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In the last 10–15 years, the wide application of bioformulated plant beneficial
microorganisms is accepted as an effective alternative of chemical agro-products. Two
main problems can be distinguished in their production and application: (a) economical
competiveness based on the overall up-stream and down-stream operational costs, and
(b) development of commercial products with a high soil-plant colonization potential in
controlled conditions but not able to effectively mobilize soil nutrients and/or combat
plant pathogens in the field. To solve the above problems, microbe-based formulations
produced by immobilization methods are gaining attention as they demonstrate a
large number of advantages compared to other solid and liquid formulations. This
mini-review summarizes the knowledge of additional compounds that form part of
the bioformulations. The additives can exert economical, price-decreasing effects as
bulking agents or direct effects improving microbial survival during storage and after
introduction into soil with simultaneous beneficial effects on soil and plants. In some
studies, combinations of additives are used with a complex impact, which improves the
overall characteristics of the final products. Special attention is paid to polysaccharide
carriers and their derivates, which play stimulatory role on plants but are less studied.
The mini-review also focuses on the potential difficulty in evaluating the effects of
complex bio-formulations.

Keywords: biofertilizers, formulation, immobilization, polysaccharides, additives

INTRODUCTION

Different groups of soil microorganisms, such as root endophytic fungi, mycorrhizal fungi, plant
growth-promoting rhizobacteria, rhizobia, and phosphate solubilizers affect plant growth through
direct and plant-mediated mechanisms, including in stressed conditions (van der Heijden et al.,
2008; Berg, 2009; Shilev et al., 2019). The application of selected plant beneficial microorganisms
individually or as microbial consortia with multifunctional properties is an important tool to
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promote crop health and productivity (Ahmad et al., 2018;
Maron et al., 2018). The scientific literature abounds in
studies on isolation and characterization of plant-beneficial
microorganisms, but only few of them have reached the
commercial market. Many commercial bio-inoculants do not
work under field conditions with the efficiency demonstrated in
greenhouse or laboratory experiments (Stephens and Rask, 2000;
Vassilev et al., 2015; Arora and Mishra, 2016; Malusá et al., 2016)
due to inadequate and/or poor quality formulation, including
poor compatibility and stability of the carriers (Bhattacharyya
and Jha, 2012; Bashan et al., 2016; Baez-Rogelio et al., 2017;
Stamenkovic et al., 2018).

The main roles of the formulation of inoculants are: (i) to
provide a more suitable micro-environment for the microbial
strain/s, combined with physical or chemical protection over a
prolonged period, in order to avoid a rapid decrease of the cells’
viability during storage, (ii) to support the strain/s competition
with the better-adapted native soil microflora, and (iii) to reduce
losses due to the depredation by the micro-fauna after being
introduced into soil. All these functions are aiming at providing a
reliable source of living cells available to interact with plants and
soil microbiome (Bashan, 1998; Herrmann and Lesueur, 2013;
Bashan et al., 2014; Malusá and Vassilev, 2014). Indeed, a critical
number of cells are essential to obtain the expected positive
response from the formulated inoculum (106–107 cells/plant;
Bashan, 1986).

Different microbial formulations have been developed using
liquid or solid materials as carriers. Liquid inoculants are
microbial cultures modified with water, oil or polymers (i.e.,
additives) that improve cell-suspension viscosity, stability and
dispersion capacity (Catroux et al., 2001; Bashan et al., 2016;
Malusá et al., 2016). The problem with this type of products
is that the microbial population and its metabolic activity
decrease rapidly after the introduction of cell suspensions into
the soil, particularly if they are not containing suitable additives.
A special attention has been paid in the recent years on
cell-free formulations (Bashan et al., 2016) like fermentation
broth filtrates (Kumar et al., 2012; Vinale et al., 2014; Vassilev
et al., 2017). Since some plant beneficial microorganisms
demonstrated multiple activities (Vassileva et al., 2010), their
culture extracts contain various metabolic products such as
antibiotics, siderophores, toxins, lytic enzymes (Thrane et al.,
1997; Aydi-Ben Abdallah et al., 2014), and solubilized phosphate
(Mendes et al., 2017; Vassilev et al., 2017), which positively affect
the plant growth. Such type of products and the related strategy
can be denominated as post-biotic.

The solid formulations are based on inorganic or organic
carriers, prepared in solid, granular, or powdery forms and
classified according to their particle sizes or application mode
(Adholeya and Das, 2012; Malusá et al., 2012; Stamenkovic
et al., 2018). The most important solid formulations are
based on carriers such as peat, compost, agro-industrial
wastes, vermiculite, perlite, rock phosphate, calcium sulfate,
and polysaccharides (Sahu and Brahmaprakash, 2016). In the
recent years, in the field of solid formulation technologies,
more attention is paid to polysaccharide-immobilized inoculants
(Malusá et al., 2016) as well as to inoculants produced under

solid-state fermentation (SSF) conditions using agro-industrial
wastes (Vassilev and Mendes, 2018). SSF processes offer many
advantages including co-cultivation of two microorganisms,
enrichment with soluble P (Mendes et al., 2015), induction
of biocontrol activity (Vassilev et al., 2009), as well as the
use of solid substrates alone, combined, and moistened with
liquid wastes (Vassilev and Mendes, 2018). However, the gel-
cell immobilized approach is the technological solution that can
better assure a standardization of the formulated inoculum as
well as its quality.

In this mini-review, we analyze the immobilized-cell approach
underlying the possibilities for its improvement and some
specific characteristics of the carrier structure and formulation,
particularly the role of additional compounds introduced
into the cell-gel structures and the effect of the gel-forming
polysaccharides and their derivates on plant health and growth.

CELL-IMMOBILIZATION AS A TOOL FOR
INOCULANT FORMULATION

In bio-immobilization technology, water-soluble polymeric
materials such as agar, methoxy-pectin, gellan gum, and mixtures
of xanthan and locust bean gum, among many others, are
largely used in the production of microbial-based products but
alginate and carrageenan are the most used polymer-forming
materials in microbial formulations to be introduced into soil-
plant systems (Bashan, 1998; Vassilev et al., 2001, 2005, 2014).
The most frequently applied method of microbial cells/spores
encapsulation uses the technique of interfacial polymerization.

There are a number of review papers describing in details
the advantages and the “know-how” of the immobilization
technology applied in formulation of plant beneficial
microorganisms (Vassilev et al., 2001, 2005, 2014, 2015;
Malusá et al., 2012; Bashan et al., 2016; Stamenkovic et al., 2018).
Despite obvious benefits of immobilized-cell formulations of
plant beneficial microorganisms having a controlled cell-release,
their large-scale production and field application are still limited.
One of the main reasons is the relatively high production cost
(Vassilev et al., 2001; Chen et al., 2013; Bashan et al., 2016),
since the cost of the polymeric carrier is higher than the other
solid and liquid formulation components (John et al., 2011).
Furthermore, the structure of a polymer carrier (e.g., that of
alginate) is characterized by a low mechanical strength, which
determines an unstable, uncontrolled release of its content. Cell
mortality during the drying of encapsulated cells has also been
recognized as a critical point of the bioencapsulation process
(Cassidy et al., 1996; Bashan et al., 2002).

A future frontier in this field and one of the solutions
of the above problems is the development of polymeric
nanoparticle coatings (nano-formulations) or microencapsulated
formulations. Microcapsules formulated by Wu et al. (2011)
enhanced the survival rate of Klebsiella oxytoca Rs-5 under
salinity stress. The cells released from microcapsules reached up
to 1010 cfu/g when immersed in physiological saline solution for
3 weeks, improving cotton growth under high salinity conditions
in pot experiments. However, there is the need to fully evaluate
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environmental and health safety issues before such technology
could be implemented at industrial level (Kah, 2015).

Another possibility to develop a cost-effective encapsulated
formulation is to find a low-cost gel carrier or gelling
agent or partly replace the expensive polymer with low-
cost additives. Nano-additives might enhance the stability of
microbial-encapsulated products with respect to environmental
conditions (e.g., desiccation, heat and UV inactivation) or
provide substances needed by the inoculum and consequentially
improve the shelf-life of these products or their delivery (Jampílek
and Králová, 2017; Prasad et al., 2017). Table 1 illustrates the
beneficial effects of some additives.

THE ROLE OF ADDITIVES ON THE
OVERALL PERFORMANCE OF
IMMOBILIZED INOCULANTS

Clay Minerals
There is a wide selection of additional materials used in bio-
immobilized systems, which can serve as carrier bulking agents,
enhance the formulation stability, protect and feed microbial cells
or spores. Since the early studies on gel-entrapped soil microbial
inoculants, polysaccharides/clay minerals combinations were
used to protect the immobilized/encapsulated cells and to ensure
their slow release into the environment (Marshall, 1968; Jung
et al., 1982; van Elsas et al., 1992; Vassileva et al., 1999; Bashan
et al., 2002). Clay minerals such as pyrophyllite have been
experimented as bulking agents (Fravel et al., 1985) and bentonite
and kaolin were used as fillers in alginate-glycerol immobilized
Pantoea agglomerans and Trichoderma harzianum (Zohar-Perez
et al., 2003). The freeze-dried alginate-bentonite and alginate-
kaolin combinations had a considerable positive effect on
the bead’s average wall thickness and significantly increased

microbial survival reducing UV transmission compared to free-
cell and cells immobilized in alginate-glycerol without fillers.

The addition of bentonite to alginate-based formulation
was found to increase the solid content and the porosity of
alginate polymer used as a carrier of Raoultella planticola (He
et al., 2015). Without bentonite, the release of the immobilized
microbial cells was rapid in the first 3-day period followed
by a constant cell release, while the presence of the additive
regulated the continuous flow of the microorganism to the
soil. Pseudomonas putida Rs-198 microencapsulated with a
mix of alginate, bentonite and starch was reported to increase
cotton biomass, soluble protein content, and chlorophylls a, b
and carotenoid concentrations of cotton grown under saline
conditions (He et al., 2017).

Liffourrena and Lucchesi (2018) applied perlite as filler of
alginate microbeads formed in CaCl2 – paraffin emulsion mixture
to formulate P. putida biostimulant. The number of cells reached
108 CFU/g micro-beads and the increase in cell-gel mechanical
stability was proportional to perlite concentration. This amount
was sufficient to colonize Arabidopsis thaliana rhizosphere, with
an increase in colonization over time from 2.1 × 104 to
9.2 × 105 CFU/g soil after 21 days.

Skim Milk
Skim milk is another additive widely used in bioformulations
to enhance cell viability after storage (Yu et al., 2001). Bashan
et al. (2002) found that the addition of skim milk powder
to alginate-encapsulated Azospirillum brasilense significantly
increased the cell number within the cell-bead structure. These
beads degraded faster in soil than beads without skim milk thus
releasing rapidly the entrapped cells into the soil-plant system.
Alginate carrier with 10% skim milk significantly increased the
numbers of Pseudomonas fluorescens cells released into the soil
compared to combinations with soil extract and control beads

TABLE 1 | Examples of beneficial effect of additives on inoculant gel-based formulations.

Microorganism Additive Beneficial effect References

Pseudomonas cepacia; Talaromyces
flavus; Penicillium oxalicum;
Gliocladium virens; Trichoderma viride

Pyrophyllite Bulking agent Fravel et al., 1985

Pantoea agglomerans; Trichoderma
harzianum

Chitin, kaolin or bentonite Reduced UV transmition Zohar-Perez et al., 2003

Raoultella planticola Bentonite Continuous cell release He et al., 2015

P. putida Perlite Cell-gel stability Liffourrena and Lucchesi, 2018

Azospirillum brasilense Skim milk Increased cell number in beads Bashan et al., 2002

P. fluorescens Skim milk Increased cell number and soil; enhanced cell viability Power et al., 2011

Enterobacter sp. Skim milk Better mycorrhization Vassileva et al., 1999

Skim milk and montmorillonite Higher cell survival rate Vassilev et al., 1997

Pseudomonas aeruginosa Skim milk and clay minerals Higher plant growth promotion Cassidy et al., 1995

Fusarium oxysporum Starch High cell viability, shelf life, and soil colonization Bailey et al., 1998

A. brasilense Starch Extended shelf life Ivanova et al., 2005

Penicillium janthinellum Chitin and dry dry olive wastes Chitinase synthesis; biocontrol activity Vassilev et al., 2008

Bacillus subtilis Humic acids Higher survival rate Young et al., 2006

Raoultella terrigena Trehalose Desiccation protection Schoebitz et al., 2013

Bacillus salmalaya Protein hydrolysate High encapsulation index Vejan et al., 2018
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(Power et al., 2011). After 250 days of storage, 100% recovery of
viable cells was obtained from skim milk-alginate encapsulated
P. fluorescens. Enterobacter sp. encapsulated in alginate gel
enriched with 3% skim milk stimulated plant mycorrhization
and demonstrated better bacterial establishment and phosphate-
solubilizing activity in soil (Vassileva et al., 1999). This resulted in
both higher growth of Lactuca sativa and higher number of cells
released in the soil in comparison with plants inoculated with
formulations without skim milk.

Designing complex formulations containing both skim milk
and clay materials can be a strategy to increase the inoculum
efficacy in comparison to single additives. Bentonite clay (3%
w/v) was found to increase the positive effect of skim milk powder
(3% w/v) on the survival rate of P. fluorescens R2f encapsulated
in alginate (van Elsas et al., 1992). In another study, with lac-
lux marked P. aeruginosa, a 1% κ-carrageenan amended with
skim milk and bentonite:montmorillonite (60:40%) was more
effective compared to alginate-skim milk formulation particularly
after a 3-month storage of the dried beads (Cassidy et al., 1995).
Vassilev et al. (1997) used skimmed milk and clay as additives to
enhance metabolic activity in fermentation and soil conditions
as well as the survival rate of the P-solubilizing Enterobacter sp.
entrapped in agar beads.

Starch
Starch has been well studied in various biotechnological schemes
with dried beads or liquid core capsules (Jankowski et al., 1997;
Kim et al., 2005). It has successfully been used as a carrier
or additive in formulations of plant beneficial microorganisms.
In the bioencapsulation matrix, starch reduced the physical
stress to microbial cells and significantly improved their survival
(Bashan et al., 2002). Bacillus thuringiensis was entrapped in
gelatinized corn starch (Shasha et al., 1984), which coupled
with broad-band UV screens such as Congo red provided
protection from solar radiation (Dunkle and Shasha, 1989).
The effectiveness of this system in conidia formation per gram
of mycelium was confirmed with the entomopathogenic fungi
Metarhizium anisopliae and Beauveria bassiana (Pereira and
Roberts, 1991). Complex formulations based on alginate-starch
were used to formulate myco-herbicidal strains of Fusarium
oxysporum (Bailey et al., 1998), which showed high viability/shelf-
life and rhizosphere colonization rate. Two endophytic fungi
(Muscodor albus and Muscodor roseus) producing volatile myco-
fumigants were formulated in a mixture of water-absorbent
starch, corn oil, sucrose, and fumed silica (Stinson et al., 2003).
The produced formulations reduced the disease incidence of
soilborne pathogens but plant growth reduction was observed
probably due to the growth of deleterious rhizobacteria on some
components of the complex carrier.

The protective effect of starch on the microbial cells under
stress conditions is based on the cell adhesion to the starch. This
process depends on the strain and the relationship between the
adhesion to the starch and its use as a substrate (Crittenden et al.,
2001). Furthermore, Tal et al. (1999) reported that the strength
of an alginate-starch bead is directly proportional to its starch
content and the distribution of starch granules within the beads
is homogeneous at higher starch concentration. Even though the

porosity of the beads’ structure decreases with an increase in their
starch content, the opposite tendency is observed after a period
of storage when the porosity increases as the immobilized cells
utilize the starch. The later phenomenon resulted in bacterial
population levels of up to 109 CFU/bead in dry alginate-starch
beads (Ivanova et al., 2005).

Chitin and Chitosan
Chitin and chitosan are oligosaccharides used in formulations as
fillers or coating material, respectively. Chitosan is a bioactive
polymer with a wide variety of functional properties such
as antibacterial activity, non-toxicity, ease of modification,
and biodegradability (Muxika et al., 2017). Addition of chitin
or chitin-containing materials improved the multiplication of
Bacillus subtilis and its fungicidal activity to control Fusarium wilt
(Manjula and Podile, 2001). Chitin and dry olive wastes (DOW)
were mixed with alginate to encapsulate Penicillium janthinellum
(Vassilev et al., 2008). The fungus showed higher chitinase
synthesis compared to alginate-entrapped mycelium, even when
this was added singly with DOW or chitin. The three-component
formulation induced P-solubilizing fungal activity while alginate-
chitin formulation exhibited biocontrol activity suppressing the
soil-borne pathogen F. oxysporum. The use of chitin/chitosan to
encapsulate microbes can also ease the storing and application on
farms, which has been one of the major restriction to the use of
biopesticides in recent times (John et al., 2011).

Chitosan is an excellent chelating agent, well known
for its biocontrol activity against pathogens (Goy et al.,
2009; Franco and Peter, 2011; Berger et al., 2014) and as
elicitor enhances stress tolerance, antioxidant activity, and
production of osmoregulators in plants (Dar et al., 2015). As
a coating material, chitosan can lower the formulation cost,
making the final product multifunctional due to its biocontrol
and plant strengthening activities. The formulations can be
produced by dropping alginate in a chitosan-CaCl2 solution or
introducing already formed alginate beads into chitosan solution
(Wittaya-Areekul et al., 2006).

Chitosan can also be an excellent carrier for plant beneficial
microorganisms (Chanratana et al., 2018). Applying the
methodology used for the development of a controlled-release
fertilizer (Perez and Francois, 2016), where starch was added
to a chitosan-based formulation as a filler, using a sodium
tripolyphosphate aqueous solution as the crosslinking agent,
A. brasilense and P. fluorescens were encapsulated in chitosan-
starch formulation (Perez et al., 2018). The formulated bacteria
survived at least 12 months at room temperature and humidity,
maintaining a high viability (109 CFU of A. brasilense/g and
108 CFU of P. fluorescens/g). When introduced in soil, the
bacterial cell number increased progressively during the first
20 days and then decreased.

Humic Acids
Humic products are known to promote or decrease the
populations or activities of specific microbiome species
(Pukalchik et al., 2019). Encapsulation of B. subtilis in alginate
beads supplemented with humic acids ensured high viability
of the immobilized biostimulant (Young et al., 2006). The
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immobilized gel-humic acid-cell system demonstrated excellent
survival rate after storage for 5 months and slow cell release
at various levels of pH, providing also successful plant growth
promotion by the encapsulated bacteria. The positive effect of
this additive on plant growth can be explained considering its
role as stimulant of the microbial growth and activity (Rekha
et al., 2007) as well as for its effects on the physiology of plants
(Nardi et al., 2002). The addition of humic acids in bacteria
formulations could be also useful to promote root colonization
by native mycorrhizal fungi (Gryndler et al., 2005).

Sugars
Sugars, such as sucrose, trehalose or glucose, are widely used to
preserve microorganisms from changes in the osmotic pressure
and can contribute to their conservation and maintenance
particularly after drying (Morgan et al., 2006). However,
combinations between sugars and sugars-additives have not been
studied before and after the formulation of microbial-based
products although various types of sugars and other additives (see
previous paragraphs) usually improve the overall encapsulation
efficacy. The addition of trehalose to the growth medium
increased the survival of Raoultella terrigena during the drying
process much more effectively protecting against desiccation than
adding it to the matrix solution just prior to drying (Schoebitz
et al., 2013). The complex formulation of B. bassiana based on
the use of skimmed milk powder, polyvinylpyrrolidone K-90, and
glucose was reported to achieve 100% conidial germination and
78% conidial viability, even after storage for 12 months at 30◦C
(Mishra et al., 2013).

Protein Hydrolysates
Protein hydrolysates derived from animal wastes and plant
biomass after chemical, thermal and enzymatic hydrolysis, have
been shown to enhance both nutrient uptake by plants and soil
microbial activity (Colla et al., 2017; Casadesús et al., 2019). The
latter was suggested to be the result of the stimulating presence
of the organic molecules in protein hydrolysates, which serve as
nutrients for the rhizospheric and phyllospheric microorganisms
(Colla et al., 2017). Vegetable protein hydrolysates received more
research interest particularly as co-polymers in microcapsules in
the food, pharmaceutical and cosmetics industries (Nesterenko
et al., 2013) but also in biostimulant production (Colla et al.,
2015). In a recent work, B. salmalaya was encapsulated in
chitosan-alginate-protein (brown rice) capsules, formulated in
slurry or powder achieving an encapsulation index of 99.7 and
89.3%, respectively (Vejan et al., 2018). Such result underlines
the importance of additives based on vegetable proteins in future
studies on formulation of biostimulants by gel-encapsulation.

Glycerol, Silicon, Poly-Lactic Acid, and
Strigolactones
Some compounds with well-manifested functions advantageous
to microorganisms could also be considered as potential
additives. In a recent article we have analyzed the potential
of glycerol, a trihydroxyalcohol widely used as a cell viability
protector in strains’ maintenance practice, in this respect and

suggested the need for more studies on its application in
formulation techniques (Vassilev et al., 2017). Similarly, silicon
has not found wide applications as biostimulant to plants
yet, particularly in encapsulated-cell formulations, although
its benefits were widely reviewed (Savvas and Ntatsi, 2015).
Trials using hydrophobic silica nanoparticles to the water-
in-oil emulsion have shown an improvement in the delivery
of the product, as well as an enhancement in shelf life by
reduction of desiccation (Kaushik and Djiwanti, 2017). The
use of new polymer-forming materials such as poly-lactic acid
(PLA) could also open new possibilities to develop encapsulated
inocula that would benefit of the physical characteristics of these
compounds (Lai et al., 2009). Strigolactones (synthetic analogs),
which communicate with the plant-microbiota systems, have
been suggested as potential active additives (Vassilev et al.,
2015) but as they demonstrate stimulating signals to parasitic
plants and microorganisms (De Cuyper and Goormachtig, 2017),
it would be challenging to develop an effective complex gel-
based biostimulants.

POTENTIAL EFFECT OF THE
GEL-FORMING POLYSACCHARIDES ON
PLANT HEALTH AND GROWTH

Encapsulation of inoculant cells in polymers of polysaccharides
such as alginate and carrageenan has been proposed long time
ago as a technique to ensure controlled release of plant beneficial
microorganisms into soil (Dommergues et al., 1979; Bashan,
1986). Surprisingly, few studies have examined simultaneously
the fate of the gels in soil and the effect of the cell-free carriers
on plants and rhizosphere microbiota. The positive effect on
plants of seaweed crude extracts, the raw material from which
several polysaccharides used for encapsulation technology derive,
is based on the synergic action of growth regulators, osmolytes,
polysaccharides and other algal compounds (Battacharyya et al.,
2015). Seaweeds are known for their action as bioelicitors and
particularly laminarin, carrageenan, and alginate, have been
studied for their plant defense stimulating effects (Chandía et al.,
2004; Khan et al., 2009; El Modafar et al., 2012; Vera et al.,
2012; Zhang et al., 2015; Abouraicha et al., 2017; Ben Salah
et al., 2018). There are strong evidences that polysaccharides
play an important role in the mechanisms of abiotic stress
protection for microorganisms (Vassilev et al., 2012). The
production of alginate as exopolysaccharide increased in bacteria
growing under drought conditions (Sa et al., 2019) creating a
hydrated microenvironment contributing to biofilm architecture
(Chang et al., 2007).

Particularly attractive for increasing plant growth and health
are oligosaccharides derived from natural polysaccharides as they
play the role of signal molecules regulating plant development
and defense (Larskaya and Gorshkova, 2015). They can be
obtained by enzymatic (Murata et al., 1993) and acidic
depolymerization (Haug et al., 1966), and thermal polysaccharide
treatment (Aida et al., 2010). Oligosaccharides produced by
different methods demonstrated different physiological activities
in animal cells (Iwamoto et al., 2005), but this phenomenon
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has not been widely studied on soil-plant-microbiota systems.
A great part of studies on the plant growth promoting
effect of oligosaccharides are performed after γ-irradiation of
polysaccharides such as chitosan, κ-carrageenan and alginate.
In this latter case, the effect of the resulting products on
plants was higher when the irradiation was performed in
solid-state compared to liquid solution (Hien et al., 2012).
Oligochitosan, obtained after gamma-irradiation, was defined as
a growth stimulator and anti-microbial agent for various plant
systems (Muley et al., 2019a) including under conditions of
drought stress (Muley et al., 2019b). Oligosaccharides (galacto-,
isomalto-, fructo-, and xylo-) used as a part of alginate gel
beads were reported to enhance cell viability of oral Lactobacillus
fermentum and carrier stability when exposed to the specific
environmental conditions (Liao et al., 2019). Similar inclusion
of oligosaccharides should be expected in the near future in
formulations of plant biostimulants. Other studies should be
carried out on the behavior of the polysaccharide carriers in
soil-plant systems, particularly to unravel in more details their
degradation processes in soil by plants and/or microorganisms
producing polysaccharide-cleaving enzymes. Such studies could
help addressing the question on how the soil microbiota and
plants are affected by the polysaccharide derivates, including
oligosaccharides, composing the formulation of microbial-
based products.

CONCLUSION

Significant progress has been made in developing formulations
of plant beneficial microorganisms by entrapment in natural
water-soluble polymer-based carriers and their application
as biostimulants. However, published reports often do not
consider or discuss the changes in the carrier characteristics
by the entrapped cells or additives. There are indications
that changed properties of polymers in presence of additives
positively affect their ability to maintain and protect the
microorganisms. Moreover, in many cases the additives
potentially affect plant growth and health and simultaneously

induce microorganisms to release metabolites thus provoking
changes in the typical gel structure and integrity. The resulting
microbial and gel side-products might stimulate plant growth
and exert biocontrol activity. In some cases, it has been shown
that additives are exerting a negative effect on the whole
cell encapsulation system. Manitol was reported to decrease
germination of gel-encapsulated spores (Liu et al., 2015).
Viveganandan and Jauhri (2000) found that charcoal-soil, mixed
with alginate, adversely affected the loading and survival of
phosphate-solubilizing bacteria. Therefore, a deeper analysis
of the relationship carriers-additives-microorganisms-soil-plant
systems can provide important information that is essential
to understand the functional characteristics of immobilized
biostimulants and determine strategies for their application.
Research efforts should also be oriented toward development
of micro-environmental conditions to facilitate the growth and
functional activity of the bioformulates, including in the carriers
specific prebiotic compounds. As we repeatedly pointed out,
research scientists working with immobilization methods should
use techniques already proven in other biotechnological fields.
Further improvement of immobilized cell methodologies should
be based on multidisciplinary research of wide number of experts
in microbiology, plant physiology/pathology, formulation
specialists and agricultural engineers in order to provide efficient,
safe, economically acceptable, and easy to apply complex
biotechnological products for plant growth and health.
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