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AtNHR2A (Arabidopsis thaliana nonhost resistance 2A) and AtNHR2B (Arabidopsis
thaliana nonhost resistance 2B) are two proteins that participate in nonhost resistance,
a broad-spectrum mechanism of plant immunity that protects plants against the
majority of potential pathogens. AtNHR2A and AtNHR2B are localized to the cytoplasm,
chloroplasts, and other subcellular compartments of unknown identity. The multiple
localizations of AtNHR2A and AtNHR2B suggest that these two proteins are highly
dynamic and versatile, likely participating in multiple biological processes. In spite of their
importance, the specific functions of AtNHR2A and AtNHR2B have not been elucidated.
Thus, to aid in the functional characterization of these two proteins and identify the
biological processes in which these proteins operate, we used immunoprecipitation
coupled with mass spectrometry (IP-MS) to identify proteins interacting with AtNHR2A
and AtNHR2B and to generate their interactome network. Further validation of three
of the identified proteins provided new insights into specific pathways and processes
related to plant immunity where AtNHR2A and AtNHR2B participate. Moreover, the
comprehensive analysis of the AtNHR2A- and AtNHR2B-interacting proteins using
published empirical information revealed that the functions of AtNHR2A and AtNHR2B
are not limited to plant immunity but encompass other biological processes.

Keywords: nonhost resistance, co-immunoprecipitation, mass spectrometry, protein–protein interactions,
interactome network

INTRODUCTION

Plant-pathogen interactions are determined by the genetic characteristics of the biological partners
that participate in the interaction: a specific plant species, and a specific pathogen species or its
biological variants. Depending on the combination of plant and pathogen, plants are classified as
hosts and nonhosts. A host plant is the one that due to its genetic characteristics provides a suitable
environment for pathogen growth, and as a result, succumbs to infections by such pathogen. In
contrast, a nonhost plant is one that does not provide a suitable environment for pathogen growth
and, consequently, is resistant to pathogen infections. This species-specific and broad-spectrum
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mechanism of resistance against pathogens is called nonhost
resistance (Heath, 2000). Nonhost resistance is a complex process
that comprises preformed and inducible defenses, as well as
the participation of hundreds of genes, many of which remain
to be identified and characterized (Senthil-Kumar and Mysore,
2013). Identifying all the components of nonhost resistance
and understanding how it operates is of paramount importance
toward generating crops with broad resistance to microbial
diseases (Lee et al., 2016).

We previously identified AtNHR2A (Arabidopsis thaliana
nonhost resistant protein 2A) and AtNHR2B (Arabidopsis
thaliana nonhost resistance 2B) as two proteins that participate
in nonhost resistance (Singh et al., 2018). We showed that these
proteins are synthesized in response to infection by bacterial
pathogens and contribute to the strengthening of the plant cell
wall through the deposition of the ß- 1,3-glucan polymer, callose
(Singh et al., 2018). AtNHR2A and AtNHR2B fusions to the green
fluorescent protein (GFP) revealed that both proteins localized
predominantly to cytoplasm, chloroplasts, and other subcellular
components of unknown identity (Singh et al., 2018). Because
the detailed functions of AtNHR2A and AtNHR2B are still
unknown, the main objective of this work is to gain insight into
their function by investigating their respective protein–protein
interaction network (interactome). Investigating protein–protein
interactions are powerful tools to gain insight into the function of
proteins of interest given that most biological processes occur by
the formation of protein complexes (Struk et al., 2018).

Since AtNHR2A and AtNHR2B are not expressed during
development but induced upon exposure to pathogens or
pathogen-derived elicitors (Singh et al., 2018), unraveling their
respective interactomes necessitates the use of in vivo approaches
that capture the appropriate biological context of where and
when these proteins are actually present. Those approaches
have mostly relied on mass spectrometry (MS), in particular
affinity purification (AP) coupled with mass spectrometry (AP-
MS) (Gingras et al., 2007). In an AP-MS approach, the AP
step involves the purification of the protein of interest (bait)
by enrichment with a ligand coupled to a solid support. The
most frequently used ligands are antibodies that either directly
recognize the bait or recognize an epitope tag fused to such bait.
Enrichment of the bait by antibodies (immunoprecipitation), co-
immunoprecipitates the interacting partners (preys) (Dunham
et al., 2012). The co-immunoprecipitated samples are then
proteolytically digested, and the resulting peptides are further
identified by MS, hence IP-MS (Wendrich et al., 2017; Junkova
et al., 2018; Zhang et al., 2019).

Here, we used IP-MS as a tool to screen for proteins that
specifically interact with AtNHR2A and AtNHR2B in the
biological context when AtNHR2A and AtNHR2B are optimally
expressed. IP-MS of AtNHR2A-GFP and AtNHR2B-GFP
revealed that AtNHR2A- and AtNHR2B-interacting proteins
form complex networks spanning distinct biological processes
and occurring in distinct cellular compartments. Intriguingly,
in spite of the 65% amino acid sequence identity between
AtNHR2A and AtNHR2B, most of the interacting proteins
interacted with either AtNHR2A or AtNHR2B and only a few
interacted with both proteins. The distinct interactomes of

AtNHR2A and AtNHR2B highlight unique functions for each
protein, and also supports our previous hypothesis that both
proteins act together during plant immunity (Singh et al., 2018).
Interestingly, the data revealed that in addition to interacting
with proteins that participate in plant immunity, AtNHR2A and
AtNHR2B also interact with proteins not implicated in plant
immunity, suggesting that AtNHR2A and AtNHR2B integrate
plant immunity with other biological processes.

MATERIALS AND METHODS

Bacterial Strains
Pseudomonas syringae pathovar tabaci was cultured in King’s B
(KB) medium at 30◦C supplemented with rifampicin (25 µg/mL).
Escherichia coli (E. coli) strains DH5α and Rosetta were cultured
in Luria-Bertani (LB) medium at 37◦C supplemented with
appropriate antibiotics. Agrobacterium tumefaciens was cultured
at 28◦C in LB medium supplemented with rifampicin (25 µg/mL)
and kanamycin (50 µg/mL).

Plant Material and Growth Conditions
Arabidopsis complementation lines expressing AtNHR2A-GFP
and AtNHR2B-GFP in their respective mutant backgrounds
(Singh et al., 2018) and a line expressing 35Spro:GFP were used
for co-immunoprecipitation experiments. Seeds were surface-
sterilized, plated on Murashige and Skoog (MS) media, and
grown for 4 weeks at 21◦C in a growth chamber with 8/16 h
light/dark cycle.

N. benthamiana plants used for transient expression were
grown in a growth chamber under 8/16 h light/dark cycle at 25◦C.

Protein Extraction From Arabidopsis
thaliana
Four-week-old complementation lines expressing AtNHR2A-
GFP and AtNHR2B-GFP in the Atnhr2a and Atnhr2b mutant
backgrounds, respectively (Singh et al., 2018), and one line
expressing GFP were flood-inoculated (Ishiga et al., 2011)
with P. syringae pv. tabaci at 1 × 106 CFU/mL to induce
expression of AtNHR2A-GFP and AtNHR2B-GFP. Inoculated
leaves were collected at 6 hpi and flash frozen in liquid nitrogen.
Approximately 1 g of tissue (from 20 plants/genotype/treatment)
was manually ground and homogenized in 6 mL of Co-IP
extraction buffer [100 mM Tris-HCl, pH 7.5, 150 mM NaCl,
1 mM EDTA, 10 mM MgCl2, 10% Glycerol, 0.2% Nonidet
P-40, 1 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM
dithiothreitol (DTT), and 1X Proteinase inhibitor cocktail (Sigma
Aldrich, St. Louis, MO, United States)]. Extracts were incubated
in ice for 30 min and centrifuged twice at 13,000 rpm for
30 min at 4◦C. Clear supernatants were transferred to new
pre-chilled 50-mL falcon tubes and total protein concentrations
were measured using Bradford Assay (BioRad, Hercules, CA,
United States). Protein expression was confirmed by Western
blot using anti-GFP-HRP (1:1000 dilution; Miltenyi Biotec,
Auburn, CA, United States) and detected by luminol solution
(ImmunoCruz, SantaCruz Biotechnology Inc., Dallas, TX,
United States) (Supplementary Figure S1A).
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Co-immunoprecipitation (Co-IP)
Five milligrams of total protein extracts (in 5 ml) were mixed
with 200 µl of GFP-Trap A beads (ChromoTek, Germany)
and incubated overnight at 4◦C with end to end rocking. After
incubation, beads were washed once with TEN buffer (10 mM
Tris-HCl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA) followed
by two washes with higher stringency TEN buffer (10 mM
Tris-HCl, pH 7.5, 500 mM NaCl, 0.5 mM EDTA). Proteins
bound to the beads were resuspended in 2 ml of TEN buffer
(10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA).
We conducted two independent co-immunoprecipitation
experiments for AtNHR2A (AtNHR2A interactors 1st screen,
AtNHR2A interactors 2nd screen) (Supplementary Table S1),
and two independent co-immunoprecipitation experiments
for AtNHR2B (AtNHR2B interactors 1st screen, AtNHR2B
interactors 2nd screen) (Supplementary Table S2). For each
co-immunoprecipitation experiment that included AtNHR2A-
GFP, a parallel co-immunoprecipitation was done for GFP.
Similarly, for each co-immunoprecipitation experiment that
included AtNHR2B-GFP, a parallel co-immunoprecipitation
was done for GFP. Co-immunoprecipitated samples were
processed for on-bead trypsin digestion or, in-gel trypsin
digestion (Figure 1A).

We used two digestion methods to increase the recovery
of proteins as each method provides specific advantages.
The advantage of the on-bead digestion method is that it
maximizes protein solubilization making them more susceptible
to enzymatic cleavage (Chen et al., 2007). The advantage of in-
gel digestion method is that it increases the number of protein
identifications because it reduces the complexity of the sample
by adding the size separation on the gel prior to MS (Feist
and Hummon, 2015). The digestion strategy also determines the
instrument used for mass spectrometry.

On-Bead Trypsin Digestion
Proteins bound to the beads were pre-digested with 0.2% of
RapiGest SF (Waters Corporation, Milford, MA, United States)
in 50 mM ammonium bicarbonate (Schechter et al., 2014).
After pre-digestion, samples were reduced with 10 mM
Tris (2-carboxyethyl) phosphine hydrochloride (TCEP-
HCl) and alkylated with 25 mM iodoacetamide, followed
by overnight digestion at 37◦C with sequencing grade
trypsin (Promega, Madison, WI, United States) in 1:50
trypsin/protein ratio. Digested samples were dissolved in
1% acetonitrile/0.1% formic acid.

In-Gel Trypsin Digestion
Proteins bound to the beads were eluted with 100 µl of
2X SDS-buffer and boiled at 90◦C for 8 min. Proteins co-
immunoprecipitated with AtNHR2A-GFP, AtNHR2B-GFP, and
GFP were separated by mass spectrometry compatible 4–20%
Tris-Glycine precast gel (Thermo Fisher Scientific Inc., Carlsbad,
CA, United States) then stained with PierceTM silver stain kit for
Mass Spectrometry (Thermo Fisher Scientific Inc., Carlsbad, CA,
United States). The stained gel lanes were then divided into four
sections based on 4 ranges of molecular weight (Supplementary

Figure S1B), and each section was sliced further into about 4–
5 pieces of ca 1 mm2 size gel pieces to increase the trypsin
contact surface area for efficient trypsin digestion. Gel pieces
were first destained with 15 mM potassium ferricyanide and
50 mM sodium thiosulfate. Destained gel pieces were dehydrated
using 100% HPLC grade acetonitrile and completely dried using
a SpeedVac. Dried gel pieces were treated with 10 mM DTT
in 25 mM ammonium bicarbonate (pH 7.8) at 60◦C for 1 h
to reduce proteins. Excess DTT was removed by pipetting, and
gel pieces were treated with 20 mM iodoacetamide in 25 mM
ammonium bicarbonate at room temperature for 1 h in the
dark to alkylate the reduced proteins. After the iodoacetamide
treatment, gel pieces were washed thoroughly with 25 mM
ammonium bicarbonate, dehydrated with 100% acetonitrile, and
completely dried using a SpeedVac. One hundred microliters
of MS grade Trypsin (Thermo Fisher Scientific Inc., Carlsbad,
CA, United States) in 25 mM ammonium bicarbonate were
added to the dried gel pieces to a final concentration of
50 ng/µl. Samples were kept at 4◦C for 30 min to ensure trypsin
was efficiently absorbed to the dried gel pieces. One hundred
microliters of additional 25 mM ammonium bicarbonate were
added to each sample and incubated at 37◦C for 24 h. Trypsin-
digested samples were acidified with 5% formic acid (FA)
in 60% acetonitrile (ACN) to quench trypsin enzyme activity
and break down ammonium bicarbonate. The samples were
further desalted using Pierce C18- spin columns (Thermo
Fisher Scientific Inc., Carlsbad, CA, United States) following
manufacturer’s instructions.

Mass Spectrometry and Data Analysis
Five microliters of the on-bead protein digested samples were
used for LC-MS/MS analysis using an LTQ-Orbitrap Velos Pro
(Thermo Fisher Scientific, San Jose, CA, United States) coupled
with a U3000 RSLCnano HPLC (Thermo Fisher Scientific, San
Jose, CA, United States) using previously described conditions
(Alvarez et al., 2013, 2014; Huang et al., 2016). The LTQ-Orbitrap
mass analyzer was operated in the data-dependent acquisition
mode in which each MS1 scan was followed by collision-induced
dissociation (CID) of the 10 most intense precursor ions. The
mass range for the MS1 done using the FTMS was 365 to 1800
m/z with resolving power set to 60,000 @ 400 m/z and the
automatic gain control (AGC) target set to 1,000,000 ions with
a maximum fill time of 100 ms. The selected precursors were
fragmented in the ion trap using an isolation window of 1.5
m/z, an AGC target value of 10,000 ions, a maximum fill time of
100 ms, a normalized collision energy of 35, and activation time
of 30 ms. Dynamic exclusion was performed with a repeat count
of 1, exclusion duration of 45 s, and a minimum MS ion count for
triggering MS/MS set to 5000 counts.

Five microliters of the in-gel desalted trypsin-digested
peptides were analyzed by LC-MS/MS using an Agilent
1200 series microflow high-performance liquid chromatography
(HPLC) coupled to a Bruker amaZon SL quadrupole ion trap
mass spectrometer with a captive spray ionization source.
Peptides were separated by reverse-phase high-performance
liquid chromatography (RP-HPLC) using a Zorbax SB C18
column (150 × 0.3 mm, 3.5 µm particle size, 300Å pore size,
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FIGURE 1 | Co-immunoprecipitation/mass spectrometry analysis to unravel the AtNHR2A and AtNHR2B Interactomes. Co-IP/MS workflow summarizing
experimental protocol and data analysis. For the experimental protocol, four-week-old transgenic Arabidopsis thaliana plants expressing AtNHR2A-GFP and
AtNHR2B-GFP GFP were inoculated with Pseudomonas syringae pv tabaci at 1 × 106 CFU/mL. At 6 hpi, plants were harvested for total protein extraction.
Extracted proteins from each sample were subjected to co-immunoprecipitation using GFP Trap A beads. GFP-bound protein complexes were eluted with 2X SDS
sample buffer and resolved by SDS-PAGE for silver staining and in-gel trypsin digestion, or directly processed for on-bead trypsin digestion. Both in-gel and on-bead
tryptic digested products were analyzed by LC-MS/MS. For data analysis, identified peptide spectra were then analyzed by Mascot using the Arabidopsis thaliana
protein database as reference, and identified peptides were further validated and compared using Scaffold to identify peptides representing proteins that specifically
interact with AtNHR2A-GFP or AtNHR2B-GFP but not with GFP. Peptide identification were done by setting peptide hits ≥ 2 with the false discovery rate (FDR)
below 1% based on decoy database (A). Venn diagrams show specific proteins interacting with AtNHR2A-GFP (B) and AtNHR2B-GFP (C) (shaded in yellow).

Agilent Technologies) with a solvent flow rate of 4 µL/minute
and a gradient of 5–38% consisting of 0.1% FA (solvent
A) and ACN (solvent B) over a period of 320 min. MS
analyses were performed in a positive ion mode using Bruker
captive electrospray source with a dry nitrogen gas temperature
of 200◦C and a nitrogen flow rate of 3 L/minute. LC-
MS/MS data were carried out in the Auto MS(n) mode.
Optimized trapping condition for the ions at m/z 1000
was set. Regular MS level scans were performed using the
enhanced scanning mode (8100 m/z/second), while MS/MS
fragmentation (collision induced fragmentation) scans were
performed automatically for top ten precursor ions with a set
threshold for 1 min using UltraScan mode (32,500 m/z/second)
(Karash et al., 2017; Rath et al., 2019). Immunoprecipitated
samples (AtNHR2A 2nd screen and AtNHR2B 2nd screen) were
injected twice into the latter instrument to generate a technical
replicate (AtNHR2A 3rd screen and AtNHR2B 3rd screen)

(Supplementary Tables S1, S2). Consolidated data and common
interactors between AtNHR2A and AtNHR2B is presented in
Supplementary Table S3.

The MS/MS spectra obtained from both methods were
searched against the TAIR10_20101214 non-redundant
Arabidopsis protein available in the Arabidopsis Information
Resource (TAIR) database, containing 35,639 protein entries.
MASCOT v 2.5 (Matrix Science, London, United Kingdom;
version 2.5.1) database search software was used to search
TAIR database using trypsin as the enzyme with one miss
cleavage, carbamidomethyl fixed modification, and methionine
oxidation as the variable modification. Protein identifications
were accepted if they were represented by at least 2 unique
peptides, each peptide showing probability higher than 80%
(Mascot Ion Score higher than 20) and with a false discovery rate
of < 1.0% as determined by the Scaffold Local FDR algorithm.
Protein probabilities were assigned by the Protein Prophet
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algorithm (Keller et al., 2002). For each of the AtNHR2A screens,
AtNHR2A interactors were those proteins identified only from
AtNHR2A-GFP samples but not from GFP samples. Similarly,
for each of the AtNHR2B screens, AtNHR2B interactors were
those proteins identified only from the AtNHR2B-GFP samples
and not from GFP samples. Proteins identified in all samples
(AtNHR2A-GFP, AtNHR2B-GFP, and GFP) were considered
non-AtNHR2A- or non-AtNHR2B- specific proteins and
therefore, were removed from the list.

Protein Annotations
AtNHR2A and AtNHR2B interacting proteins were broadly
classified into biological process, molecular function, and
cellular components, according to the Gene Ontology (GO)
annotation tool of the Arabidopsis thaliana reference genome
using GO Slim available in the Arabidopsis Information Resource
(TAIR) database1. A more detailed annotation was obtained
by identifying convincing empirical data regarding protein
subcellular localization and function in the published literature.

Plasmid Constructs
AtENGD-1 (At1g30580) was cloned into pDONR207 (Thermo
Fisher Scientific Inc., Carlsbad, CA, United States) using
primers 5′GGGGACAAGTTTGTACAAAAAAGCAGGCTYYA
TGCCTCCGAAAGCCAAA3′ and 5′GGGGACCACTTTGTA
CAAGAAAGCTGGGTYTCATTTCTTCCCACCACCG3′, and
subsequently transferred to pET59-DESTTM (EMD Millipore,
Burlington, VA, United States) to generate 6X-His-AtENGD-1.

A plasmid harboring AtRPN1A (At2g20580) epitope tagged
with Myc (Myc-AtRPN1A) was obtained from the Arabidopsis
Biological Resource Center (ABRC) stock collection2.

AtCCoAOMT1 (At4g34050) was cloned into pDONR201
(Thermo Fisher Scientific Inc., Carlsbad, CA, United States)
using primers 5′GGGGACAAGTTTGTACAAAAAAGCAGGC
TYYATGGCGACGACAACAACA3′ and 5′GGGGACAAGTTT
GTACAAAAAAGCAGGCTYYATGCCTCCGAAAGCCAAA3′
and subsequently transferred to pEarleyGate201 (Earley et al.,
2006) to generate HA-AtCCoAOMT1.

Full length AtNHR2B and truncated AtNHR2B1−140 in
pDONR201 were transferred to pSITEnEYFPC1 (Martin
et al., 2009). AtCCoAOMT1 was cloned into pSITEcEYF
PC1(Martin et al., 2009).

Plasmids harboring Myc-AtRPN1A, HA-AtCCoAOMT1,
AtCCoAOMT1-cEYFP, AtNHR2B-nEYFP, and AtNHR2B(1−140)-
nEYFP were transformed into Agrobacterium tumefaciens strain
GV2260 by electroporation for transient gene expression in
N. benthamiana. pET59-DEST:AtENGD-1 was transformed into
E. coli strain Rosetta for protein expression and purification.

Protein Purification in E. coli
Escherichia coli harboring plasmid pET59-DEST:AtENGD-1 was
grown in 5 mL of LB broth supplemented with ampicillin (50
µg/mL). The overnight culture was then subcultured into 250 mL
of LB supplemented with ampicillin (50 µg/mL). When the

1https://www.arabidopsis.org/
2https://abrc.osu.edu/

culture reached an OD600 of 0.5, protein expression was induced
by adding 0.5 mM isopropyl-1-thio-β-d-galactopyranoside
(IPTG) followed by incubation for additional 6 h at 28◦C.
Bacterial cells were harvested by centrifugation at 12,000 rpm
at 4◦C, and proteins were purified on nickel-nitrilotriacetic acid
(Ni-NTA) agarose resin (Thermo Fisher Scientific Inc., Carlsbad,
CA, United States), following manufacturer’s instructions.
Proteins were then separated in a 12% SDS-polyacrylamide
gel and stained with Coomassie Brilliant Blue to confirm
IPTG induction. Protein expression was confirmed by Western
blotting using anti-His antibodies (1:500 dilution; Cell Signaling
Technology, Danvers, MA, United States).

Visualization of the Integrated
Interactome
The predicted functional association network of Arabidopsis
thaliana was downloaded from the STRING database available at:
https://stringdb-static.org/download/protein.links.v11.0/3702.pr
otein.links.v11.0.txt.gz. All evidence channels (genomic context,
coexpression, text mining, experimental evidence, curated
protein databases) (Szklarczyk et al., 2019) were used for the
analysis. The downloaded network had ∼11 million total edges
with scores ranging from 150 to 900. The edges were sorted
based on the increasing order of their edge score with the top
10% edges (combined minimum score of 626) selected as high
confidence edges and the rest filtered. This top 10% network was
searched with the 154 proteins that we found to be interacting
with either AtNHR2A or AtNHR2B or with both proteins.
The predicted links in STRING network and the interactions
identified by IP-MS were assembled using Cytoscape v3.3.0 and
including subcellular localization and functional category based
on literature searches (Supplementary Tables S4–S6).

Validation of Protein–Protein Interactions
by Transient Expression in
N. benthamiana and
Co-immunoprecipitation
Agrobacterium tumefaciens strains harboring HA-AtCCoAOMT1,
Myc-AtRPN1A, and AtNHR2B-GFP were grown overnight at
28◦C with constant shaking. Overnight cultures were harvested
by centrifugation at 6,000 rpm for 10 min, resuspended in
induction buffer [20mM 2-N-morpholino ethanesulfonic
acid (MES) pH 5.5; 3% sucrose, 200µM acetosyringone], and
incubated at room temperature with constant shaking for 4 h.
Induced cultures were adjusted to an OD600 = 0.3. A. tumefaciens
harboring AtNHR2B-GFP was co-infiltrated with A. tumefaciens
harboring HA-AtCCoAOMT1 or Myc-AtRPN1A into fully
expanded leaves of 3-week-old N. benthamiana plants using a
needless syringe. A. tumefaciens harboring a construct encoding
GFP was co-infiltrated with either HA-AtCCoAOMT1 or Myc-
AtRPN1A and used as negative control. After 3 days, infiltrated
leaves were harvested for protein extraction. Proteins isolated
from leaves co-expressing AtNHR2B-GFP/HA-AtCcoAOMT
and GFP/HA-AtCcoAOMT were immunoprecipitated with the
PierceTM HA Epitope Tag Antibody conjugated to agarose beads
(Thermo Fisher Scientific Inc., Carlsbad, CA, United States).
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Proteins isolated from leaves co-expressing AtNHR2B-GFP/Myc-
AtRPN1A and GFP/Myc-AtRPN1A were precleared with protein
A-sepharose beads (GE Healthcare, Chicago, IL, United States)
at 4◦C for 2 h with gentle shaking. Precleared samples were
immunoprecipitated with Myc antibodies (Miltenyi Biotec,
Bergisch Gladbach, Germany) coupled with protein A-sepharose
beads. Co-immunoprecipitated samples were washed and eluted
in 2× SDS protein loading buffer, ran in a SDS-PAGE gel,
and transferred to nitrocellulose membranes for Western blot
and probed with anti-GFP-HRP (1:1000 dilution; Miltenyi
Biotec, Bergisch Gladbach, Germany), or anti-Myc-HRP
(1:1000 dilution; Miltenyi Biotec, Bergisch Gladbach, Germany),
or anti-HA-HRP (1:1000 dilution; Thermo Fisher Scientific
Inc., Carlsbad, CA, United States), depending on the protein
combination. The proteins were detected by chemiluminescence
(SantaCruz Biotechnology, Dallas, TX, United States).

Validation of Protein–Protein Interactions
by Semi-in vivo Co-immunoprecipitation
To validate the interaction between AtNHR2A-GFP and His-
AtENGD-1, AtNHR2A-GFP and GFP were transiently expressed
in N. benthamiana, and proteins extracted as described above.
His-AtENGD-1 was expressed and purified in E. coli. Thereafter,
5 µg of the purified His-AtENGD-1 were mixed with 100 µg of
total protein extracted from N. benthamiana plants transiently
expressing AtNHR2A-GFP or GFP, and subjected to co-
immunoprecipitation with GFP Trap-A beads (Chromotek,
Germany), as described above. The co-immunoprecipitated
samples were washed, eluted in 2 × SDS protein loading
buffer, resolved by SDS-PAGE, and transferred to a nitrocellulose
membrane for Western blotting using anti-His (1:500 dilution;
Cell Signaling Technology) or anti-GFP-HRP (1:1000 dilution;
Miltenyi Biotec, Bergisch Gladbach, Germany) antibodies.

Bimolecular Fluorescence
Complementation
AtNHR2B fused to the N-terminal-encoding half of the enhanced
yellow fluorescent protein (EYFP), and AtCCoAOMT1 fused
to the C-terminal-encoding half of EYFP were co-infiltrated
in N. benthamiana for transient expression. Leaf samples
were collected at 3 days after infiltration for live-cell image
analysis using a Leica TCS SP5 II confocal microscope (Leica
Microsystems, Buffalo Grove, IL, United States) at an excitation
wavelength of 514 nm (argon laser) and an emission wavelength
of 500 to 530 nm.

RESULTS

AtNHR2A and AtNHR2B Interact With
Distinct Set of Proteins Localized to
Several Subcellular Compartments and
Involved in Multiple Biological Processes
To identify the AtNHR2A- and AtNHR2B- interactomes,
this work relied on IP-MS. The experiments used transgenic
Arabidopsis lines expressing AtNHR2A-GFP and AtNHR2B-GFP

in the Atnhr2a and Atnhr2b mutant backgrounds, respectively
(Singh et al., 2018). To provide the appropriate biological context,
we inoculated plants with P. syringae pv. tabaci to induce
expression of AtNHR2A and AtNHR2B (Figure 1A). Because the
maximum induction of both AtNHR2A and AtNHR2B occurs at
6 hours post inoculation (hpi) (Singh et al., 2018), we chose this
time point to harvest inoculated plants for protein extraction.
Thus, we are confident that these conditions ensured endogenous
levels of AtNHR2A-GFP and AtNHR2B-GFP and reduced the
occurrence of spurious results. The combination of the two
approaches increased protein recovery, while the stringent data
analyses allowed us to confidently identify true interactors for
AtNHR2A and AtNHR2B.

The experiments using AtNHR2A-GFP as bait yielded a total
of 881 nonredundant proteins from both methods. From those
881 proteins, 516 proteins interacted with the GFP tag, 275
proteins interacted with both the GFP tag and AtNHR2A-GFP,
and 89 interacted only with AtNHR2A-GFP (Figure 1B and
Supplementary Table S1). Similarly, co-immunoprecipitation
experiments using AtNHR2B-GFP yielded 632 nonredundant
proteins from both methods. Out of those 632 proteins, 266
interacted with the GFP tag, 281 interacted with both the GFP tag
and AtNHR2B-GFP, and 85 interacted only with AtNHR2B-GFP
(Figure 1C and Supplementary Table S2). Out of the 89 proteins
interacting with AtNHR2A and the 85 proteins interacting
with AtNHR2B, we found 20 proteins that interacted with
both AtNHR2A and AtNHR2B (Supplementary Table S3). The
AtNHR2A- and AtNHR2B- specific interactors were considered
high confidence interactors because: (i) they were not identified
in the negative control, (ii) were represented by two or more
unique peptides, and (iii) they had an FDR less than 1.0%.

We initially classified the proteins interacting with AtNHR2A
and AtNHR2B using the GO categories biological process,
molecular function, and cellular component, and found that
AtNHR2A- and AtNHR2B- interacting proteins were placed in
similar functional categories (Supplementary Figures S2A,B),
yet visual inspection indicated striking differences between the
two datasets. Therefore, to extract more meaningful information
from the data, we manually annotated the proteins using
published literature that convincingly reported subcellular
localization and/or specific function. That specific function
was then assigned to a broader functional category. Only
proteins with known subcellular localization and function were
included (Tables 1–3).

Regarding the subcellular localization of the interactors,
we found that the proteins interacting with AtNHR2A and
AtNHR2B localized to multiple subcellular compartments.
However, the number and specific proteins in each compartment
varies when comparing between AtNHR2A- and AtNHR2B-
interactors. Among the AtNHR2A interactors, the subcellular
compartment containing the largest number of proteins was the
cytoplasm followed by the extracellular space (Table 1), while
the subcellular compartments containing the largest number
of AtNHR2B-interacting proteins were chloroplasts followed
by cytoplasm (Table 2). Among the proteins that interacted
with both AtNHR2A and AtNHR2B, the most common
localization was to chloroplasts followed by extracellular space
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TABLE 1 | AtNHR2A specific interactors with known subcellular localization and function, ordered by gene ID.

Gene ID Description Subcellular location Function References

At1g01560 Mitogen-activated protein kinase, MAPK (AtMPK11) Nucleus, Cytoplasm Regulation of Plant immunity Carrasco et al., 2014;
Eschen-Lippold et al., 2016

At1g03760 Prefoldin subunit Nucleus, cytoplasm Protein folding Millan-Zambrano and Chavez, 2014

At1g07650 LRR-type receptor protein kinase (BSR650) Plasma membrane Brassinosteroid Signaling Xu et al., 2014

At1g09590 L21-type protein of large ribosomal subunit (AtRPL21A) Cytoplasm Protein synthesis Carroll, 2013

At1g12220 R-type immune receptor (AtRPS5) Plasma membrane Plant immunity Qi et al., 2012

At1g21400 2-oxoisovalerate dehydrogenase subunit α1 Mitochondria Branched chain amino acid catabolism Fujiki et al., 2001

At1g30580 GTPase (AtENGD-1) Cytoplasm Negative regulator of plant immunity Cheung et al., 2010

At1g42950 40S ribosomal protein S7 Cytoplasm Protein synthesis Carroll, 2013

At1g52360 β subunit of coatomer (COP) adaptor complex Golgi apparatus Vesicle trafficking Brandizzi and Barlowe, 2013

At1g60950 Ferredoxin (AtFd2) Chloroplast Photosynthetic electron transport Hanke and Mulo, 2013

At1g65980 Peroxiredoxin type 2 (AtPrxIIB) Cytoplasm Reactive oxygen species homeostasis Horling et al., 2002

At1g67090 Ribulose bisphosphate carboxylase small chain (RBCS1A) Chloroplast Carbon fixation Vitlin Gruber and Feiz, 2018

At1g74350 Type-II-maturase-like intron splicing factor (AtnMat4) Mitochondria, Chloroplast RNA processing and maturation Keren et al., 2009; Cohen et al., 2014

At1g74350 Type-II-maturase-like intron splicing factor (AtnMat4) Mitochondria, Chloroplast RNA processing and maturation Keren et al., 2009; Cohen et al., 2014

At1g78300 AtGRF2/AtGF14-omega (14-3-3 family) Mitochondria, Cytoplasm and Nucleus Hormone signaling Yoon and Kieber, 2013

At1g78860 Mannose-binding lectin protein (AtGAL2) Extracellular space Plant immunity Hwang and Hwang, 2011;
Ghahremani et al., 2018

At2g10940 Proline-rich glycoprotein (AtPRP15) Extracellular space Post-translational modification of cell wall
proteins

Durufle et al., 2017

At2g14830 AtIST1- like10 Endosomes Vesicle trafficking Buono et al., 2016

At2g18020 L8-type protein of large ribosomal subunit (AtRPL8A) Cytoplasm Protein synthesis Carroll, 2013

At2g18450 Succinate dehydrogenase 1-2 (AtSDH1-2) Mitochondria Carbohydrate metabolism Figueroa et al., 2002

At2g27100 SERRATE (AtSE) Nucleus Alternative splicing Raczynska et al., 2014

At2g43030 L3-type protein of large ribosomal subunit Chloroplast Protein synthesis Kleffmann et al., 2004

At2g43610 Class-IV chitinase-like protein Extracellular space Plant immunity Kumar et al., 2018

At3g11430 Glycerol-3-phosphate acyltransferase (AtGPAT5) Endoplasmic reticulum Glycerolipid synthesis Chen et al., 2011

At3g19140 Day neutral flowering (AtDNF) Plasma membrane E3 ubiquitin ligase Morris et al., 2010

At3g49010 60 S L13-type protein of large ribosomal subunit
(AtRPL13B)

Cytoplasm Protein synthesis Carroll, 2013
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TABLE 1 | Continued

Gene ID Description Subcellular location Function References

At3g53110 Putative DEAD-box RNA helicase (AtRH38/AtLOS4) Nucleus, cytoplasm RNA metabolism Gong et al., 2002

At3g54590 Extensin-type glycoprotein (AtEXT2) Extracellular space Cell wall biosynthesis Liepman et al., 2010

At3g56840 L2-hydroxyglutarate dehydrogenase (L2-HGDH) Mitochondria Mitochondrial metabolic repair Hudig et al., 2015

At4g02840 Nuclear Ribonucleoprotein SmD1b Nucleus Splicing and RNA quality control Elvira-Matelot et al., 2016

At4g15900 Core component of spliceosome-associated MAC complex
(AtPRL1/AtMAC2)

Nucleus Regulation of plant immunity Palma et al., 2007

At4g31570 Kinesin-related protein Cytoplasm Hormone homeostasis Molesini et al., 2012

At4g36020 CSD-type RNA chaperone (AtCSP1) Cytoplasm, Nucleus RNA chaperone Kim et al., 2007;
Yang and Karlson, 2013

At5g02040 Prenylated RAB acceptor 1.A1 (AtPRA1.A1) Endoplasmic reticulum Vesicle trafficking Alvim Kamei et al., 2008

At5g06740 Legume-lectin-type receptor-like protein kinase
(AtLecRK-S.5)

Plasma membrane Plant Immunity Lannoo and Van Damme, 2014

At5g15700 Dual-targeted DNA-dependent RNA polymerase (AtRpoT2) Mitochondria, Chloroplast Transcription Hedtke et al., 2000

At5g16400 F-type thioredoxin (AtTRX-F2) Chloroplast Redox regulation Cain et al., 2009

At5g17640 Abiotic stress gene 1 (ASG1) Plasma membrane Abiotic stress responses Batelli et al., 2012

At5g26000 Thioglucoside glucohydrolase (AtBGLU38/AtTGG1) Cytoplasm Indole glucosinolate biosynthesis Zhao et al., 2015

At5g35740 Endo-1,3-beta-glucosidase Extracellular space Cell wall biosynthesis Houston et al., 2016

At5g38420 Small subunit of ribulose bisphosphate carboxylase
(AtRBCS-2B/AtS2B)

Chloroplast Carbon fixation Vitlin Gruber and Feiz, 2018

At5g48140 Polygalacturonase Extracellular space Plant immunity Cao, 2012

At5g61780 Ribonuclease TUDOR 2 (AtTSN2) Cytoplasm mRNA processing Frei dit Frey et al., 2010

ATCGOO470 ATPase ε subunit Chloroplast ATP synthesis Friso et al., 2004

ATCGOOO20 Photosystem II protein D1 (PSBA) Chloroplast ATP synthesis Friso et al., 2004

ATCG00780 50S Ribosomal protein L14 (RPL14) Chloroplast Protein synthesis Kleffmann et al., 2004

ATMG01190 ATP synthase subunit α (ATPA) Mitochondria ATP synthesis Kruft et al., 2001
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(Table 3). It was interesting to note that several of the
AtNHR2A and AtNHR2B interactors have more than one
localization, highlighting that several biological processes require
interorganellar movement of proteins.

With regard to functional categories, the most common of
them for AtNHR2A interactors was plant immunity and included
15 proteins with demonstrated function in pathogen recognition,
regulation of immune responses, signaling, vesicle trafficking,
secretion of defense secondary metabolites, and cell wall
remodeling. The second most common category for AtNHR2A
interactors included 10 proteins participating in enzymatic
reactions during primary metabolism, such as synthesis of
essential carbohydrates, lipids, or proteins, and occurring in
cytoplasm, mitochondria, or chloroplasts. Other categories with
significant number of proteins among the AtNHR2A interactors
included those associated with RNA-mediated processes, such
as transcription, splicing, and RNA stability, as well as those
related to protein synthesis, the latter being largely represented
by ribosomal proteins. Other categories with fewer proteins
included protein folding and turnover, secondary metabolism,
hormone-related processes, and abiotic stress (Table 1).

The most common functional category for AtNHR2B
interactors was primary metabolism and included 19 proteins
with enzymatic activities, as well as structural function, found
to be essential in processes occurring in mitochondria and
chloroplasts. The second most common category for AtNHR2B
interactors was protein synthesis represented by 8 ribosomal
proteins (Table 2). In contrast to the abundance of AtNHR2A
interactors representing plant immunity, there are only 5
AtNHR2B interactors for the same category which included
regulatory proteins, in addition to proteins functioning in
pathogen recognition and, significantly, AtNHR2A (Table 2).
Other categories represented among the AtNHR2B interactors,
but with fewer proteins included vesicle trafficking, cell
wall biosynthesis, protein folding and turnover, secondary
metabolism, hormone-related processes, and abiotic stress. Two
additional categories present among the AtNHR2B interactors
but absent among the AtNHR2A interactors included one protein
associated with the cytoskeleton and another protein associated
with cell division (Table 2).

We found that the 20 proteins that interacted with both
AtNHR2A and AtNHR2B can be grouped into the same
functional categories as those assigned for proteins interacting
with either AtNHR2A or AtNHR2B, those categories being
primary metabolism and plant immunity. Other functional
categories with fewer proteins were secondary metabolism and
hormone-related processes (Table 3).

Although we were able to reliably assign subcellular
localization and function to 62% of the proteins interacting
with AtNHR2A, 66% of the proteins interacting with AtNHR2B,
and 45% of the proteins interacting with both AtNHR2A and
AtNHR2B, there were still many interacting proteins that were
classified as unknown, either because they are truly unknown,
or because published research on those proteins did not
provide compelling evidence for their subcellular localization
and/or function.

Altogether, the differences between the AtNHR2A and
AtNHR2B interactomes demonstrates that AtNHR2A and

AtNHR2B have distinct functions. However, the finding that
they interact with common proteins, and that the non-common
proteins participate in common functional processes, indicate
that AtNHR2A and AtNHR2B act together as previously
proposed (Singh et al., 2018).

Validation of Selected Interaction Pairs
by Co-immunoprecipitation
To further confirm the accuracy of the IP-MS method, and to
gain insight into the function of AtNHR2A and AtNHR2B in
plant immunity, we chose to validate the interaction between
AtNHR2A or AtNHR2B with proteins known to function in
plant innate immunity such as AtENGD-1, AtRPN1A, and
AtCCoAMT1 (Yao et al., 2012; Abdeeva et al., 2018; Xie et al.,
2018). AtENGD-1 was fused to the 6× histidine (6× His) tag
and expressed and purified from E. coli. Purified His- AtENGD-
1 was added to protein extracts obtained from N. benthamiana
plants expressing AtNHR2A-GFP. Immunoprecipitation of
AtNHR2A-GFP with GFP antibodies, co-immunoprecipitated
His- AtENGD-1, as shown by Western blot analysis using anti-
His antibodies. Anti-GFP antibodies also immunoprecipitated
GFP but did not co-immunoprecipitated His- AtENGD-1
(Figure 2A and Supplementary Figure S3).

The interaction between AtNHR2B-GFP and AtRPN1A,
and that between AtNHR2B-GFP with AtCCoAOMT1
was validated by reciprocal co-IP, wherein AtRPN1A and
AtCCoAOMT1 were cloned as fusions to the MYC and
HA tags, respectively, and used to pull down AtNHR2B-
GFP. Immunoprecipitation of MYC-AtRPN1A with
anti-MYC antibodies co-immunoprecipitated AtNHR2B-
GFP but not GFP alone (Figure 2B and Supplementary
Figure S4). Immunoprecipitation of HA-AtCCoAOMT1
with anti-HA antibodies also co-immunoprecipitated
AtNHR2B-GFP but not GFP alone (Figure 2C and
Supplementary Figure S5).

Validation of Protein–Protein Interaction
by Bimolecular Fluorescence
Complementation
We also used bimolecular fluorescence complementation
(BiFC) in N. benthamiana to confirm the interaction between
AtNHR2B-GFP and AtCCoAOMT1 in planta. For that
purpose, full length AtNHR2B was fused to the N-terminal
half of the enhanced yellow fluorescent protein (nEYFP),
while AtCCoAOMT1 was fused to the C-terminal half of
EYFP (cEYFP). Following the published guidelines for BIFC
(Bock and Kudla, 2016), a truncated version of AtNHR2B
was used as control containing only the first 140 amino
acids (AtNHR2B1−140) as this truncation abolishes normal
localization of AtNHR2B-GFP (Singh and Rojas, 2018).
AtNHR2B1−140 was fused to nEYFP, and AtNHR2B-nEYFP
or AtNHR2B(1−140)-nEYFP were transiently co-expressed
with AtCCoAOMT1-cEYFP in N. benthamiana to examine the
reconstitution of the EYFP fluorescence upon interaction
between the two proteins. Co-expression of full length
AtNHR2B-nEYFP with AtCCoAOMT1-cEYFP generated a
yellow fluorescence signal indicating the reconstitution of
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TABLE 2 | AtNHR2B specific interactors with known subcellular localization and function, ordered by gene ID.

Gene ID Description Subcellular location Function References

At1g02780 60S ribosomal protein L19-type (AtRPL19A) Cytoplasm Protein synthesis Carroll, 2013

At1g07770 40S ribosomal protein S15a-1 (AtRPS15aA) Cytoplasm Protein synthesis Carroll, 2013

At1g20010 β-tubulin (AtTUB5) Plasma membrane Component of cytoskeleton Minami et al., 2009

At1g22700 Protein Pale Yellow Green7 (AtPYG7) Chloroplast Photosystem biogenesis Yang H. et al., 2017

At1g41880 60S ribosomal protein L35a-type (AtRPL35aB) Cytoplasm Protein synthesis Carroll, 2013

At1g45000 AtRPT4b Nucleus/
Cytoplasm

Proteasome component Fu et al., 1999

At1g49970 CLP protease proteolytic subunit 1 (AtClpR1) Chloroplast Chloroplast development and differentiation Koussevitzky et al., 2007

At1g72930 TNL-type NLR pathogen effector recognition protein
(AtTN10)

Nucleus/
Cytoplasm

Plant immunity Nandety et al., 2013

At1g74050 60S ribosomal protein L6-type (AtRPL6C) Cytoplasm Protein synthesis Carroll, 2013

At1g78630 50S ribosomal protein L13-type Cytoplasm Protein synthesis Carroll, 2013

At2g09990 40S ribosomal protein S16-type (AtRPL16A) Cytoplasm Protein synthesis Carroll, 2013

At2g18710 SECY homolog 1 (AtSCY1) Chloroplast Translocation of cytoplasmic proteins into
plastid

Skalitzky et al., 2011

At2g20530 Type-II prohibitin (AtPHB6) Mitochondria Prohibitin-Cell division Meyer et al., 2008

At2g20580 RPN1-like regulatory component of 26S proteasome
complex

Nucleus/
Cytoplasm

Component of 26S proteasome/
Plant immunity

Brukhin et al., 2005; Yao et al., 2012

At2g21390 α-subunit of coatomer (COP) adaptor complex Golgi apparatus Vesicle Trafficking Brandizzi and Barlowe, 2013

At3g07110 Ribosomal protein L19-type (AtRPL13aA) Cytoplasm Protein synthesis Millar and Heazlewood, 2003

At3g10860 Ubiquinone-binding component of cytochrome bc1
complex (AtUCR!-1/AtQCR8-1) UCRQ

Mitochondria Subunit cytochrome bc1 complex/
respiration

Meyer et al., 2008

At3g15030 Transcription factor (AtTCP4) Nucleus Transcription Aggarwal et al., 2010

At3g20000 Translocase of the outer mitochondrial membrane 40
(AtTOM40-1)

Mitochondria Component of the mitochondrial import
apparatus

Lister et al., 2004

At3g27240 Cytochrome C1 family (AtCyc1-1) Mitochondria Component of the cytochrome C1 subunit Murcha et al., 2014

At3g29320 Plastidial α-glucan phosphorylase (AtPHS1) Chloroplast Abiotic stress Zeeman et al., 2004
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TABLE 2 | Continued

Gene ID Description Subcellular location Function References

At3g44110 DnaJ homolog 3 (J3) Plasma membrane Molecular chaperone Yang et al., 2010

At3g46740 Translocon at the outer envelope membrane of
chloroplasts, 75 kD (AtToc75-III)

Chloroplast Protein translocation Baldwin et al., 2005

At3g51820 Chlorophyll synthase (AtChlG) Chloroplast Chlorophyll synthase/
Chlorophyll biosynthesis

Kim et al., 2013

At3g54110 Mitochondrial uncoupling protein (AtPUMP1/AtUCP1) Mitochondria Mitochondrial transport Monne et al., 2018

At4g13760 Putative polygalacturonase Extracellular space Cell wall remodeling Duan et al., 2016

At4g24190 Sheperd (SHD) Endoplasmic reticulum Molecular chaperone Ishiguro et al., 2002

At4g25030 Arabidopsis thaliana nonhost resistance 2A (AtNHR2A) Chloroplast Plant immunity Singh et al., 2018

At4g26590 OPT-type transporter (AtOPT5) Plasma membrane oligopeptide transporter Lubkowitz, 2011

At4g31990 Aspartate aminotransferase (AtASP5) Chloroplast Aspartate biosynthesis Wilkie et al., 1996

At4g34050 Caffeoyl coenzyme A O-methyltransferase 1
(AtCCoAOMT1)

Cytoplasm Lignin biosynthesis/
Plant immunity

Yang Q. et al., 2017; Liu et al., 2018

At5g01530 Light harvesting complex photosystem II (AtLHCb4.1) Chloroplast Light-harvesting chlorophyll a/b binding protein de Bianchi et al., 2011

At5g12860 Plastidic 2-oxoglutarate/malate translocator
(AtDiT1/AtpOMT1)

Chloroplast Oxaloacetate/
malate transporter

Kinoshita et al., 2011

At5g16440 Isopentenyl diphosphate isomerase 1 (AtIDI1) Chloroplasts Isopentenyl diphosphate isomerase Guirimand et al., 2012

At5g19760 Mitochondrial adenine nucleotide transporter (AtDTC) Mitochondria Mitochondrial dicarboxylate/Tricarboxylate
carrier

Millar and Heazlewood, 2003

At5g33320 Phosphoenolpyruvate/
phosphate translocator (AtPPT1/AtCUE1)

Chloroplasts Plastid metabolism Flugge et al., 2011

At5g35530 40S ribosomal protein S3 type (AtRPS3C) Cytoplasm Protein synthesis Carroll, 2013

At5g41670 6-phosphogluconate dehydrogenase (AtPGD3) Cytoplasm, Chloroplast Putative 6-phospho-gluconate dehydrogenase Holscher et al., 2016

At5g62790 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) Chloroplasts Isoprenoid biosynthesis Carretero-Paulet et al., 2002

At5g64940 ABC1-type atypical kinase (AtABC1K8/AtOSA1) Chloroplast Prenylquinone synthesis Manara et al., 2015
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TABLE 3 | List of proteins interacting with AtNHR2A and AtNHR2B with known subcellular localization and function, ordered by gene ID.

Gene ID Description Subcellular location Function References

At1g54010 GDSL-like Lipase/Acylhydrolase
superfamily protein (AtGLL23)

Endoplasmic Reticulum Glucosinolate metabolism Jancowski et al., 2014

At2g20260 Subunit PsaE of photosystem I complex (AtPsaE2) Chloroplast Photosynthesis Ihnatowicz et al., 2007

At2g44530 Phosphoribosyl diphosphate synthetase (AtPRS5) Chloroplast Pyrimidine photosynthesis Howles et al., 2006

At3g08030 Cell wall associated protein Extracellular space Plant immunity Ndimba et al., 2003

At3g08510 Putative phosphatidylinositol-specific
phospholipase C (AtPLC2)

Plasma membrane Auxin biosynthesis and
signaling

Otterhag et al., 2001;
Li et al., 2015

At3g45140 Putative 13-lipoxygenase (AtLOX2) Chloroplast Plant immunity Bell et al., 1995;
Zoeller et al., 2012

At4g13940 S-adenosyl-L-homocysteine hydrolase (AtSAHH1) Nucleus Methionine biosynthesis Lee et al., 2012

At5g00570 Chlorophyll a-b binding protein Chloroplast Photosynthesis Green et al., 1991

At5g55180 Glycosyl hydrolase family 17 protein Extracellular space Plant immunity Zhang et al., 2007

the EYFP by the interaction between full length AtNHR2B
and AtCCoAOMT1 in planta. Moreover, this BiFC data
clearly demonstrated that the interaction between full length
AtNHR2B and AtCCoAOMT1 occurs in the cytoplasm
and punctae bodies where AtNHR2B has been consistently
found (Singh et al., 2018). In contrast, co-expression
of AtNHR2B(1−140) –nEYFP with AtCCoAOMT1-
cEYFP did not show yellow fluorescence (Figure 2D)
indicating that the truncation of AtNHR2B interferes with
the interaction.

AtNHR2A and AtNHR2B Belong to the
Same Network
Our finding that AtNHR2A and AtNHR2B share a common
set of interacting proteins, together with our accumulated
genetic evidence (Singh et al., 2018), implies that AtNHR2A
and AtNHR2B belong to the same protein network. Thus, we
investigated if the observed links in our protein interaction data
were also preserved in other protein networks. We reasoned
that since proteins in a subnetwork are more likely to be
functionally related, the interactions we observed in our IP-
MS dataset should also be predictable from other data sources.
To test this, we obtained high-confidence Arabidopsis protein
network data from the STRING database (Szklarczyk et al., 2019).
The protein links represented in the STRING database were
computationally predicted and scored by combining probabilities
depicting functional-relatedness from seven different evidence
channels in Arabidopsis. Overlapping this predicted network
with our data revealed that several of the AtNHR2A- and
AtNHR2B- interactors that were experimentally identified in
this study were also preserved in the STRING network data
(Figure 3). Specifically, out of 155 proteins in our interactome,
∼40% are also connected to each other in the STRING network,
indicating that these are genuine interactions. Remarkably, a
large fraction of the proteins that overlapped with the predicted
network are the proteins that are common for AtNHR2A
and AtNHR2B with a large fraction of these proteins being
involved in protein synthesis. The network also shows a
preferred subcellular localization to chloroplasts among the
AtNHR2B interactors.

DISCUSSION

In this study, we unraveled the interactomes of AtNHR2A
and AtNHR2B to gain further insight into their detailed
function so as to integrate this knowledge with our previous
live-cell imaging data and with the biological phenotypes
for AtNHR2A and AtNHR2B. Our in vivo IP-MS used
conditions that directly reflect AtNHR2A and AtNHR2B
expression and their corresponding endogenous protein
abundance while eliminating false positives due to non-
specific interactions with the epitope tag (GFP). We found
that proteins interacting with AtNHR2A and AtNHR2B are
localized to diverse subcellular compartments with a preferred
localization to cytoplasm and chloroplasts. These findings
are not surprising considering our previous live-cell imaging
data indicated that AtNHR2A and AtNHR2B localize to
these compartments (Singh et al., 2018). The localization of
AtNHR2A and AtNHR2B to chloroplasts is important in
the context of plant immunity as this organelle provides key
defense signaling molecules, such as hormones and reactive
oxygen species (Serrano et al., 2016). However, none of the
chloroplastic-localized proteins that interacted with AtNHR2A
or AtNHR2B are known to play a role in chloroplast-mediated
immune responses. Rather, all the AtNHR2A and AtNHR2B
interactors that localized to chloroplasts are implicated in
primary metabolism, functioning either as enzymes or as
structural components. Thus, the localization of AtNHR2A and
AtNHR2B to chloroplasts is still mysterious. Nevertheless,
because AtNHR2B interacted with more chloroplastic
proteins than AtNHR2A, it is likely that AtNHR2B plays a
more prominent function than AtNHR2A in chloroplasts.
Interestingly, chloroplasts were also the preferred localization
for proteins that interacted with both AtNHR2A and AtNHR2B,
and those common interactors can be seen as bridges integrating
both independent interactomes.

One curious finding was the abundance of AtNHR2A- and
AtNHR2B- interacting proteins localized to the extracellular
space, particularly among the AtNHR2A interactors. Several
of those extracellularly localized proteins included proteins
functioning in plant immunity either as antimicrobials, such
as chitinase (Kumar et al., 2018), or participating in cell wall
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FIGURE 2 | Validation of selected AtNHR2A and AtNHR2B interactions. Protein extracts of N. benthamiana transiently expressing AtNHR2A-GFP were mixed with
His-AtENGD-1 purified from E. coli (Rosetta) and subjected to immunoprecipitation with anti-GFP antibodies. Co-immunoprecipitation of His-AtENGD-1 (red asterisk)
was detected by Western blot using anti-His antibodies (A). AtNHR2B-GFP and Myc-AtRPN1A pair and AtNHR2B-GFP and HA-AtCCoAMT1 pair were transiently
co-expressed in N. benthamiana and immunoprecipitated with anti-Myc and anti-HA antibodies, respectively. Co-immunoprecipitation of AtNHR2B-GFP in each
experiment (red asterisks) were detected by Western blot using anti-GFP antibodies (B,C). Expected protein sizes are shown by arrows. AtNHR2B, or its
non-functional version AtNHR2B(1-140) fused to the N-terminal fragment of EYFP were co-expressed in N. benthamiana with AtCCoAOMT1 fused to the C- terminal
fragment of EYFP. The reconstitution of the EYFP signal was evaluated via laser scanning confocal microscopy at 3 days after infiltration (D). Images were taken
using excitation wavelength of 514 nm and an emission wavelength of 500 to 530 nm. Bar = 10 µm.

biosynthesis or remodeling, such as pectin lyase and endo-1,3-
beta-glucosidase (Cao, 2012; Houston et al., 2016). AtNHR2B
also interacted with a putative polygalacturonase (Duan et al.,
2016). Other AtNHR2A interactors localized to the extracellular
space and functioning in cell wall biosynthesis included the
extensin AtEXT2 (Liepman et al., 2010), and a proline-rich
glycoprotein (Durufle et al., 2017). However, we did not
find experimental evidence that these two proteins participate
in plant immunity.

In addition to cell wall-related proteins localized to the
extracellular space, AtNHR2A and AtNHR2B interacted with

cytoplasmic proteins that also contribute to cell wall remodeling.
AtNHR2A interacted with the thioglucoside glucohydrolase
(AtTTG1), a myrosinase that functions in the hydrolysis of
glucosinolates (Grubb and Abel, 2006) and the biosynthesis
of callose (Clay et al., 2009). AtNHR2B interacted with
Caffeoyl coenzyme A O-methyltransferase 1 (AtCCoAOMT1),
an enzyme that participates in the biosynthesis of lignin,
a component of the secondary plant cell wall (Liu et al.,
2018). AtCCoAOMT1 has recently being implicated in plant
immunity since this gene is induced by pathogens, and
Atccoamt1 mutants are more susceptible to infections by
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FIGURE 3 | Combined interactome network for AtNHR2A and AtNHR2B. The AtNHR2A-AtNHR2B interactome was combined with predicted gene functional
associations in the STRING database and visualized using Cytoscape v 3.3.0. Circles represent genes color-coded for functional category and subcellular
localization based on literature searches. Orange lines show the interactions between each gene and AtNHR2A and/or AtNHR2B using IP-MS. Gray lines show
predicted functional interactions using STRING network.

P. syringae pv. tomato and Hyaloperonospora arabidopsidis
(Yang Q. et al., 2017). The commonalities between AtNHR2B and
AtCCoAOMT1 prompted us to validate this interaction in vivo
by two independent methods. One method included transient
co-expression of AtNHR2B-GFP and HA-AtCCoAOMT1 in
N. benthamiana followed by co-immunoprecipitation, but using
HA-AtCCoAOMT1 as bait to co-immunoprecipitate AtNHR2B-
GFP in contrast to the original screen that used AtNHR2B-
GFP as bait. We also validated this interaction in vivo by
BiFC and demonstrated that AtNHR2B and AtCCoAOMT1
interacted in the cytoplasm and punctate bodies, which
agrees with the expected localization of AtNHR2B. The
validation of this interaction will pave the way to continue
exploring how AtNHR2B and AtCCoAOMT1 work together
during plant immunity.

Cell wall biosynthetic enzymes and antimicrobials are
localized to the extracellular space because they are secreted
proteins that transition through a secretory pathway involving
the endomembrane system. Our findings that AtNHR2A and
AtNHR2B interacted with extracellular proteins suggest either
that AtNHR2A and/or AtNHR2B are also secreted proteins or
that AtNHR2A and AtNHR2B are components of the secretory
pathway. Although we do not have evidence yet for the secretion
of AtNHR2A or AtNHR2B, our interactome data indicates
that both AtNHR2A and AtNHR2B interacted with proteins
associated with secretory processes. AtNHR2A interacted with
the Prenylated Rab acceptor 1 (AtPRA1.A1) and with AtISTL10,
two proteins that participate in membrane trafficking events

through distinct mechanisms (Alvim Kamei et al., 2008; Buono
et al., 2016). In addition, both AtNHR2A and AtNHR2B
interacted with the coat protein complex I (COPI), a complex of
7 proteins (α, β.β’, γ,δ,ε,ζ) that transports cargo from the Golgi
apparatus to the ER (Brandizzi and Barlowe, 2013). Interestingly,
AtNHR2A interacted with the β subunit while AtNHR2B
interacted with the α subunit, and the interaction between the
α and β subunits was also uncovered with the interactome
network. These results combined with our previous live-imaging
data showing localization of AtNHR2A and AtNHR2B to small
punctae resembling bodies of the endomembrane system (Singh
et al., 2018) strongly suggests that AtNHR2A and AtNHR2B
are involved in endomembrane trafficking related events and
supports our previous hypothesis, based on genetic data, that
AtNHR2A and AtNHR2B work together (Singh et al., 2018).

We also identified as AtNHR2A and AtNHR2B interactors,
other proteins known to participate in plant immunity at
multiple levels including pathogen recognition and regulation of
immune processes. Regarding pathogen recognition, we found
that AtNHR2A interacted with the lectins AtLecRK-S.5 and
AtGAL2 (Hwang and Hwang, 2011; Lannoo and Van Damme,
2014) and three resistance genes: AtRPS5 (Qi et al., 2012), an
NB-ARC type disease resistant protein (van Ooijen et al., 2008),
and BRS650, a LRR-type receptor protein kinase functioning in
brassinosteroid signaling during plant immunity (Xu et al., 2014).
AtNHR2B also interacted with AtTN10, a type of nucleotide
binding-leucine rich repeat (NLR) recognizing pathogen effectors
(Nandety et al., 2013).
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With respect to the interaction of AtNHR2A and AtNHR2B
with proteins known to be important in regulation of plant
immunity, we found that AtNHR2A interacted with AtPRL1, a
protein that interacts with the plant defense transcription factor
AtCDC5 (Palma et al., 2007), with the MAP kinase AtMPK11
(Carrasco et al., 2014), and with AtENGD-1 (Cheung et al.,
2010). AtENGD-1 is a GTP-binding protein that participates in
plant immunity regulating the production of ROS and interacting
with the immunophilin AtCYP19, which is also important for
plant defense responses against P. syringae (Cheung et al., 2010;
Pogorelko et al., 2014; Abdeeva et al., 2018). We successfully
validated the interaction between AtNHR2A and AtENGD-1 by
semi- in vivo co-immunoprecipitation wherein His-AtENGD-1
purified from bacteria was successfully co-immunoprecipitated
by AtNHR2A-GFP expressed and purified from N. benthamiana.
AtNHR2B also interacted with proteins known to play regulatory
roles in plant immunity, specifically the ATL-RING-H2-E3
ubiquitin ligase (Liu et al., 2008) and AtRPN1, a component of
the 26S proteasome subunit (Brukhin et al., 2005). AtRPN1 is
required for resistance against fungal and bacterial pathogens
(Yao et al., 2012). We also validated the interaction between
AtNHR2B and AtRPN1 by using Myc-AtRPN1 as a bait to co-
immunoprecipitate AtNHR2B-GFP. The validations of two of
these interactions between AtNHR2A or AtNHR2B and proteins
known to participate in plant immunity not only supports the
quality of the data obtained by IP-MS, but also provided further
insight into the multiple functions of AtNHR2A and AtNHR2B
in plant immunity.

Because AtNHR2A and AtNHR2B were initially identified as
important components of plant immunity, the main focus of this
research was to unravel immune-related processes in which these
two proteins participate. Indeed, this study found that AtNHR2A
and AtNHR2B interact with a significant number of proteins
known to participate in plant immunity, and, remarkably, cover
a wide range of processes encompassing pathogen recognition,
regulation of immune responses, and deployment of defense
molecules with antimicrobial properties or functioning in the
strengthening of the plant cell wall. Although careful validation
of other interactions is needed, we are confident that this study
provided a solid ground to generate testable hypotheses that will
enable us to further dissect the complexity of plant immunity.
Intriguingly, this study also found several other proteins that
do not appear to function in plant immunity, highlighting

the dynamic and versatile nature of AtNHR2A and AtNHR2B,
possibly working as hubs integrating plant immunity with other
biological processes (Vandereyken et al., 2018).
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