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Phenotyping biotic stresses in plant-pathogen interactions studies is often hindered

by phenotypes that can hardly be discriminated by visual assessment. Particularly,

single gene mutants in virulence factors could lack visible phenotypes. Chlorophyll

fluorescence (CF) imaging is a valuable tool to monitor plant-pathogen interactions.

However, while numerous CF parameters can be measured, studies on plant-pathogen

interactions often focus on a restricted number of parameters. It could result in

limited abilities to discriminate visually similar phenotypes. In this study, we assess

the ability of the combination of multiple CF parameters to improve the discrimination

of such phenotypes. Such an approach could be of interest for screening and

discriminating the impact of bacterial virulence factors without prior knowledge. A

computation method was developed, based on the combination of multiple CF

parameters, without any parameter selection. It involves histogram Bhattacharyya

distance calculations and hierarchical clustering, with a normalization approach to

take into account the inter-leaves and intra-phenotypes heterogeneities. To assess

the efficiency of the method, two datasets were analyzed the same way. The first

dataset featured single gene mutants of a Xanthomonas strain which differed only by

their abilities to secrete bacterial virulence proteins. This dataset displayed expected

phenotypes at 6 days post-inoculation and was used as ground truth dataset to

setup the method. The efficiency of the computation method was demonstrated

by the relevant discrimination of phenotypes at 3 days post-inoculation. A second

dataset was composed of transient expression (agrotransformation) of Type 3 Effectors.

This second dataset displayed phenotypes that cannot be discriminated by visual

assessment and no prior knowledge can be made on the respective impact of

each Type 3 Effectors on leaf tissues. Using the computation method resulted in

clustering the leaf samples according to the Type 3 Effectors, thereby demonstrating
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an improvement of the discrimination of the visually similar phenotypes. The relevant

discrimination of visually similar phenotypes induced by bacterial strains differing only by

one virulence factor illustrated the importance of using a combination of CF parameters

to monitor plant-pathogen interactions. It opens a perspective for the identification of

specific signatures of biotic stresses.

Keywords: imaging analysis, chlorophyll fluorescence parameters, Bhattacharyya distance, hierarchical

clustering, biotic stress

INTRODUCTION

In recent years, plantx phenotyping has been significantly
evolving. High-throughput plant phenotyping platforms have
been developed to answer to the rapid improvement of plant
genomic technologies. Time consuming expert-based approaches

of traditional phenotyping is moving toward a technology-based

approaches providing automatic and quantitative measurements

of biotic or abiotic stresses.
Imaging analysis applied to plant phenotyping is a component

of this evolution. Measurements based on automatic image
analysis could provide higher throughput, accuracy, and
reproducibility than human visual inspections (Bock et al.,
2008). Imaging analysis can be applied in various parts of
plant phenotyping domain, such as the characterization of plant
structure at a given instant, the quantification of plant growth
over time or the monitoring of plants interactions with the
environment or with pathogens. Plant structure and growth
are now accessible with various 3D imaging techniques (Fang
et al., 2009; Jahnke et al., 2009; Dhondt et al., 2010; Alenya
et al., 2011; Zhu et al., 2011; Bellasio et al., 2012; Paproki et al.,
2012), while imaging of plant health is accessible with various
functional imaging techniques (see Li et al., 2014; Mahlein,
2016 for recent reviews). Thermal, near infrared reflectance,
hyperspectral reflectance and chlorophyll fluorescence imaging
(CF imaging) are among the most popular imaging techniques
for monitoring plant health.

CF imaging is of special interest as it can be considered
as a non-invasive and non-destructive method to efficiently
phenotype the impact of biotic (Baron et al., 2012; Rousseau et al.,
2013; De Torres Zabala et al., 2015; Zhou et al., 2015; Montero
et al., 2016; Perez-Bueno et al., 2016; Pineda et al., 2018) or
abiotic stresses (Honsdorf et al., 2014; Mishra et al., 2014; Bresson
et al., 2015; Sebela et al., 2018) on the photosystem II of plants.
Based on an active imaging technique with illumination flashes,
sequences of many images are acquired and exploited to then
evaluate CF parameters. These CF parameters are studied both
for basic research on photosynthetic processes (Genty et al., 1989,
1990; Lichtenthaler et al., 2005; Baker, 2008), or alternatively for
applied purposes, such as screening for phenotypes of resistance
to abiotic and biotic stresses. Contrary to the study of abiotic
stresses, only few CF parameters have been exploited when
studying biotic stresses (Gorbe and Calatayud, 2012). Among all
CF parameters available, Fv/Fm and NPQ are commonly used for
studying biotic stress (Baron et al., 2016; Kalaji et al., 2017). These
parameters could give an efficient pre-symptomatic measure of

the impact of several pathogen (Csefalvay et al., 2009; Pineda
et al., 2011). However, contrasts obtained may differ among the
numerous CF parameters used. Therefore, the use of only a subset
of CF parameters may limit the ability to discriminate visually
similar phenotypes (Berger et al., 2007; Pineda et al., 2008).

Bacteria belonging to the genus Xanthomonas are associated
to plants, and numerous strains are responsible for disease on
many important crops, such as rice, bean, soybean, tomato,
sugarcane, wheat, oilseed rape, as well as on model plants,
such as Arabidopsis thaliana. Even though more than 400 plant
species may be infected by strains belonging to the genus
Xanthomonas, a single strain only displays a narrow host range,
restricted to one or several plant species. Even though most
strains of Xanthomonas spp isolated from plants were described
as pathogenic, non-pathogenic strains of Xanthomonas spp have
been also been isolated and described, receiving an increasing
attention in the recent years (Cesbron et al., 2015; Essakhi et al.,
2015; Garita-Cambronero et al., 2016; Merda et al., 2016, 2017).

Among themultiple virulence factors that have been described
for Xanthomonas spp strains, the type 3 secretion system (T3SS)
encoded by the hrp gene cluster, is known to play a central
role in the interactions with plants. Indeed, the inactivation
of the T3SS usually abolishes the virulence of pathogenic
Xanthomonas spp strains on their host plants. On the other
hand, the acquisition of a T3SS by non-pathogenic bacteria may
constitute an evolutionary step toward the emergence of novel
plant pathogenic bacterial strains (Manulis and Barash, 2003).
For example, strain 7698R of Xanthomonas cannabis is non-
pathogenic on bean, its host of isolation. When inoculated on
the non-host plant Nicotiana benthamiana, strain 7698R induces
a rapid necrosis similar to the hypersensitive reaction (HR)
observed in non-host resistance. The complementation of this
non-pathogenic strain with a plasmid harboring genes encoding
a T3SS, suppressed the onset of this HR-like necrosis, and only
a mild chlorosis could be observed on inoculated tissues at
6 days post-inoculation (6 dpi) (Meline et al., 2019). Such a
suppression of a defense layer could constitute a first step toward
the emergence of novel pathogenic strains.

This secretion system enables the injection of numerous
bacterial effector proteins called Type 3 effectors (T3Es) directly
into the plant cells, that collectively suppress the plant defenses
and subvert the plant’s physiology to the benefit of the bacteria
(Li et al., 2002; Büttner, 2016; Jacques et al., 2016; Wei and
Collmer, 2018). Repertoires of T3Es vary importantly among
strains of Xanthomonas belonging to a same species, and were
reported to correlate to some extend with the host specificity of
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strains (Hajri et al., 2009, 2012). Knowledge on the functions
and cellular targets in plant cells of some single T3Es has
considerably increased over the last decade. Numerous targets
in various compartments of the plant cell were described
(for review Büttner, 2016). For example, once injected inside
the plant cells, the T3E XopAC of Xanthomonas campestris
uridylylates the cytoplasmic kinase BIK1, which blocks the
transduction pathways leading to plant immunity and promote
bacterial virulence on Arabidopsis thaliana (Feng et al., 2012;
Guy et al., 2013a,b). Another example is that of TAL effectors
of Xanthomonas spp, enter the plant nucleus, recognize and
bind specific DNA sequences and induce the expression of plant
genes (Boch et al., 2014). Plant immunity and more globally the
physiology of plant cells may also be altered by T3Es targeting
other cell organelles, such as cytoskeleton and stromules, or
chloroplasts (Büttner, 2016; Erickson et al., 2018).

However, in most cases, functions of T3Es and their targets in
plant cells still remain elusive. Importantly, mutants in single T3E
genes often hardly display any phenotype visible to the eye, which
may hinder deciphering their role in the interaction between
plants and bacteria (Mutka and Bart, 2015). Therefore, innovative
tools are needed to better phenotype the impact of single T3Es on
plant tissues.

In the present paper, we propose an approach based on CF
imaging aiming at the discrimination of the behavior of such
mutants on leaves. To this purpose, we developed a computation
method based on the combination of multiple images of
CF parameters. This approach aims at using the information
contained in all the images of CF parameters, without prior
selection nor focusing on the physiological processes involved.
As such, the approach developed in the present study is mainly
intended to setup screening methods for phenotyping closely
related biotic stresses on plants.

MATERIALS AND METHODS

Xanthomonas Mutant Strains
Mutant strains of Xanthomonaswere already described inMeline
et al. (2019). Strain 7698R is an environmental strain belonging
to the species X. cannabis isolated from bean seeds, but not
pathogenic on bean. As largely documented in Meline et al.
(2019), when inoculated onN. benthamiana, this strain induces a
necrosis of leaf tissues at 6 dpi. Strain 7698R was complemented
with the plasmid pIJ3225 that carries a 20 kb hrp cluster encoding
a major bacterial virulence determinant: the Type 3 Secretion
System and four Type 3 Secreted Proteins (Arlat et al., 1991).
On N. benthamiana at 6 dpi, the complemented strain 7698R
pIJ3225 does not induce any necrosis, the inoculated tissues only
display a chlorotic phenotype. Derivatives of pIJ3225 harboring
a Tn5 insertion that inactivates one gene in the hrp cluster
were characterized in Meline et al. (2019). These derivatives
were transformed into strain 7698R to obtain strains 7698R
pIJ3225::Tn5 (G9, G2, F2, F15, C3, or G1). After inoculation
on N. benthamiana leaves, Tn5 insertions G9 and G2 restore
the onset of the necrosis, the Tn5 insertions F2, F15, and C3
partially restore the necrosis, whereas Tn5 insertion G1 does
not alter the phenotype conferred by pIJ3225. Strain 7698R

and complemented strains 7698R pIJ3225::Tn5 were used in the
present paper for inoculation onN. benthamiana and subsequent
CF imaging at 3 dpi. The complete list of Tn5 derivatives used is
reported in Supplementary Table 1.

Cloning of Bacterial Virulence Factors
Six T3E genes (xopAF, xopL, xopG, xopV, xopT, and xopAK) of
the sequenced strain Xanthomonas citri pv. fuscans CFBP 4834
were chosen for cloning into Gateway vectors, for subsequent
transient expression in N. benthamiana. These T3E genes were
chosen as previous knowledge suggests they are involved in
various biological processes (Darrasse et al., 2013). Hence they
constituted a good set of candidates for setup of an approach
aiming at discriminating the impact of various virulence factors
on plants. The xopG and xopT genes were chosen because they
often are found in highly aggressive strains of X. citri on bean.
In the genome of the model strain X. citri pv. fuscans CFBP
4834, these genes are flanked by insertion sequences suggesting
that they may be horizontally transferred to other bacteria
(Rousseau et al., unpublished data). The xopV and xopAK genes
were chosen as they were proposed by Moreira et al. (2010) to
be involved in the specificity of symptoms caused by X. citri.
The xopL gene was described to impact stromule formation in
plant cells, and is widely distributed among sequenced model
strains of Xanthomonas. Conversely, the xopAF gene is poorly
distributed among the sequenced model strains of Xanthomonas,
and its distribution suggests this gene may be involved in
tissue specificity of Xanthomonas strains (Bogdanove et al.,
2011). Sequences of these T3Es were amplified by PCR using
adequate primers summarized in Supplementary Table 2, and
AccuPrimeTM Taq DNA Polymerase High Fidelity. Amplified
sequences were cloned in pENTR/D-TOPO vector using pENTR
Directional TOPO cloning kit (Invitrogen). Then, cloned
sequences were transferred to the pB7WG2 binary vector,
obtained fromVIB (Belgium) (Karimi et al., 2002) using Gateway
LR clonase II (Invitrogen). The nucleotide sequences of all
constructs were confirmed by sequencing.

Agrobacterium tumefaciens-Mediated
Transient Expressions
Strain EHA105 of A. tumefaciens was transformed with the
binary vector pB7WG2 containing the bacterial genes of interest
fused to gfp. The subsequent derivatives of strain EHA105
were used to prepare an inoculum (see subsection Preparation
of Inocula and Inoculation procedures) infiltrated into fully
expanded leaves to perform transient expressions of the cloned
genes in N. benthamiana. The transient expression of six
T3Es and β-glucuronidase (GUS) were performed. To control
the efficiency of the transient expression process, we revealed
the GUS activity of samples of leaf tissues inoculated with the
EHA105 pB7FWG2-gus at 24 h post-inoculation (hpi), 36 and 48
hpi (data not shown). The GUS activity of samples was revealed
using a buffer containing X-Gluc (1 mM), K3Fe(CN)6 (4 mM),
K4[Fe(CN)6]·3H2O (0.05 mM), EDTA (10 mM), Na2HPO4

(50 mM) and NaH2PO4 (50 mM) in a buffer phosphate. The
efficiency of the transient expression of each T3E gene was
controlled by observation at 24 and 48 hpi of a GFP signal
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resulting from the expression of the gfp fusion obtained by the
cloning the T3E gene of interest into pB7FWG2.

Plant Material
Nicotiana benthamiana plants were grown and inoculated
in environmentally controlled growth room under a 16 h
photoperiod and 8 h dark period at 22◦C and 80% of relative
humidity under a light intensity of 100 µE·m−2

·s−1 throughout
the whole experiment. At the optimal developmental stage (6
weeks old) the plants had at least five fully developed true leaves.

Preparation of Inocula and Inoculation
Xanthomonas mutant strains were cultured on classical media
TSA (Trypticase Soy Agar: Tryptone 17 g·L−1; peptone soja 3
g·L−1; glucose 2.5 g·L−1; NaCl 5 g·L−1; KH2PO4 5 g·L−1; agar
15 g·L−1; pH 7.2, supplemented with the adequate antibiotics)
and incubated at 28◦C. For the inoculation, bacterial suspensions
were calibrated at 108 cfu.ml−1.

A. tumefaciens was cultured into 20 mL of Luria Bertani
medium (Tryptone 10 g·L−1; NaCl 10 g·L−1; Yeast extract
5 g·L−1) in the presence of selective antibiotics (50 mg
L−1 spectinomycin and 50 mg·L−1 gentamycin), and grown
overnight in a rotary shaker at 150 rpm and 28◦C. Cells
were harvested by centrifugation and resuspended to a final
concentration of 0.3 OD600 in a solution containing 10
mM MgCl2, 10 mM MES, 10 g·L−1 sucrose, pH 5.6 and
150 µM acetosyringone and incubated at 28◦C for 3 h
before agroinfiltration.

For Xanthomonas or Agrobacterium inoculation, three fully
expanded leaves per plant were inoculated by pressing the blunt
end of a 1 ml needleless syringe to the lower side of the leaf while
supporting the leaf with a gloved finger.

Datasets
In a validation approach, two datasets were used and processed
the same way to setup and assess the computation method.

The first dataset was used as ground truth dataset to validate
the computation method. It featured 85 leaves ofN. benthamiana
at 3 dpi. Each leaf was inoculated with three controls and one
tested-strain as described in Meline et al. (2019). The three
controls were, (i) strain 7698R used as necrosis control, (ii)
strain 7698R pIJ3225 used as chlorosis control, and (iii) mock-
inoculated control used as no symptom control. The tested-
strains were strains 7698R pIJ3225::Tn5 (G9, G2, F2, F15, C3,
or G1). Each inoculated area was cropped and considered as
an independent sample. Thereby, 340 samples (85 × 4) were
generated. For each sample, 70 images of CF parameters were
obtained. The total size of this first dataset was of 23800 images.
As expected, Tn5 insertions G9 and G2 restored the onset of the
necrosis, the Tn5 insertions F2, F15, and C3 partially restored the
necrosis, whereas Tn5 insertion G1 led to chlorosis phenotype
at 6 dpi. However, at 3 dpi, all the controls and tested-strains
displayed phenotypes that could hardly be discriminated by
visual assessment.

The second dataset was used to assess the relevance of
the computation method to discriminate leaf tissues impacted
by biotic stresses without any prior knowledge. It featured

108 leaves of N. benthamiana each inoculated with three
controls and one tested-strain. The three controls were, (i)
A. tumefaciens strain EHA105 not expressing any exogenous
protein, (ii) transient expression of β-glucuronidase as non-
deleterious exogenous protein control, and (iii) mock-inoculated
control used as no symptom control. The tested-strains were A.
tumefaciens EHA105 transiently expressing one of the X. citri
pv. fuscans virulence genes (T3Es): xopL: L, xopT: T, xopV : V,
xopAK: AK, xopAF: AF, xopG: G. Each inoculated area was
cropped and considered as an independent sample. Thereby,
432 samples (108 × 4) were generated. For each sample, 70
images of CF parameters were obtained. The total size of this
second dataset was of 30240 images. This second dataset is
of interest as phenotypes cannot be discriminated by visual
assessment: no necrosis nor chlorosis can be observed either at
3 or 6 dpi. Therefore, no prior knowledge can be made on the
respective impact of the transient expression of each T3Es on
leaf tissues.

Chlorophyll Fluorescence Imaging System
Acquisition of fluorescence images is performed with a PSI Open
FluorCam FC 800-O. The system sensor is a CCD camera with
a pixel resolution of 512 by 512 and a 12-bit dynamic. The
system includes 4 LED panels divided in 2 pairs. One pair
provides an orange actinic light with a wavelength around 618
nm, with an intensity up to 400 µmol·m−2

·s−1. The other pair
provides a saturating pulse in blue wavelength, typically 455 nm,
with an intensity up to 3, 000 µmol·m−2

·s−1. The acquisition
protocol is a quenching analysis protocol (Kolber et al., 1998),
producing a raw file containing 70 images of CF parameters.
A schematic description of the quenching protocol is proposed
in Figure S1. To measure the parameter F0, a modulated light
of 0.1 µmol·m−2

·s−1 is used. Then orange actinic light with
intensities of 20% of the 400 µmol·m−2

·s−1 is used during
the light-adapted period of 60 s. The protocol also provides 6
pulses of 0.8 s duration of blue saturating light with an intensity
of 50% of the 3,000 µmol·m−2

·s−1: 5 pulses during the light-
adapted period and 1 pulse during the dark-relaxation period.
The 50% of the saturating light pulse was considered as a good
intensity as it provides a ratio (Fm − F0)/Fm of 0.82 measured on
non-inoculated area, and being closed to optimal value of 0.83
(Bjorkman and Demmig, 1987). This was measured after a dark
adaptation of 30 min. The whole duration of the illumination
protocol is about 95.8 s. For evaluating the performance of our
computation method on datasets obtained with such protocol,
the 70 images given in gray-level intensity are processed in batch
to provide histograms of pixels that statistically represent regions
of interest, i.e., the four areas of infection on the leaf. Distances
between the histograms of each leaf are then calculated according
to Bhattacharyya distance.

Bhattacharyya Distance
The Bhattacharyya distance measures the similarity of two
discrete probability distributions or histograms (Bhattacharyya,
1943). This measure, regularly used in classification problems
in the field of computer vision (Kailath, 1943), determines
the relative closeness of two histograms being considered. The
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Bhattacharrya distance is known to be particularly useful to give
a contrast scalar directly connected to detection performance in
noisy images (Goudail et al., 2004). The Bhattacharyya distance
Bd is defined as:

Bd = −ln
∑ √

(hAhB)

where hA and hB are the normalized histograms for two different
areas A and B.

3D Euclidean Distance
According to Deza and Deza (2009), the distance between two
points (p,q) in a three-dimensional Euclidean space (x, y, z) is
defined as

Ed =

√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2

In a three dimensional Euclidean space, we also defined
intra-modality and inter-modality distances. A modality is
composed of several images of the same kind of inoculation.
For each modality, the intra-modality distance is the mean
Euclidean distance between each image and the centroid of
the modality, constituting the dispersion of the modality. The
inter-modality distance is the Euclidean distance between
the centroid of each modality. Such distances were useful
to evaluate contribution of the addition of CF parameters
for the clustering ability. The addition of parameters was
performed using a sequential forward sequence method
(SFS) (Agrawal and Srikant, 1995).

Clustering Based on Dendrogram
We used hierarchical clustering algorithm based on a Ward
linkage method (Ward, 1963). This method is the only one
among the agglomerative clustering methods that is based on
a classical sum of squares criterion, producing groups that
minimize within group dispersion at eachmerging step (Murtagh
and Legendre, 2014). In R, the Ward.D2 algorithm of the
function hclust is the one attributed to Ward. This function
requires Euclidean distances as input dissimilarities. Several
studies point out that this method outperforms other hierarchical
clustering methods (Blashfield, 1976; Hands and Everitt, 1987).
In our case this method allows to cluster modalities with a
better accuracy.

To evaluate the clustering abilities of dendrograms, we
computed the sensitivity and the specificity of the clustering.
According to Parikh et al. (2008), the sensitivity and the
specificity can be expressed as:

sensitivity =
true positive

true positive + false negative

specificity =
true negative

true negative + false positive

where, for the sensitivity, a true positive represented an image
of one modality (for instance necrosis control) classified in
the correct corresponding cluster (necrosis phenotype cluster)
and false negative represented an image of the same modality

(necrosis control) classified in the other uncorrect clusters
(chlorosis and mock-inoculated clusters). For the specificity,
true negative represented an image of the two other modalities
(chlorosis and mock-inoculated) classified in one of these two
corresponding correct cluster (chlorosis phenotype and mock-
inoculated phenotype cluster) and false positive represented
an images of the two other modalities (chlorosis and mock-
inoculated controls) classified in a uncorrect cluster (necrosis
phenotype cluster).

RESULTS

Distance Calculation Between
Tested-Strain and Controls for Each Image
of CF Parameter
In this study, phenotyping of interactions betweenN. bethamiana
leaves and Xanthomonas strains was confronted to an inter-
leaf heterogeneity. As illustrated in Figure 1, the intensity of
the necrosis development, after inoculation with the same
strain, could vary between leaves. To circumvent this inter-
leaves heterogeneity, for both dataset, each tested modality was
inoculated with their respective controls on each leaf as illustrated
in Figure 1. In a normalization approach, each tested-strain was
then characterized according to its distance with its respective
controls on each leaf. This image processing procedure occurring
in 4 steps was described for the computation of the first dataset
there after.

Firstly, as illustrated in Figures 2A,B, from a gray-level
intensity image, the normalized histograms of the cropped four
areas were extracted (Figures 2C,D). Secondly, for each image of
CF parameter, Bhattacharyya distances were calculated between
the histogram of the tested-strain and each histogram of the
three controls. As shown in Figure 2E, the three Bhattacharrya
distances defined the axes of a three-dimensional plot, where each
tested-strain modality can be represented. This representation
had the advantage of taking into account the inter-leaves
heterogeneity as each tested-strain was compared to its three
controls on each leaf. Thirdly, our CF imaging protocol generated
70 images of CF parameters for each tested-strain. Therefore,
each tested-strain can be characterized by an array of 70 three-
dimensional Euclidean distances. Finally, tested-strains were
then clustered according to their array of 70 three-dimensional
Euclidean distances by hierarchical ascendant classification based
on Ward’s agglomeration method and represented with a
dendrogram (Figure 3).

The Discrimination of the Contrasted
Phenotypes of Controls at 3 Days
Post-inoculation Validated the
Computation Method
To validate the computation method, the relevance of the
70 CF images combination method was evaluated through
the discrimination efficiency of the three controls which
induced contrasted phenotypes at 3 dpi. The first dataset
was computed according to the method described in the
previous paragraph. On the dendrogram of Figure 3, the
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FIGURE 1 | Visual observation of the inter-leaf heterogeneity at 3 dpi. (A–C) Were representative of the diversity of results obtained with the inoculations of the same

strains on three different leaves. 1. necrosis: strain 7698R. 2. chlorosis: strain 7698R pIJ3225. 3. tested-strain: strain G9. 4. mock-inoculated.

FIGURE 2 | Method for the calculation of the distance between two different tested strains. (A,B) Illustrations of gray-level intensity images for two different leaves

corresponding to Fm parameter. Gray-level intensity was coded between 0 and 1. The four areas corresponded to necrosis, chlorosis, tested strain, and

mock-inoculated, respectively. (C,D) Extracted normalized histograms from areas 1 to 4. From these histograms, three Bhattacharyya distances (Bd3−1, Bd3−2,

Bd3−4) were computed between tested strains and their three respective controls. Plant tissues could also display a heterogeneity intra the inoculated area.

Bhattacharyya distances allowed to take into account each pixel value to consider this heterogeneity across each inoculated area. These three distances defined axes

for a three-dimensional space where tested strains could be represented and compared to each others using Euclidean distance calculation. (E) Illustrated the

three-dimensional representation and the three-dimensional Euclidean distance calculation between two tested strains (yellow and violet spots) for one image.

three controls were clearly grouped in three distinct clusters
referred to as necrosis phenotype, chlorosis phenotype and
no symptom phenotype clusters. A first level of analysis
revealed an efficient clustering of mock-inoculated control.
Practically, all samples (except two samples) of this control
were grouped into a single cluster (No symptom phenotype
cluster). All the other clusters of the dendrogram are clearly

discriminated from this latter cluster, which highlighted the
impact of inoculation. At a second level of analysis, all samples
of necrosis control and all samples of chlorosis control were
respectively grouped into distinct clusters (Necrosis phenotype
cluster and Chlorosis phenotype cluster, respectively). Results
obtained using this method were in complete accordance
with the observed phenotypes at 3 dpi, and with the
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FIGURE 3 | Clustering of samples of the first dataset according to the combination of the 70 images of CF parameters. Dendrogram based on three-dimensional

Euclidean distance of 70 images combination and Ward agglomeration method. Black horizontal bars corresponded to the different levels of analysis of the

dendrogram. Four clusters corresponding to the four phenotypes visually observed (necrosis, intermediate, chlorosis, and no symptom phenotypes) were obtained.

Necrosis (pink) corresponds to leaf tissues inoculated with strain 7698R. Chlorosis (green) corresponds to leaf tissues inoculated with strain 7698R pIJ3225.

Mock-inoculated (blue) corresponds to leaf tissues inoculated with water. Tested-strains (black) correspond to leaf tissues inoculated with strains G9, G2, F2, F15, C3,

or G1.

expected phenotypes at 6 dpi for the controls used as ground
truth (Meline et al., 2019).

To better assess the relevance of the approach, we compared
the sensitivity and the specificity of the clustering using
70 images of CF parameters, or using a single parameter
(Table 1). To perform clustering using single one, we chose
Fv/Fm or NPQ, as these parameters are commonly used in CF
phenotyping (Baron et al., 2016; Kalaji et al., 2017). Related to
Fv/Fm and NPQ, two supplementary dendrograms were then
built and shown in Figure S2. Using the combination of 70
images of parameters, the mock-inoculated control have been
efficiently discriminated from other controls (sensitivity almost
of 0.98 and specificity of 1). When using clustering based
only on single parameter, contrasting results were obtained
according to which parameter was used. Using the sole Fv/Fm
parameter, mock-inoculated control was also well-discriminated
from other controls (sensitivity of 0.99 and a specificity of
1). Inversely, the sole NPQ parameter did not allow such an
efficient discrimination as only 60% of the mock-inoculated
control images were correctly classified into the no symptom
phenotype cluster (sensitivity of 0.6). Moreover, by observing
the associated dendrogram (dendrogram C. in Figure S2), we
noted that the remaining 40% images of this control were
grouped into a cluster where all the necrosis control images
were also grouped. The necrosis and chlorosis controls have been
efficiently discriminated using the combination of 70 images of
CF parameters (sensitivities of 1 and specificities of 1 and 0.99,
respectively). Using the sole Fv/Fm parameter, the sensitivities
of discrimination between necrosis and chlorosis phenotypes
decreased down to 0.68 and 0.56, respectively, although its
specificities remained high as 1 and 0.99, respectively. Such low
sensitivities values could be explained with some mild necrosis
or chlorosis phenotypes that were grouped in the intermediate
phenotype cluster (dendrogram B. in Figure S2). Such results

TABLE 1 | Sensitivity (sens.) and specificity (spec.) of the clustering for the

controls according to CF parameters for the two datasets.

First dataset

Mock-inoc. Chlorosis Necrosis

Parameter Sens. Spec. Sens. Spec. Sens. Spec.

Combined 70 0.98 1 1 0.99 1 1

Fv/Fm 0.99 1 0.56 0.99 0.68 1

NPQ 0.60 1 0.75 1 1 0.57

Second dataset

Mock-inoc. GUS EHA105

Parameter Sens. Spec. Sens. Spec. Sens. Spec.

Combined 70 1 0.87 1 0.65 0.87 0.67

In the first dataset, controls are mock-inoculated, chlorosis and necrosis. In the second

dataset, controls are mock-inoculated, GUS and EHA105.

highlighted the interest of using a combination of 70 images of CF
parameters to improve the discrimination of the three controls.

Assessment of the Contribution of Each
Image of CF Parameters in the
Combination
According to the results exposed in last section, the combined 70
images of CF parameters provided a better clustering ability of
the three controls than only one classical parameter, e.g., Fv/Fm
or NPQ in this study. To further confirm the relevance of the
combination of images of CF parameters, it was therefore suitable
to evaluate how the clustering ability is impacted according to
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FIGURE 4 | Evolution of the mean inter-modality distance (black spot) and the

mean intra-modality distance (black line) between the three controls according

to the number of images of CF parameters combined from 1 to 70.

the number of images of CF parameters which are combined.
For these purpose, images were sequentially combined from 1
to 70 using sequential forward sequence method (SFS) based
on the maximal mean inter-modality distance between the three
controls. For each combination, we measured the evolution of
the inter-modality and intra-modality distance between the three
controls. For our application, the inter-modality distance can
be considered as the useful information to discriminate the
three controls and the intra modality distance represented the
dispersion of all the images of one modality and can therefore
be considered like degrading information as the dispersion
increased. These mean distances are plotted in Figure 4.

The mean inter-modality distance increased quickly with
the combination of images between 1 and 40. It then slowly
reached a saturation level from 40 to 70. At the same time,
the mean intra-modality distance remained at least five times
lower than inter-modality distance values. As a consequence,
while the combination of a large number of images increased the
mean inter-modality distances, it was not a source of degrading
information regarding the positive ratio between inter and intra-
modality distance.

Application of the Computation Method to
Successfully Discriminate the
Tested-Strains From the First Dataset
At 3 dpi, among the six tested-strains of the first dataset,
only two different phenotypes were visually annotated as
shown in Figure 5. Tested-strains G9 and G2 were identified
as intermediate phenotypes between necrosis and chlorosis
phenotypes whereas the phenotypes of the other tested-strains
(F2, F15, C3, G1) were identified as a chlorosis phenotype.

To assess the relevance of the computation method, we
analyzed the clustering of these tested-strains (Figure 3). Samples
from the tested-strains G9 and G2 were mainly grouped into
a fourth cluster distinct from the three previously described
clusters. This fourth cluster corresponded to samples displaying

intermediate phenotypes. Such results were expected, as G9 and
G2 corresponded to mutant strains for which Tn5 insertions
fully inactivated the secretion system encoded on pIJ3225. In
contrast Tn5 insertions of F2, F15, C3, G1 tested-strains only
inactivated one secreted protein that transit through the secretion
system encoded on pIJ3225. For the tested-strains (F2, F15, C3,
G1), the inoculation resulted in phenotypes visually identified as
chlorosis. Regarding these latter strains, the clustering ability of
the method showed more differences than the visual observation.
Tested-strains C3 and G1 were grouped almost exclusively
into the chlorosis cluster. Whereas, F15 was grouped into
intermediate and chlorosis clusters considering almost equal
proportions, and F2 was mainly grouped into chlorosis cluster
but with a small proportion also grouped in necrosis cluster.
The clustering of these single gene mutants of Xanthomonas
were in accordance with the expected impact of each inactivated
gene in the ability of the plasmid pIJ3225 to suppress the
necrosis development at 6 dpi, as described in Meline et al.
(2019). Therefore, the combination of images of CF parameters
allowed at 3 dpi a predictive discrimination between samples
that could previously be discriminated only at 6 dpi. Proportions
(in percentage) of samples of each tested-strain grouped into
necrosis, chlorosis, intermediate or no symptom phenotype
clusters were summarized in Table 2.

Application of the Computation Method on
a Second Dataset to Discriminate
Phenotypes for Which No Prior Knowledge
Is Available
To test the interest of the computation method on situations
that cannot be discriminated by visual assessment and for
which no prior knowledge is available, we used a second
dataset composed of bacterial virulence factors (T3Es) transiently
expressed on leaves (xopAF: AF, xopL: L, xopG: G, xopV :
V, xopT: T or xopAK: AK). As shown in Figure 6, 3 dpi,
no difference was observed visually between mock-inoculated
control and the transient expressions of β-glucuronidase
protein (GUS) or five T3Es among the six tested. Only
transient expression of xopV could in rare case induce a
mild chlorosis. The computation method was applied to the
second dataset (Figure 7) and proportions (in percentage) of
images of each tested-strain grouped into four clusters were
summarized in Table 2.

At a first level of analysis, a relevant clustering of mock-
inoculated control vs. leaf tissues inoculated with bacterial strains
was obtained. All samples corresponding to mock-inoculated
control were grouped in cluster 1 with a sensitivity equal
to 1. Few samples corresponding to other modalities were
misclustered, resulting in a specificity of 0.87 in cluster 1.
Here again, plant tissues inoculated with bacterial strains could
be discriminated from mock-inoculated strains in the absence
of any phenotype visible to the eye (Figure 6). At a second
level of analysis, the transient expressions of the GUS reporter
protein could be discriminated from the transient expression
of T3Es. Indeed, all samples of leaf tissues expressing GUS
were clustered in cluster 2.1 whereas most samples of leaf
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FIGURE 5 | Visual observation of controls and tested-strains of the first data set at 3 dpi. Two phenotypes for the tested-strains (strains G9, G2, F2, F15, C3, G1)

were identified as intermediate and chlorosis phenotypes.

TABLE 2 | Proportions of clustering of the tested strains for the two datasets, based on the combination of the 70 images of CF parameters.

First dataset

Tested strains No symptom phenotype

cluster (%)

Chlorosis phenotype

cluster (%)

Intermediate phenotype cluster (%) Necrosis phenotype cluster (%)

G9 0 17 74 9

G2 0 11 78 11

F2 0 73 18 9

F15 0 60 40 0

C3 0 90 10 0

G1 0 100 0 0

Second dataset

Tested strains Cluster 1 (%) Cluster 2.1 (%) Cluster 2.2.1 (%) Cluster 2.2.2 (%)

AF 0 11 39 50

L 0 0 11 89

G 6 11 44 39

V 11 11 17 61

T 0 6 0 94

AK 22 0 39 39

Proportions are expressed in percentage. In the first dataset, tested strains are G9, G2, F2, F15, C3, G1. In the second dataset, tested strains are transient expression of xopAF: AF,

xopL: L, xopG: G, xopV: V, xopT: T, xopAK: AK.

FIGURE 6 | Visual observation of controls and tested-strains of the second dataset at 3 dpi. Mock-inoculated (Mock), A. tumefaciens strain no protein expressed

(EHA105), the transient expression of β-glucuronidase protein (GUS) were considered as the three controls on each leaf. The six transient expression of T3E genes

were considered as the tested-strains (transient expression of xopAF: AF, xopL: L, xopG: G, xopV: V, xopT: T, xopAK: AK, respectively). Constructs for transient

expression are described in Supplementary Table 1.

tissues expressing T3Es were clustered in cluster 2.2. At this
level, the method allowed to discriminate the impact on leaf
tissues of presumably deleterious bacterial virulence proteins
(T3Es) vs. non-deleterious exogenous proteins (GUS). The
sensitivity of GUS clustering was of 1. Its specificity decreased
down to 0.65 because of the presumably deleterious effect on
leaf tissues of the inoculation with A. tumefaciens (EHA105).

The sensitivity of EHA105 clustering in cluster 2.2 was of
0.87 with a specificity 0.67. The clustering ability in terms
of sensitivity and specificity for these three controls (mock-
inoculated, GUS, and EHA105) is summarized in Table 1. When
further focusing, cluster 2.2.2 grouped 94, 88, and 61% images of
leaf tissues inoculated with xopT, xopL, and xopV, respectively.
Moreover, the computation method discriminated the transient
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FIGURE 7 | Clustering of samples of the second dataset according to the combination of the 70 images of CF parameters. Black horizontal bars corresponded to the

different levels of analysis of the dendrogram. The lower part of the figure presents a focus on the cluster 2.2.2 regrouping the majority of the transient expression of

T3Es considered as tested-strains.

expression of xopL vs. the transient expression of xopT and xopV
(Figure 7, cluster 2.2.2).

DISCUSSION

CF imaging is a powerful technique to study quantitatively plant-
pathogen interactions (Perez-Bueno et al., 2016; Pineda et al.,
2018) and has been used to highlight potential physiological
mechanisms underlying disease symptoms (De Torres Zabala
et al., 2015; Zhou et al., 2015). However, some CF parameters
are still very contentious (Kalaji et al., 2014) and caution must be
exercised when attempting to interpret their significance (Baker,
2008; Murchie and Lawson, 2013). Moreover, careful setups
of illumination protocols have to be considered for the
assessment of physiological studies. In the context of our
study, we developed a computational method to improve
the discrimination between close phenotypes based on the
combination of images of multiple CF parameters. In the
present study, these multiple CF parameters are generated
from non-optimized illumination protocols which preclude
any physiological interpretation. However, this approach
would be fully compatible with optimized illumination
protocols. Such an optimization of illumination protocols
would probably result in improved performances of the
discrimination. The use of optimized illumination protocols in
combination with the method described in the present paper
may also allow the discrimination of distinct physiological
status of plants. However, this latter is beyond the scope of
this paper.

Although a large variety of CF parameters is available, only
a subset of parameters have been used in the literature (Kalaji
et al., 2014). Parameters empirically selected do not provide
necessarily the best contrast between studied phenotypes. For
instance, Fv/Fm parameter is a relatively stable ratio as impacts
of stress could be detected rather late (Lichtenthaler et al., 2005).
NPQ parameter could be one of the most appropriate one
to distinguish plant-pathogen interactions (Rodriguez-Moreno
et al., 2008; Perez-Bueno et al., 2015). But it has also been shown
to be an unstable temporal parameter (Bonfig et al., 2006; De
Torres Zabala et al., 2015). Inversely to subjective selections of
these parameters, the depicted computation method provided
an objective method to exploit all the information from all
the available images of CF parameters. However, although the
present paper presents a computation method to gather all the
information provided by multiple images of CF parameters, the
illumination protocol remains to be optimized to provide more
physiologically relevant information.

It had been considered that CF imaging and thermography
techniques could have a lack of potential to identify specific
diseases in contrary to RGB and hyperspectral imaging
techniques (Martinelli et al., 2015; Mahlein, 2016). Indeed, taken
individually, Fv/Fm parameter could be impacted either by any
abiotic or biotic stress factor like water deficit (Bresson et al.,
2015) or bacterial disease development (Perez-Bueno et al.,
2016). However, it has been shown that the inoculation of an
avirulent Pseudomonas syringae pv. glycinea on soybean leaves
was associated with a decrease in Fv/Fm and an increase in
NPQ parameters (Zou et al., 2005) whereas an inoculation of
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an avirulent Pseudomonas syringae pv. tomato on arabidopsis
thaliana was associated with a decrease in both Fv/Fm and NPQ
parameters (Bonfig et al., 2006). Thereby, combination of several
CF parameters could constitute a specific signature of visually
similar stress, as reviewed in Baron et al. (2012).

During infections, plant-pathogen interactions could have
effects on several mechanisms of the plant. Regulation of stomatal
aperture could impact temperature dynamic which could be
study using thermography imaging (Sankaran et al., 2013; Maes
et al., 2014). Production of phenolic compounds involved in
plant defense could be measured with blue green fluorescence
(BGF) which can be study using Multi Color Fluorescence
Imaging (MCFI) (Perez-Bueno et al., 2015; Montero et al.,
2016; Ortiz-Bustos et al., 2017). CF imaging could measure
performance of the photosystem II which could be altered by the
development of a pathogen (Rousseau et al., 2015). Using several
imaging techniques in parallel could improve the performance of
detection and allowed pre-symptomatic identification of a stress.
It could also be used to improve the discrimination abilities
to identify disease signatures for a specific pathogen (Mahlein
et al., 2012; Baron et al., 2016). The method presented in
this study could be generically applied on a combination of
multi-modal images.

Adding a temporal monitoring may improve the phenotyping
for the characterization of the plant-pathogen interactions.
Indeed, monitoring the temporal dynamic revealed useful
to discriminate temporal spectral signatures of three foliar
pathogens of barley leaves (Wahabzada et al., 2015). As well,
Berger et al. (2007) showed that infections by virulent and
avirulent strains of Pseudomonas syringae result in distinct
temporal dynamics of CF parameters, although the same
CF parameters were involved. For example, the response
to Pseudomonas syringae pv. tomato DC3000 could be
discriminated from the response to its mutant inactivated
in the type 3 secretion system by a transient increase of NPQ
parameter between 6 and 12 hpi (De Torres Zabala et al., 2015).
Furthermore, spatio-temporal phenotyping of the response
to virulent and avirulent strains of Pseudomonas syringae
provided non-redundant information (Perez-Bueno et al., 2015).
Therefore, combining our computation method with a temporal
monitoring could improve significantly the discrimination of
biotic stresses on leaves.

The aim of our paper is essentially to present and discuss
a computation method combining for each sample 70 images
of CF parameters, without any selection, and computing a
normalization in order to take into account the inter-leaves and
intra-phenotypes heterogeneities. We show its implementation
and its usability to provide significant results, in the study-case
of the discrimination of visually similar phenotypes induced
by bacterial virulence factors. We showed our method to be
useful for phenotyping of the impact of single T3E on plant
tissues following transient expression. Any T3E could be tested
this way and our approach could reveal of interest as well for
phenotyping the impact on plant tissues of T3Es of other plant
pathogenic bacteria, such as Pseudomonas syringae or Ralstonia
solanacearum. The genericity of the present computationmethod
also resides in the possibility to be applied systematically to any

dataset where controls can be defined. In that way, controls can
be defined within each leaf (as described in the present paper)
or within each experiment if it is not possible to apply different
stresses to the same leaf. Furthermore, the use of CF imaging
for the phenotyping is widely documented for the study of both
biotic (Chaerle et al., 2004) and abiotic stresses (Yusuf et al.,
2010).

Although we showed in this study that the combination
of a large number of CF parameters was not degrading
information, we could not rule out that some parameters
could carry redundant information. Moreover, it had been
demonstrated that in some case, the combination of eleven or
less CF parameters involved the most important fluorescence
signatures and could be sufficient to classify tissues inoculated
with different strains (Mishra et al., 2014; Cen et al., 2017). It
could be interesting to process the datasets using selective and
reductive methods (as decision tree for instance) to select and
identify parameters which could discriminate tissues inoculated
with different strains and to reduce inherent redundancy and
overfeeding. However, we could consider that the presentmethod
remained an efficient alternative to such learning methods which
could require large annotated datasets that can be tough to
obtained in plant phenotyping domain. In that direction, further
studies aiming at selecting the most informative CF parameters
in each situation may further increase the discriminative power
of the method described in the present paper. Indeed different
biological situations may impact differentially the various CF
parameters, therefore the most informative CF parameters may
differ among the biological situations. The selection of the most
informative CF parameters in each biological situation would
thus provide a first step toward specific signatures of particular
stresses. This constitutes the scope of further studies in order to
complete and improve the present method.

In plant phenotyping, heterogeneity linked to each plant
constitutes an important and widespread limitation. In this
paper, the computation method based on multiple Bhattacharyya
distance calculation between tested-strain and controls on each
leaf allowed to circumvent the inter-leaves heterogeneity and to
take into account the heterogeneity of each phenotype. Plant-
pathogen interactions studies often face phenotypes that could
be hardly discriminated by visual assessment. The computation
method based on the combination of images of multiple CF
parameters provided an efficient discrimination of visually
similar phenotypes which differed only by one protein secretion
or protein expression. The results obtained in the present paper
support the idea that combination of images of CF parameters
improve the discrimination between distinct biotic stresses
compared to single CF approach. Furthermore, the combination
of several imaging techniques using this computation method
could constitute an advance in the identification of specific
signature of these biotic stresses.
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