calculated as correlation
between true and predicted values in 10% test set. The cross
validation was repeated 100 times to calculate mean and standard
deviation of the prediction accuracy.

RESULTS

Grain Yield Performances in Contrasting
Environments
GGE plots of all environments showed that they were
significantly different in each EYT with both principal
components explaining 80.2, 81.7, 86.3, 84.7, and 88.9% of
the overall variation in EYT2011-12, EYT2012-13, EYT2013-14,
EYT2014-15, and EYT2015-16, respectively (Supplementary
Figure S1). Mean GY across all trials and environments ranged
from 1.62 t/ha (EYT2015-16 in SD) to 8.64 t/ha (EYT2011-12
in B-5IR) (Table 1). Means across the five EYTs for each
environment accounted for 7.0, 6.7, 3.9, 2.5, and 3.5 t/ha for
B-5IR, F-5IR, B-2IR, SD and HS, respectively. The percent
reduction in GY under stress environments ranged from 18.5
to 56.4%, 50.1 to 77.1%, and 33.1 to 62.3% across EYTs under
B-2IR, SD and HS, respectively (Supplementary Figure S2).
SD was overall the lowest yielding environment, followed by
HS. The differences in GY between irrigated environments
(B-5IR and F-5IR) ranged from 0.72% in EYT2013-14 to
10.9% in EYT2012-13.

Broad sense heritability for GY across environments ranged
from 0.27 to 0.63, being highest in EYT2011-12 and lowest
in EYT2015-16 (Table 1). Phenotypic correlations between
days to heading (DH) and GYs were positive for the two
irrigated environments and negative for all stress environments.
Correlations of GY with plant height (PH) were positive
irrespective of the environment (Supplementary Table S2).
Supplementary Figures S3, S4 show G × E plots for Pi vs. mean
GY in EYTs and correlations between mean GY and the two
stability indices, respectively.

Haplotype Analysis, Haplotype-Based
GWAS and Its Comparison With Single
Marker GWAS
Genome-wide, 501 haplotype blocks were constructed with a
range from two to nine SNPs per block (Supplementary Table
S3). A total of 4,038 SNPs built the 501 haplotype blocks.
As expected, the wheat D sub-genome showed the lowest
number of haplotype blocks (36) with the lowest number of
haplotypes (78). Sub-genomes A and B showed 197 and 268
haplotype blocks and 506 and 656 haplotypes, respectively
(Supplementary Figure S5).

Haplotype-based GWAS identified 58 haplotype blocks
associated with GY across all 25 trials, ranging from 17 in
EYT2012-13 to 33 in EYT2011-12 (Supplementary Table S4).
The associated haplotype blocks could be divided into four
groups: (1) associated with GY only in one EYT, (2) strictly
associated with GY in a single environment across EYTs (3),
consistently associated with GY across EYTs and multiple
environments in each EYT (4), consistently associated with
GY across EYTs but in varying environments (one to many).
Out of the 58 haplotype-GY associations, 32 associations were
categorized into groups 1 and 2 (16 each), the remaining 26
associations were assigned to groups 3 (8 associations) and 4
(18 associations). Figure 1 shows partial haplotype maps of
chromosomes 7A and 2B showing allelic effects of two haplotypes
blocks (HB19.8 and HB5.1) associated with GY assigned to group
2. The favorable haplotypes explained more than 5% increase in
GY in two EYTs. The favorable allele ‘GT’ of another haplotype
block (HB8.26) assigned to group 2 and identified in HS showed
a 8.1 to 12.2% (189 – 374 kg/h) increase in GY across EYTs
(Figure 2a). The haplotype block HB17.1 was assigned to group
3. The favorable allele ‘TAC’ of this block showed a 8–14% (240–
530 kg/h) and 11.6–16.3% (244–303 kg/h) increase in GY across
three EYTs, in B-2IR and SD respectively (Figures 2b,c).

Single marker-based GWAS obtained 125 SNP-GY
associations for all 25 trials. Similar to the haplotype-GY
associations, the associations in this analysis were divided into
four groups. Most associations (91) were identified in only
one EYT, belonging to the previously defined group 1. Of the
remaining associations, 19, 8, and 7 were assigned to groups 2,
3, and 4, respectively (Supplementary Table S5). Twenty-nine
SNPs significant in the single marker-based GWAS were also part
of the 58 haplotype blocks associated with GY in the haplotype-
based GWAS (Supplementary Table S6). For the SD and HS
environments, three chromosome regions were identified by
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TABLE 1 | Adjusted mean of GY, ANOVA and heritability (h2) of the five elite yield trials (EYT).

Mean GY (kg/ha)

B-5IR F-5IR B-2IR SD HS ANOVA h2 (across envs.)

Df F-value Pr (> F)

EYT2011-12 8622 ± 631 7892 ± 597 3763 ± 834 2662 ± 532 4275 ± 605 Rep 2 2.65 * 0.63

Geno 642 8.93 ***

Env 4 57129.90 ***

Geno:Env 2568 4.82 ***

Residuals 6426

EYT2012-13 7737 ± 450 6879 ± 512 4741 ± 403 3438 ± 507 3576 ± 590 Rep 2 2.21 ns 0.32

Geno 904 7.96 **

Env 4 84908.52 **

Geno:Env 3616 5.41 **

Residuals 9045

EYT2013-14 6105 ± 512 6061 ± 672 3698 ± 388 2107 ± 529 2305 ± 504 Rep 2 15.91 ** 0.51

Geno 982 8.58 **

Env 4 71944.28 **

Geno:Env 3927 4.20 **

Residuals 9819

EYT2014-15 5581 ± 493 5714 ± 541 4541 ± 369 2797 ± 704 3735 ± 641 Rep 2 10.54 ** 0.57

Geno 941 14.23 **

Env 4 35614.11 **

Geno:Env 3764 6.20 **

Residuals 9400

EYT2015-16 7096 ± 365 7018 ± 605 3201 ± 392 1622 ± 556 3628 ± 443 Rep 2 7.51 ** 0.27

Geno 828 7.04 **

Env 4 118590.00 **

Geno:Env 3311 5.12 **

Residuals 8216

both analyses, but different markers were significantly associated
with GY in each GWAS (Supplementary Table S7).

Two yield stability indices (Pi and ER) for GY were calculated.
Of the two, Lin and Binns’s Pi is a compound index that quantifies
both performance (G) and G × E interaction and thus identifies
good performing and stable lines with a single parameter
(Supplementary Figure S3). Pi index also showed a higher and
positive correlation with mean GY than ER (Supplementary
Figure S4). GWAS was only conducted for Pi. In the haplotype-
based GWAS, 15 haplotype blocks were associated with Pi. Five
of the haplotype blocks were identified in three EYTs and 10
haplotype blocks in two EYTs (Supplementary Table S8). In
single marker-based GWAS for Pi, 28 SNPs were identified to
be associated with Pi in two or three EYTs. Of these, 17 SNPs
were part of the significantly associated haplotype blocks in the
haplotype-based GWAS for Pi (Supplementary Table S8). The
remaining 11 SNPs were identified on the same chromosome
regions close to the associated haplotype blocks.

Effects of Haplotypes and Single SNP
Markers on GY and Pi
The percentage variation (R2) explained by 58 haplotypes
associated with GY ranged from 0.7 to 14.0% in

different environments across EYTs, while for the
associated 125 SNPs it ranged from 0.02 to 4.5%.
Similarly, for Pi, R2 ranged from 4.7 to 11.0% and 2.5
to 5.2% for haplotypes and single SNPs, respectively.
The average R2 explained was 6.1–9.9% higher with
the haplotype-based GWAS as compared to the single
marker-based GWAS for GY and Pi across all EYTs
(Supplementary Figure S6).

The haplotypes and SNPs associated with the Pi index were
also assessed for their effects on GY per se across environments
and EYTs (Supplementary Table S8). The favorable haplotype
‘TG’ in block HB11.4 on chromosome 4B showed increased
GY from on average 2 to 10% in different environments
across EYTs (Supplementary Table S8 and Figure 3). A second
favorable haplotype ‘CG’ in block HB14.8 on chromosome
5B increased GY from 0.7 to 9.1%. The favorable alleles in
HB1.11 and HB19.8 increased GY from 1.1 to 10.7% and 5
to 11.30%, respectively. The haplotype block HB17.36 showed
increased GY across different environments in four EYTs,
however, different haplotypes were favorable in different EYTs,
indicating G × E. Two more haplotype blocks (HB20.29 on
chromosome 7B and HB21.2 on chromosome 7D) exhibited
G × E. For the SNPs that were associated in both GWAS
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FIGURE 1 | Partial haplotype maps of chromosomes 7A and 2B showing haplotype blocks HB19.8 and HB5.1 (indicated with an arrow) associated with GY in
B-5IR and B-2IR environments, respectively (left part of figure). The numbers inside the diamonds are the r2 values between SNPs on a scale of 0 to 100%. Allelic
effects of the haplotypes in blocks HB19.8 (a) and HB5.1 (b) on grain yield (Y axis in kg/ha) are shown on the right. The favorable haplotypes are underscored based
on the highest mean.

FIGURE 2 | Allelic effects of haplotypes in HB8.26 (chromosome 3B) for GY (Y axis in kg/ha) under HS (a) and HB17.1 (chromosome 6B) under B-2IR (b) and SD
(c) environments. The favorable alleles are underscored based on the highest mean.

analyses for Pi, allelic effect ranged from 0.8 to 5.6%
(Supplementary Table S8).

Epistatic Interactions Between Main
Effect and Genome-Wide Loci
For GY, epistatic loci interacting with other main effect loci
were identified across EYTs for each of the environments
(Supplementary Table S9). For example, for GY in Bed-
5IR the three haplotype blocks HB4.50, HB5.19 and HB5.21
were interacting in three or four EYT. On average, epistatic
interactions explained additional 5 to 9% variation for
GY in different environments (Supplementary Table S9).
For Pi, main epistatic loci were detected on chromosome
4B (HB11.4, HB11.5, HB11.7, HB11.9, and HB11.11)

contributing to additional 9% variation (Supplementary
Figure S7 and Supplementary Table S10). Higher levels of
epistatic interactions were observed between the main effect
and genome-wide haplotypes with an average contribution
from 9.1 to 16.4% for GY across environments and up
to 20% for Pi (data not shown). Supplementary Figures
S8, S9 show the interactions observed for GY in B-5IR
across EYTs and for Pi, respectively. Epistatic interactions
were also significant among significantly associated
SNPs and genome-wide distributed SNPs for GY and Pi
(data not shown).

Performance of GS Models
We compared the predictive ability of the four genomic
prediction models by incorporating different relationship
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FIGURE 3 | Allelic effects of two haplotypes in HB11.4 (associated with Pi) on GY (Y axis in kg/ha) across EYTs; TG showing the highest mean is the favorable
haplotype under Bed 5IR (a), Bed 2IR (b), and SD (c) environments.

matrices: Model (1) Genome-wide distributed SNPs (SM
model/base model), Model (2) Genome-wide distributed
haplotype blocks and epistasis among haplotype blocks
(H + E model), Model (3) Genome-wide distributed SNPs,
epistasis among SNPs, and single SNPs as fixed effects
identified from GWAS and epistasis analyses (SM + E + fixed
effects model), Model (4) Genome-wide haplotype blocks,
epistasis among haplotypes blocks and haplotypes as
fixed effects identified from GWAS and epistasis analyses
(H+ E+ fixed effects model).

The four predication models were applied on two test
data sets of GY from B-5IR and B-2IR environments and
Pi. For GY under B-5IR, the base model showed prediction
accuracies from 0.35 to 0.43 (Supplementary Table S11).
Incorporating haplotype blocks and epistasis among haplotype
blocks (Model 2) into the prediction model resulted in a
3–5% increase in prediction accuracies over the base model
(Figure 4). Additionally, accounting for the single marker-
based GWAS loci as fixed effects (Model 3) resulted in a
similar increase of 5–6% over the base model. The fourth
model accounting for the haplotype-based GWAS loci as
fixed effects (12 haplotypes used as fixed effects; Table 2)
showed increase in accuracies from 7% (EYT 2012-13)
to 9% (EYT 2013-14) (Supplementary Table S11 and
Figure 4).

For GY in B-2IR, calculated prediction accuracies were
overall higher than in B-5IR and ranged from 0.39 to 0.48
(Supplementary Table S11) for the base model. Model
2 resulted in a 2–5% increase in prediction accuracy
(Figure 4). Model 3 did not provide any advantage in

EYT2013-14, EYT2014-15 and EYT2015-2016 over Model
2. The fourth model in which 10 haplotypes were used as
fixed effects (Table 2) proved again to be the best model in
increasing the prediction accuracies to up to 10% over the
base model in three EYTs (EYT2011-12, EYT2014-15 and
EYT2015-16).

For Pi although a clear trend was not observed, two scenarios
were noteworthy; when across environment heritability
of GY was high (>0.55) for instance in EYT2011-12 and
EYT2014-15 (Table 1), no variation was observed among
models 2, 3, and 4 and they performed equally well over the
base model in EYTs (Figure 4 and Supplementary Table
S12). However, for EYTs with a lower across environment
heritability (<0.55), both models based on haplotypes
(Models 2 and 4) performed slightly better than the
remaining two models.

DISCUSSION

While trying to identify the genetic determinants of complex
traits such as GY using GWAS approach, common genetic
variants (5–95% frequencies) with small phenotypic effects
are identified and rare variants (<1% frequencies) of large
effects remain unidentified. Furthermore, despite the increasing
awareness that epistasis forms the genetic basis of complex traits,
the contribution of epistasis in the genetics of GY has been rarely
investigated in GWAS studies (Mackay, 2014; Lachowiec et al.,
2015). Hence, complete genetic architecture of the trait remains
hidden leading to ‘missing heritability’ issues. Of the various
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FIGURE 4 | Genomic predictions values for GY (from two illustrative environments B-5IR and B-2IR) and Pi. SM, Genome-wide SNPs; H + E, Genome-wide
haplotypes + epistatsis; SM + E + GWAS, Genome-wide SNPs + epistasis + fixed effects; and H + E + GWAS, Genome wide haplotypes + epistasis + fixed effects.
The whisker line above columns represents LSD values.

suggested approaches to deal with ‘missing heritability’ including
large panel sizes as large as 10,000 to identify rare variants and
whole genome sequencing to cover both causative variants and
LD-linked variants, focusing on haplotypes-based GWAS and
estimation of epistatic interactions can provide immediate and
inexpensive solutions (Lachowiec et al., 2015). Use of multi-allelic
haplotypes has significantly improved the power and robustness
of GWAS studies in crops (Qian et al., 2017) including soybean
(Hao et al., 2012), barley (Lorenz et al., 2010) maize (Lu et al.,
2012), and durum wheat (N’Diaye et al., 2017).

We found 58 haplotypes associated with GY of which 16
associations were ‘environment-specific’ and 26 were more
‘robust’ across environments and/or years. Many of the
genomic regions identified in the two different drought
stress environments (B-2IR and SD representing mild and
severe drought stress, respectively) were different from each
other, pointing to the additional complexity of drought stress
tolerance. On chromosome 6B, a major GY QTL (HB17.1)
was identified with the favorable haplotype ‘TAC’ showing
an allele effect of up to +530 and +303 kg/ha under B-
2IR and SD, respectively. A recent study reported two meta-
QTL for adaptation to drought stress on chromosome 6B
in wheat (Acuna-Galindo et al., 2015). The QTL detected
here is ∼15 cM away from these meta-QTL and therefore
likely novel. For HS, ‘environment specific’ GY QTL were
identified on chromosomes 2B (HB5.42), 3B (HB8.26) and
7B (HB20.38) of which HB8.26 showed the largest effect on
GY. The favorable allele ‘GT’ led to increased GY of 189 –
374 kg/ha across EYTs. On chromosome 3B, four meta-QTL
for adaptation to combined heat and drought stresses were
mapped previously (Acuna-Galindo et al., 2015). The QTL
identified in this study is very close to one of these metaQTL
(within 5 cM). In durum wheat, QTL hotspots for GY and
GY components in high yield potential, drought, and heat
stress environments were reported on chromosomes 2A and 2B
(Sukumaran et al., 2018a,b).

In a previous study, we identified genomic regions associated
with yield stability using the superiority index Pi in one of the
EYTs studied here and assessed the effects of Pi-associated loci

on GY in multiple environments (Sehgal et al., 2017). In this
study, which is first of its own kind, two different stability indices
(Pi and ER) were compared on such a large dataset. Most and
almost all studies in crops have done such comparisons in a
handful of cultivars or varieties (Scapim et al., 2000; Temesgen
et al., 2015). The ability of Pi to select both high yielding
and stable genotypes (Supplementary Figure S3) re-established
that Pi is a suitable parameter for selecting widely adapted
high yielding wheat genotypes. Fifteen haplotype blocks were
identified to be associated with Pi on chromosomes 1A, 4A,
4B, 5B, 6B, 7A, 7B, and 7D. Of these, eight haplotype blocks
were on chromosomes 4B and 7B, indicating ‘hot spot’ regions
for yield stability. Three haplotype blocks on chromosome 7B
(HB20.29, HB20.33, and HB20.38) coincided with QTL already
reported in various studies and environments (Quarrie et al.,
2005; Paliwal et al., 2012; Sehgal et al., 2017), while HB20.6 and
HB20.14 are novel with favorable effects on GY in three (up to
8.9%) and six (up to 11.3%) trials, respectively. On chromosome
4B, a major genomic region was identified with three haplotype
blocks (HB11.4, HB11.5, and HB11.7; altogether 480 Mb long)
associated with Pi, in which haplotype ‘TG’ increased GY in
nine trials. On chromosome 4B, two meta-QTL have been
reported on its long arm (Zhang et al., 2010). The haplotype
blocks identified here mapped on chromosome 4BS. It could be
speculated that the QTL could be a pleiotropic effect of the Rht-
B1 gene also located on chromosome 4BS. However, the dwarfing
allele Rht-B1a is usually fixed (95–97% across the five EYTs) in
CIMMYT wheat germplasm. The QTL on 4B and 7B provide
new genomic regions for subsequent analyses of their underlying
candidate genes.

We compared the results obtained by haplotype-based
GWAS with single marker-based GWAS, which has rarely been
investigated in wheat (N’Diaye et al., 2017). The haplotype-
based analysis resulted in an increase of the phenotypic variance
explained for both GY and Pi when compared to single marker
analysis. These results are similar to previous studies in other
crops and durum wheat (Lorenz et al., 2010; Hao et al., 2012; Lu
et al., 2012; N’Diaye et al., 2017). We identified a lower number
of haplotypes in comparison to single SNPs associated with the
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TABLE 2 | Haplotype blocks used as fixed effects in GS models for GY in B-5IR and B2-IR environments. The favorable haplotype(s) is underscored.

Bed-5IR Bed-2IR

Haplotype
blocks

Haplotypes Favorable allele effect on
mean GY (kg/ha)

Haplotype
blocks

Haplotypes Favorable allele effect on
mean GY (kg/ha)

HB1.10 (1A)
S1A_535441795,
S1A_535441797

AC
GA

EYT2011-12
8,664
8,544

EYT2014-15
5,600
5,446

HB2.23 (1B)
S1B_678416771,
S1B_678416817

AG
GA

EYT2012-13
4,834
4,663

EYT2013-14
3,707
3,636

HB2.5 (1B)
S1B_20269363,
S1B_20287464

AC
GA

EYT2011-12
8,581
8,793

EYT2014-15
5,593
5,678

HB4.30 (2A)
S2A_211705334,
S2A_211705336

CC
TT

EYT2014-15
4,439
4,586

EYT2015-16
3,163
3,228

HB4.38 (2A)
S2A_748528721,
S2A_748528738

AA
GA
GG

EYT2012-13
7,744
7,962
7,571

EYT2013-14
6,189
6,149
5,962

EYT2014-15
5,594
5,464
5,285

HB5.1 (2B)
S2B_8754756,
S2B_8754774

GT
TC
TT

EYT2011-12
3,690
3,873
3,902

EYT2014-15
4,491
4,588
4,737

HB4.50 (2A)
S2A_779846680,
S2A_779846718

AA
GG

EYT2012-13
7,587
7,781

EYT2013-14
6,056
6,296

HB5.53 (2B)
S2B_795302376,
S2B_795302390

AT
CC

EYT2013-14
3,662
3,774

EYT2014-15
4,582
4,585

HB5.11 (2B)
S2B_71692883,
S2B_71692929

CC
GT

EYT2013-14
6,148
5,964

EYT2014-15
5,485
5,716

HB7.19 (3A)
S3A_651647755,
S3A_651647756

CG
TC

EYT2013-14
3,684
3,774

EYT2014-15
4,509
4,659

HB5.19 (2B)
S2B_142247929
S2B_142247930

CA
TG

EYT2011-12
8,617
8,476

EYT2014-15
5,645
5,369

HB8.2 (3B)
S3B_7031744,
S3B_7031759

CC
TT

EYT2013-14
3,770
3,624

EYT2014-15
4,560
4,411

HB5.21 (2B)
S2B_178761042,
S2B_178771120

CC
CT
GC

EYT2012-13
7,750
7,780
7,634

EYT2013-14
6,000
6,226
6,086

HB8.28 (3B)
S3B_755079571,
S3B_755079586

CA
TT

EYT2011-12
3,726
3,585

EYT2014-15
4,649
4,513

HB11.3 (4B)
S4B_4128125,
S4B_4128135

CG
GC

EYT2012-13
7,799
7,677

EYT2015-16
6,949
7,153

HB14.16 (5B)
S5B_387952822,
S5B_387952832

CA
TT

EYT2013-14
3,646
3,754

EYT2015-16
3,168
3,239

HB14.38 (5B)
S5B_571861468,
S5B_571861476

GA
TG

EYT2011-12
8,476
8,768

EYT2013-14
6,016
6,180

HB17.1 (6B)
S6B_3567046,
S6B_3567059,
S6B_3567083

CAA
CAC
TTC

EYT2013-14
3,723

HB19.8 (7A)
S7A_36087756,
S7A_36087757,
S7A_36096388

AGA
AGG
GAG

EYT2011-12
8,569
8,191
8,687

EYT2013-14
5,859
5,894
6,166

HB19.39 (7A)
S7A_675454642,
S7A_675454643

CT
TG

EYT2013-14
3,729
3,671

EYT2015-16
3,157
3,266

HB20.12 (7B)
S7B_160614818,
S7B_160614819

CG
TA

EYT2011-12
8,690
8,558

EYT2014-15
5,689
5,554

HB20.41 (7B)
S7B_724005624,
S7B_724005636,
S7B_724005641

ATA
GCG
GTG

EYT2013-14
5,989
6,157
6,263

EYT2014-15
5,413
5,615
5,678

The markers included in haplotype blocks are shown under block names. The number in marker name represents physical positions of SNPs based on wheat reference
genome vs. 1.0.

traits, but more haplotypes with favorable effects across EYTs and
environments. For example for GY, haplotype blocks HB20.41 in
B-5IR, HB5.1 and HB8.28 in B-2IR, and for Pi haplotype blocks
HB11.4, HB11.7, and HB21.2.

Epistasis plays a significant role in the genetic architecture
of complex traits, but its contribution has not been investigated
in depth using GWAS approaches. In soft winter wheat, Reif
et al. (2011) investigated the role of epistasis in a GWAS
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study for GY and reported that main effects dominated the
genetic architecture of GY and epistatic interactions contributed
only little. In contrast, in our studies (Sehgal et al., 2016,
2017), GY and Pi were controlled by both main and epistatic
effects. Reif et al. (2011) used a smaller and a narrower
panel of elite breeding lines (455 lines derivatives from a few
parents) adapted to central European conditions. A smaller
number of alleles fixed in the germplasm panel might have
reduced epistasis among loci. In this study, we investigated a
significant larger set of breeding lines selected from a wide range
of genetic backgrounds and for a number of diverse mega-
environments globally.

Since we observed several SNPs and haplotypes associated
to GY and Pi significantly associated across some environments
and EYTs, we tested whether these QTLs could affect prediction
accuracy of these complex traits. We tested this approach
for GY in two illustrative environments (B-5IR and B-2IR)
and for Pi. For GY, a general trend observed was that the
model accommodating haplotype-based GWAS loci and epistatic
effects was superior to other models tested and resulted in
up to 9 and 10% increase in prediction accuracies in B-5IR
and B-2IR environments, respectively. These results indicate
that if genomic regions with moderate effects but showing
significant associations across years and/or environments are
identified for a complex trait, using them as fixed effects
can lead to better performance of GS models. Up to date,
several different strategies were tested at CIMMYT to increase
prediction accuracies for GY, for example, using pedigrees
and markers individually and combined, G × E models and
incorporating additional secondary traits (Crossa et al., 2007,
2010, 2011; Burgueño et al., 2012; Rutkoski et al., 2016).
This is the first report to incorporate the genetic architecture
into GS models. The increase in prediction accuracies for
GY is similar to that observed in previous studies in wheat
mentioned above. Thus, there is potential for combining
the various approaches and further explore their effect on
prediction accuracies.

Including the epistatic effects and single marker-based
GWAS results as fixed effects in the GS prediction models
also increased prediction accuracies in comparison to the
base model but not to the same extent as haplotypes. Two
recent studies in rice (Spindel et al., 2016) and maize
(Bian and Holland, 2017) reported increases in prediction
accuracies using SNPs as fixed effects. The fact that we
found less robust SNPs, with additional minor effects on
GY and Pi are the most likely reason for this finding
(Boichard et al., 2012).

Prediction accuracies for Pi index were in a similar range to
those for GY. However, when GS models were tested for the
Pi index, the increase in prediction accuracy by incorporating
GWAS results could not be repeated. The genetic architecture
of yield stability is difficult to capture and we speculate that
this higher complexity of the trait has led to our results.
This is for example highlighted by the finding of several
haplotype blocks were associated with Pi, but failed to show

a consistent favorable allele. Furthermore, simulation studies
have shown that the number of independent chromosome
segments that enters into GS models influences the estimate
of accuracy in fixed effects models (Brard and Richard, 2015).
The main effect haplotypes for Pi were from only three
chromosomes (4A, 4B, and 7B) and the epistatically interacting
loci were from chromosome 4B (HB11.5, HB11.7, HB11.9,
HB11.11). The lack of sufficient haplotype blocks across the
genome found in this study might be the reason for the
observed results.

We conclude that the utility of GS incorporating GWAS
results is noteworthy for GY when GWAS results identify
highly significant and robust genomic regions. GS predictions
were even higher when haplotypes instead of SNP were
used as fixed effects. With the upsurge in dense marker
data sets coming from different genotyping platforms leading
to more markers than observations (Winfield et al., 2016),
haplotypes-based dissection of genetic architecture seems
more useful and practical for both reliable gene discovery
and genomic predictions. Although further research is
needed, our results suggest incorporating this approach
in GS deployment.
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