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Polyploidy is widely recognized as a major evolutionary force in plants and has been
reported in the genus Lippia (Verbenaceae). Lippia alba, the most studied species,
has been documented as a polyploid complex involving at least four ploidal levels. L.
alba presents remarkable chemical and genetic variation and represents a model for
understanding genome organization. Although the economic and medicinal importance
of the species has been widely described, no established polyploid induction protocol
has been reported so far. Here, we describe the production of synthetic polyploid plants
of L. alba using colchicine. The ploidal levels were estimated by flow cytometry and
chromosome counting. In addition, FISH and molecular markers approaches were used
to confirm the stability of the synthetic polyploids. The major component of the essential
oils was estimated by GCMS to compare with the natural individuals. Tetraploids
and triploids were produced providing new opportunities for investigating medicinal,
pharmacological, and economic applications as well as addressing intrinsic questions
involved in the polyploidization process in tropical plants.

Keywords: artificial polyploidy, colchicine, essential oil, FISH, flow cytometry, genomic instability, medicinal
plants, SSR and ISSR markers

INTRODUCTION

Polyploidy (whole-genome multipication) is widely recognized as a major evolutionary force in
plants (Stebbins, 1971; Grant, 1981; Otto and Whitton, 2000; Soltis and Soltis, 2009, 2012; Aversano
et al., 2012; Wendel, 2015; Wendel et al., 2016). It is estimated that polyploidy events occurred
in all angiosperms (Jiao et al., 2011; Albert et al., 2013). Changes in ploidal level may result in
broad phenotypic modifications (e.g., Ramsey and Schemske, 2002; Soltis et al., 2003; Adams and
Wendel, 2005). These changes may provide polyploids with short-term adaptive potential (Van
de Peer et al., 2017) and the opportunity to exploit new niches (e.g., Marchant et al., 2016). In
addition, synthetic polyploids have been largely employed to increase agronomic traits mainly due
to its higher physiological and morphological fitness compared to their natural diploids (Chung
et al., 2017; Cui et al., 2017; Salma et al., 2017; Wei et al., 2018).
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Polyploidy events have been documented in the genus Lippia
(Verbenaceae) (Viccini et al., 2005; Campos et al., 2011; Pierre
et al., 2011). Lippia alba (Mill.) N. Brown (Linnaeus), the most
studied species, has been described as a polyploid complex
involving at least four ploidal levels (2n = 30, 45, 60, and 90)
(Pierre et al., 2011; Reis et al., 2014). An interesting association
between ploidal level and chemical profile of essential oil was also
reported. Diploid and tetraploid accessions are citral producers
while triploid accessions are linalool producers (Viccini et al.,
2014). Genetic distance by molecular markers and phylogenetic
analysis showed that natural accessions grouped by ploidal level
and only one origin of triploids (Lopes et al., 2019, in press).

Lippia alba is a tropical species widely distributed throughout
the Americas. In Brazil, the species is found all over the country
(Reis et al., 2014). L. alba has been characterized by its remarkable
morphological, phytochemical and genetic variations (Manica-
Cattani et al., 2009; Jezler et al., 2013; Reis et al., 2014), as well as
its economic importance and medicinal properties (Hennebelle
et al., 2008). Biological characteristics such as toxicity repellency,
antifungal, antibacterial, and antioxidant properties have been
identified in essential oils or extracts of L. alba that are widely
used in folk medicine (Glamočlija et al., 2011; Chies et al., 2013;
Peixoto et al., 2015).

Considering the medicinal importance of L. alba and
the extraordinary chemical and genetic variation, the species
represents a model for understanding genome organization, the
origin of a natural polyploid, and its association with chemical
profile variation. Thus, the production of synthetic polyploids
constitutes a great opportunity for replicating the natural
polyploidization process in the L. alba complex (Münzbergová,
2017; Pavlíková et al., 2017; Castro et al., 2018), opening a window
for understanding polyploidization in the tropics as well as for
increasing the production of essential oil of economic interest.

Genome doubling is usually induced by compounds that
interfere with cell division and are either applied to ex vitro or
in vitro plants (Dhooghe et al., 2011). Colchicine is the oldest
and most widely used compound for polyploidization induction
(Nebel, 1937; Niel and Scherrmann, 2006; Dhooghe et al., 2011).

Although many studies provide polyploidization protocols
(Rêgo et al., 2011; Gomes et al., 2014; Tavan et al., 2015;
Widoretno, 2016; Salma et al., 2017; Denaeghe et al., 2018),
they generally demonstrate that the optimal procedures are
rather species specific. The development of a proper method
for polyploidization requires the conduction of several tests
to obtain the most suitable combination of antimitotic agent,
concentration, exposure time, type of explants, exposure method,
and the regeneration mode employed (Allum et al., 2007;
Dhooghe et al., 2011; Yang et al., 2014; Sattler et al., 2016).
Therefore, the success of induction depends on the way
each procedure is performed in each phase and the correct
interaction of each step.

In spite of the economic and medicinal importance of L. alba
(Hennebelle et al., 2008; Reis et al., 2014; Viccini et al., 2014; Lopes
et al., 2019, in press) no established polyploidization protocol
for the species has been reported so far. Here, we describe the
production of synthetic polyploid plants of L. alba. We also tried
to broadly understand the consequence of the polyploidization

process, addressing the following questions about the new plants
obtained: (1) Are the ploidal levels and chromosome numbers the
same in all synthetic plants? (2) Do synthetic plants remain stable
over time after polyploidy induction? (3) Do synthetic plants
have the same chemical profile as the natural ones? We hope
our study of these synthetic polyploids provides an opportunity
for industry exploration, to discover new biological activities as
well as to disclose the evolutionary process immediately following
polyploidization, which may be involved in the formation of
natural polyploids.

MATERIALS AND METHODS

Plant Material and in vitro Propagation
A diploid accession of L. alba (2n = 2× = 30) was used for
chromosome duplication. The accession belongs to the L. alba
collection of the Universidade Federal de Juiz de Fora, Minas
Gerais, Brazil (voucher number 48374, deposited at Herbarium
Leopoldo Krieger CESJ-UFJF). In vitro plantlets were maintained
in test tubes containing 15 mL of MS-based medium devoid of
growth regulators and subcultivated at intervals of approximately
40 days. The culture was kept at 25 ± 1◦C under a light
regime of 16/8 h (hours) (light/dark) cycle of 35 µmol m−2 s−1

illumination provided by cool, white fluorescent tubes.

Polyploidy Induction and Acclimatization
of Plantlets
A pilot experiment was performed to determine the most efficient
treatment for polyploidy induction (Supplementary Table S1).
As a result, two concentrations of colchicine were chosen (0.2%
and 0.02%) during 4 h and 72 h of exposure. A colchicine-free MS
medium was used as control.

Both for the pilot and the final experiment, nodal segments
of L. alba were inoculated in colchicine MS medium. At the
end of the exposure time, the explants were washed three
times with autoclaved distilled water, and then inoculated in a
colchicine-free MS medium. For each treatment, one hundred
explants were inoculated in a completely randomized design.
The treatments were composed of four replicates containing
twenty-five explants each.

All plants that survived were in vitro propagated for 40 days.
Individuals from 3 to 7 cm high were acclimated. Approximately
30 days later, the plants were transplanted into 10 L vessels
containing soil and substrate mixture BioPlant (3:1).

Determination of Ploidal Levels
We evaluated the ploidal level of regenerated plantlets in two
moments. At first, flow cytometry was performed using in vitro
plantlets after 40 days of culture. The second evaluation was done
when the plants reached 18 months, in the greenhouse.

For DNA content estimation, around 25 mg of leaves and
roots were chopped in a Petri dish containing 1 mL of cold ice
LB01 buffer (Galbraith et al., 1983). The suspension of nuclei
was filtered and stained with 25 µl of propidium iodide (10 mg
L−1) (Sigma). 2.5 µl of RNA seq (20 mg L−1) (Sigma) was
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added to each sample (Dolezel et al., 2007). At least 10,000 nuclei
were analyzed per sample using a FACSCanto II flow cytometer
(Becton Dickinson). FACS software Diva 6.1.3 was used to build
the histograms that were analyzed using Flowing software 2.5.1
(available at http://www.flowingsoftware.com/).The ploidal level
was checked taking as reference the position of the G1 peak of the
diploid plant. Three estimates were made for each plant.

The chromosome counting, 45S rDNA mapping, molecular
and chemical analyses were performed when the plants were
established in the greenhouse.

Chromosome Counting and 45S rDNA
Mapping
In order to verify the chromosome number and confirm the
ploidal level of synthetic plantlets, root tips were pretreated
with 0.003M of 8-hydroxyquinoline (Sigma) at 4◦C for 9 h
and fixed in ethanol: acetic acid (3:1). The radicular meristems
were submitted to enzymatic maceration in 20% pectinase
(Sigma) and 2% cellulase (Serva-Onozuka R-10) at 37◦C for
6 h. Cytological preparations were performed according to
Carvalho and Saraiva (1993).

The fluorescence in situ hybridization (FISH) was performed
as described by Jiang et al. (1995). The hybridization mixture
was denatured at 85◦C for 10 min and immediately transferred
to an icebox. The slides were denatured at 85◦C for 1 min and
treated with a series of alcohol washes (70, 90, and 100% ethanol
for 5 min each). The hybridization mixture was then added to the
slides and the chromosomes allowed to hybridize at 37◦C for 18 h
in a humidified chamber. Post-hybridization washes were carried
out using 2 × SSC buffer (0.3 mol L−1 sodium citrate, 0.03 mol
L−1 sodium chloride, pH 7) and 1 × PBS buffer (0.136 mol L−1

sodium chloride, 0.27 mol L−1 potassium chloride, 0.1 mol L−1

dibasic sodium phosphate, 0.2 mol L−1 monobasic potassium
phosphate, pH 7.4). Probes were detected with anti-DIG
conjugate with rhodamine (Sigma) and post-detection washes
were performed using 1 × TNT buffer (0.1 mol L−1 Tris,
0.15 mol L−1 sodium chloride, 0.05% Tween-20) and 1 × PBS at
room temperature. Chromosomes were counterstained with 2 µg
mL−1 of DAPI (Sigma). The slides were mounted in Vectashield
(Vector, Burlingame, CA, United States). Signal visualization was
performed under Olympus BX53 fluorescence microscopy and
the images were photographed with an Olympus DP72 camera
attached to the microscope.

DNA Extraction, Amplification, and Data
Analysis
Total genomic DNA from the leaves plants established in the
greenhouse was extracted using the CTAB method (Doyle and
Doyle, 1990) with a minor modification (double extraction
with chloroform-isoamyl alcohol). After extraction, the DNA of
the samples were solubilized and quantified using a Nanodrop
Spectrophotometer (ThermoFisher Scientific, Inc., Wilmington,
DE, United States), diluted to 25 ng µl−1, and kept at −20◦C
for subsequent use.

Eleven ISSR primers (Supplementary Table S2) and seven
SSR primers (Supplementary Table S3) were selected to estimate

the genetic profile of diploid and synthetic polyploid plants.
The SSR primers were synthesized with M13-tailed forward
primers (Supplementary Table S3). PCR was carried out in a
DNA Thermal Cycler Mastercycler R© (Eppendorf-Netheler-Hinz
GmbH, Hamburg, Germany) following the specifications given
in Supplementary Tables S2, S3.

For ISSR analysis the amplification fragments were analyzed
on 2% agarose gels. The products of PCR amplification were
recorded as a binary matrix, in which the presence or absence of
similarly sized fragments were marked 1 or 0, respectively. Only
consistent and reproducible bands between 200 and 800 bp of size
were included in the analysis.

The analysis of allelic polymorphisms was performed
comparing polymorphic bands between the mother plant and
synthetic polyploids. SSR fluorescent products were detected
by capillary electrophoresis using a MegaBACE1000 sequencer
(GE Healthcare, Buckinghamshire, United Kingdom). The
SSR fragment size was measured using the Fragment Profile
program (GE Healthcare, Buckinghamshire, United Kingdom).
All individuals were scored for the presence or absence of SSR
alleles at each of the seven loci. The data were entered into
a binary matrix as discrete variables, 1 for presence and 0 for
absence of the allele, and this data matrix was subjected to genetic
distance analysis.

The Jaccard and Dice coefficients were used to generate
dendrograms for ISSR and SSR data using the Unweighted
Pair Group Method with Arithmetic Means (UPGMA) and to
estimate the similarity values among accessions. The genetic
distance and bootstrap analyses of the data were performed with
1000 repetitions using Ntsys v2.11 software (Rohlf, 2000) and
PAST (Hammer et al., 2001). As the ISSR and SSR dendrograms
showed the same result, they were performed together.

The genetic profile was investigated using Bayesian inference
clustering as implemented in Structure 2.3.41 (Pritchard et al.,
2000), and final plots were produced in Structure Plots v2.0
(Ramasamy et al., 2014). We analyzed 12 accessions as dominant
data, coded as presence/absence, using the admixture model
with uncorrelated allele frequencies (Stift et al., 2019). The
Monte Carlo Markov Chain was run for 100,000 steps, following
a burn-in of 10,000 steps. Simulations were performed for
the number of groups (K) varying from 1 to 10. We used
Structure Harvester (Earl and VonHoldt, 2012) to calculate 1Km
(Evanno et al., 2005).

Essential Oil Microextraction
Leaf tissue (approximately 300 mg) from each individual was
frozen in glass vials at −18◦C for 24 h. After freezing,
0.5 mL of hexane and 0.25 mL of methanol were added
to each sample. The samples were kept in a 70 KHz
ultrasonic bath (Thornton-INPEC) at room temperature for
1 h to accelerate the extraction process. Subsequently, the
supernatant was filtered through a sterile cotton swab. From
the clear solution of extracted oils 1 µL was analyzed on a
mass spectrometer gas chromatograph (GCMS-QP2010 Plus;
Shimadzu). A 30 m × 0.25 mm Rtx-5MS R© (Restek) column was

1http://pritchardlab.stanford.edu/structure.html

Frontiers in Plant Science | www.frontiersin.org 3 March 2020 | Volume 11 | Article 292

http://www.flowingsoftware.com/
http://pritchardlab.stanford.edu/structure.html
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00292 March 24, 2020 Time: 15:59 # 4

Julião et al. Polyploidy Induction in Lippia alba

used. The oven temperature programming started at an initial
temperature of 70◦C, maintained for 3 min, followed by an
increase of 6◦C min−1 to 300◦C. The injector was operated in
split mode (1:10), at 240◦C, an interface and the mass detector
operated at 300◦C. Helium was used as a carrier gas, with a flow
of 1.53 mL min−1. A standard mixture of linear hydrocarbons
was injected under the same conditions of use. Component
identification was performed by comparing mass spectra with
data from the NIST 9.0 database (correlation > 97%) and
confirmed by retention index (Kováts Index) being calculated
for each component and compared to data in the literature
(Adams, 2007).

RESULTS

Polyploidy Induction and Ploidal Stability
Based on the pilot experiment (Supplementary Table S1), we
decided to evaluate two concentrations of colchicine, 0.2% and
0.02% during 4 h and 72 h of exposure. Forty days after
culture, the ploidal level of regenerated plantlets were assessed.
Mixoploids and tetraploids were identified (Figures 1B,C).
The treatment of 0.2% colchicine showed the highest effect
on the modification of the ploidal level of surviving plants.
Five mixoploids were obtained when 0.2% colchicine was
applied for 4 h, and one tetraploid was observed when 0.2%
colchicine for 72 h was used. Using 0.02% colchicine during
4 h, three mixoploid plants were regenerated (Table 1). For
ploidy determination, the value of the DNA content of the
diploid plant (2.56 ± 0.06 pg) was used as a reference
(Figure 1A). The tetraploids showed the double of DNA content
observed for diploids (2C = 5.14 ± 0.03 pg). The mixoploids
showed two peaks, corresponding to diploid and tetraploid cells
(Figure 1B). Synthetic mixoploids and tetraploids were in vitro
cultivated for 3 months.

After that, the plants were transferred to the greenhouse and
their ploidal levels were reassessed. The two peaks previously
identified for mixoploids were replaced and only one peak was
revealed that showed the same C-value of natural triploids
(2C = 3.97 ± 0.03 pg) (Figure 1D). In other words, the
mixoploids became triploids. The tetraploids maintained the
ploidal level initially estimated (Figure 1E). We assessed a total
of five synthetic tetraploids and six synthetic triploids. The flow
cytometry analysis confirmed the stability of the ploidal level in
two tissues (leaf and root) over 5 years. No chimeras were found
during this period (Supplementary Figure S1).

Chromosome counts confirmed 2n = 30 for the diploid
(mother plant), 2n = 60 for tetraploids and 2n = 45 for triploids
(Figure 2). In addition, some aneuploid cells also were observed
in emergent triploids. Their chromosome numbers ranged from
2n = 30 to 2n = 60. FISH mapping of ribosomal genes revealed
six terminal sites for diploid, nine for triploids and 12 for
tetraploids (Figure 2).

Molecular Profile
Fifty-five ISSR loci with an average of five loci per primer were
observed. The number of loci ranged from three (UBC-859)

to seven (UBC-826 and UBC-857). The fragment size ranged
from 200 to 800 bp (Supplementary Table S2). The analysis of
allelic polymorphisms was performed comparing the synthetic
polyploids (triploids and tetraploids) with the mother plant. The
number of polymorphic bands between the mother plant and
synthetic triploids ranged from 24 to 31, while between the
mother plant and synthetic tetraploids it varied from one to three.
Four out of six synthetic triploid plants showed polymorphisms
for all primers. The tetraploid plants showed polymorphism for
only one or two primers. A high percentage of polymorphism
(43.63 to 56.36%) was detected between the mother plant and
synthetic triploids. The comparison between the mother plant
and the synthetic tetraploids showed lower polymorphism rate,
ranging from 1.81 to 5.45%. These polymorphisms are mainly
due to the presence of fragments in synthetic polyploid plants that
were not observed in the mother plant.

The analysis of SSR loci revealed 25 alleles, with an
average of 3.6 alleles per primer. The size of the alleles
ranged from 101 to 193 base pairs. The analysis of the
allelic polymorphisms was performed as for ISSR markers. The
majority of new alleles were observed in synthetic triploids.
On average, up to 77% of alleles detected in triploid plants
correspond to new alleles, while tetraploid plants revealed 18 to
36% of new alleles.

The analysis of genetic similarity was done separately for
ISSR and SSR (data not shown) and showed similar results.
Therefore, the analysis was performed together. The similarity
coefficients ranged from 0.35 to 0.98 (average of 0.68). Based
on the similarity index, two clusters were formed: one with the
mother plant and synthetic tetraploids, and another with only
synthetic triploid plants. The similarity index among the mother
diploid plant and the synthetic tetraploids varied from 0.84 to
0.98 (average of 0.93). Regarding the triploids, the coefficient
of similarity among them ranged from 0.85 to 0.98 (average
of 0.95). Considering all plants analyzed, the lowest similarity
value (0.346) was observed between tetraploid and triploid
plants, and the highest (0.982) was observed among triploid
plants (Figure 3A).

The Structure analysis using 1Km (Evanno et al., 2005)
method indicated that the best number of groups is K = 3. This
analysis revealed the genetic structure among the natural diploid
and synthetic plants (Figure 3B). The triploid plants seem to be
distinct from the other ploidal levels while the tetraploids showed
a genomic structure similar to the mother plant (Figure 3B).
These results are similar to those observed using the similarity
analysis (Figure 3A).

Essential Oil Profile
Using gas chromatography coupled to a mass spectrometer, it
was possible to identify the components of the essential oil of
synthetic polyploid plants of L. alba. The main constituents
detected were citral (neral and geranial) and linalool (Figure 4).
The citral was the major component essential oil of the
natural diploid (77.51%) and synthetic tetraploids (from 52.71
to 77.04%). The linalool constituent was detected as a major
component in all synthetic triploid plants, ranging from 20.3 to
54.13% (Figure 4).
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FIGURE 1 | Representative histograms of the mother plant and synthetic polyploids. (A) mother plant (diploid), (B) mixoploid, (C) tetraploid 40 days after polyploidy
induction, (D) triploid, and (E) tetraploid acclimatized in the greenhouse.
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TABLE 1 | Survival rate and ploidal level of Lippia alba treated with colchicine at
different concentrations and exposure times.

Explants exposed Surviving Tetraploid Mixoploid

4 h Control 100 78 – –

0.02% 100 58 – 3

0.20% 100 38 – 5

72 h Control 100 64 – –

0.02% 100 44 – –

0.20% 100 11 1 –

DISCUSSION

The induction of polyploids has been widely used as a strategy
to investigate the effects of artificial genomic duplication on
several plant species. Morphological, histological, physiological,
agronomic, and genomic traits have been evaluated in different
studies (Adams and Wendel, 2005; Buggs et al., 2008; Rêgo
et al., 2011; Hegarty et al., 2013; Gomes et al., 2014; Tavan
et al., 2015; Gao et al., 2016; Iannicelli et al., 2016; Yan
et al., 2016; Sadat-Noori et al., 2017; Salma et al., 2017;
Zhou et al., 2017).

Although polyploidy induction has been widely recognized
as an important strategy for chromosome duplication in plants,
the protocols are still associated with low efficiency. Here we
reported the first attempt to produce synthetic polyploids in L.
alba. The pilot experiment sought to screen interactions between
colchicine concentrations and exposure times. We obtained the
higher survival rates when lower colchicine concentrations and
shorter exposure times were employed. The same effect was
previously reported for other species, and was mainly attributed
to the toxic effect of colchicine (Niel and Scherrmann, 2006;
Lehrer et al., 2008; Sajjad et al., 2013).

The number of polyploid plants here obtained suggests
that the 0.2% colchicine concentration combined with 4 h
exposure time was the most successful treatment. This opens
good perspectives for new trials on testing the procedure
using plants at different stages of development as well
different ploidy, in particular if we consider that L. alba has
naturally at least four ploidal levels which have been described
(Reis et al., 2014).

The ploidal level of synthetic polyploid plants should be
periodically checked to ensure the maintenance of the ploidal
level (Väinölä, 2000; Harbard et al., 2012; Blasco et al., 2015).
The analyses of flow cytometry, chromosome counting, genetic
and chemical diversity are important for identifying possible
phenotypic and genotypic variations in synthetic polyploids.
Here we observed that tetraploids kept their ploidal level,
while mixoploids did not. Stable synthetic tetraploids have been
reported in Eriobotrya japonica (Thunb.) Lindl (Blasco et al.,
2015) and in Rhododendron L (Väinölä, 2000). On the other
hand, instability of synthetic tetraploid plants was observed in
Acacia mangium Willd. Two tetraploid plants were reclassified
as diploids and two as mixoploid 16 months later, when
the plants were transferred from the greenhouse to the field
(Harbard et al., 2012).

These results reveal that the response to the duplication
process may vary among species, according to the methodology
employed and the maintenance of the synthetic plants.
Vanstechelman et al. (2010) suggest that synthetic polyploid
plants should be reanalyzed after the in vitro micropropagation
procedure. According to the authors, many sectoral chimeras
are not detected in the first analysis by flow cytometry.
Plants of Spathiphyllum wallisii Regel, for instance, that were
initially classified as tetraploids showed roots with diploid
and/or mixoploid cells (Vanstechelman et al., 2010). Here, the
synthetic tetraploids of L. alba presented sixty chromosomes in
the metaphases confirming the ploidal level indicated by the
flow cytometry analysis. Chromosome mapping of tetraploids
showed that the number of 45S rDNA increases proportionally,
revealing that the protocol was able to duplicate the genome
with no evidence of chromosomal rearrangements after the
duplication. The synthetic tetraploids grouped with the mother
diploid plant with high genetic similarity. Similar results
were observed when a larger number of natural diploid and
tetraploid accessions were studied together using microsatellites
and phylogenetic inferences (Lopes et al., 2019, in press).
On the other hand, FISH mapping of ribosomal genes in
natural tetraploids of L. alba previously revealed only eight 45S
sites (Reis et al., 2014). The difference between natural and
synthetic tetraploids regarding the number of 45S markers can be
attributed to the structural alterations and genome downsizing,
frequently reported in natural polyploids (Hegarty et al., 2013;
Doyle and Coate, 2019).

Although synthetic tetraploids showed a similar karyotype
compared to the natural diploid, the mixoploid individuals
revealed a different scenario. Interestingly, when the DNA
content of mixoploids was reassessed, we realized that the plants
presented an intermediary DNA amount between diploid and
tetraploid, that was equivalent to the natural triploids. Besides,
the metaphases of synthetic triploids had 2n = 45 chromosomes,
as observed for natural triploids of L. alba, suggesting that
some chromosomes were lost in tetraploid cells. Losses of whole
chromosomes can occur in regenerated mixoploids in attempt
to stabilize the genomic constitution after polyploidy induction
in the short-term, but the emergence of a new ploidal level
seems to be rare (Dodsworth et al., 2016; Regalado et al.,
2017; Salma et al., 2017; Doyle and Coate, 2019). In addition
we could not cannot discard the possibility that some cells
2n = 45 could be present in small quantity in mixoploids and
this ploidal level increased in detriment of the others after the
acclimatization in greenhouse. More studies need to be done for
a better understanding of how the emergence of the synthetic
triploids occurs.

Commonly, the polyploid induction may result in
chimeras, that typically became stable at one ploidal level.
However, some individuals maintain the mixoploidy state
(Harbard et al., 2012; Eng and Ho, 2019). In L. alba, one
natural mixoploid individual was described previously, but
chromosome losses were not notified in this accession and
the mixoploidy was stable over time (Pierre et al., 2011).
Curiously, this mixoploid had cells with chromosome
number ranging from 2n = 12 to 60, being 44, 45, and
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FIGURE 2 | Representative metaphases of three Lippia alba cytptypes: (A) diploid (2n = 30), (B) triploid (2n = 45), and (C) tetraploid (2n = 60) individuals.
Chromosomes were counterstained with DAPI (blue), 45S rDNA marker was stained with rhodamine (red). Bar = 5µm.

FIGURE 3 | Molecular profile of synthetics plants of Lippia alba. (A) Dendrogram of genetic similarity by UPGMA of presence/absence of alleles using combined data
(ISSR and SSR makers) from 12 plants of L. alba. The colors of the branches represent different ploidal levels: diploid in orange, triploid in green, tetraploid in blue.
* represents bootstrap values above 50% and ** represents bootstrap values above 90%. Dendrograms with JACCARD and DICE coefficients were identical.
(B) Bayesian analysis of the genetic structure of 12 plants of L. alba. The colors represent the proportion of the genome shared for each individual. Similar genomes
are represented by the same color.
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FIGURE 4 | Percentage of the major essential oil content detected by gas
chromatography. Mother diploid plant (7), synthetic triploid plants (1–6) and
synthetic tetraploid plants (8–12). Gray bars, Citral; Black bars, Linalool.

46 the most frequent numbers of chromosomes observed
(Pierre et al., 2011).

Here we observed the majority of aneuploid cells in synthetic
triploids varing from 2n = 38 to 47, but they were restricted to
a few metaphases. These cells may be remnants of the previous
mixoploidy state. This fact might be linked to a putative process
of karyotype uniformity and these cells possibly have some
advantage over diploid cells. Although it can be considered a
rare event, the emergence of triploid plants using a protocol to
produce synthetic tetraploids has been previously described. In
Pyrus communis L., triploid plants were obtained after in vitro
treatment of leaf explants with colchicine (Sun et al., 2009). The
treatment of apical meristems with colchicine generated triploid
plants of poplar (Ewald et al., 2009). The germinated seedlings of
trifluralin-treated Rosa chinensis Jacq. yielded triploid (2n = 3×)
and aneuploid (2n = 3×−1) plants (Zlesak et al., 2005). None
of the authors above explained the emergence of triploid plants
obtained during tetraploid induction treatments.

In addition to the numerical variations, structural
rearrangements are frequently reported in recently formed
polyploids and such alterations can originate new allelic
polymorphisms among individuals (Tayalé and Parisod, 2013).
The triploids showed the highest polymorphism rates and
new alleles when compared to the mother diploid. The DNA
elimination and a genomic shocking (Buggs et al., 2008)
might explain these results. The genomic reorganization
detected by molecular markers has also been identified in
Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino,
Paspalum notatum Flüggé, Citrullus lanatus (Thunb.) Mansf.,
and Eragrostis curvula (Schrad.) Nees (Martelotto et al., 2007;
Mecchia et al., 2007; Wang et al., 2009). On the other hand,
the new synthetic tetraploids showed similar molecular profile
when compared to the mother plant (diploid), corroborating
the cytogenetic data. Similar results have been observed
in Solanum commersonii Dunal, Solanum bulbocastanum
Dunal, and in Citrus limonia (L.) Osbeck (Allario et al.,
2011; Aversano et al., 2013, 2015). The distinctiveness of
the triploids and the similarity of the tetraploids comparing
with the diploid was also detected by genetic similarity
analysis. Interestingly, the same scenario was previously

observed for natural triploids when the molecular profile,
the essential oils production, and the morphology were
assessed. Triploids seem to be particularly different comparing
with other ploidal levels (Viccini et al., 2014; Lopes et al.,
2019 in press).

Regarding the essential oil production, the synthetic
tetraploids produced the same major component of the
essential oil that was produced by the mother plant, while
the triploids changed the major component to linalool. The
synthetic polyploids showed the same profile observed for the
natural polyploids (Viccini et al., 2014). The analysis of the
metabolism of autopolyploid plants suggests that polyploidy
may cause both qualitative and quantitative changes in the
essential oil, due to changes in the mechanisms that regulate its
biosynthesis (Fasano et al., 2016; Iannicelli et al., 2020). Vieira
et al. (2016) suggested that synthesis of citral, geraniol and
other compounds prevailed in diploids, while non-oxygenated
monoterpenes were the major ones in polyploids of Citrus
limonia. Hannweg et al. (2016) also identified changes in major
chemical components of essential oils due to the polyploidy
induction in Tetradenia riparia (Hochst.) Codd (Lamiaceae),
a close related family of Verbenaceae. The metabolic activity
may be increased due to alteration of gene expression or
changes in the concentration of the secondary metabolites
(Fasano et al., 2016; Iannicelli et al., 2020). Evidence of the
genetic duplication affecting metabolic profiles of different
plant species has been widely reported (Caruso et al., 2011;
Dehghan et al., 2012; Trojak-Goluch and Skomra, 2013; Gomes
et al., 2014; Xu et al., 2014; Tavan et al., 2015; Iannicelli et al.,
2016) which reinforces the application of genome duplication
protocols for manipulating the biosynthesis of compounds of
economic interest.

CONCLUSION

The polyploidization protocol was able to produce stable
polyploids in L.alba. The synthetic tetraploid showed the same
ploidal level over time with similar molecular, karyotipic,
and chemical profiles. Interestingly, the mixoploids underwent
karyotype uniformity, and the majority of their cells showed 45
chromosomes. Besides that, the emergence of alleles and changes
on the major component of essential oil were observed.

The production of synthetic polyploids enables comparison
with the natural polyploidization process. Considering all loci are
potentially homozygous it is possible to infer how the increase in
genome size affects the phenotype.

Taking into account that the species is an aromatic shrub
with pharmacological and economic applications, those synthetic
plants may open a new scenario for manipulating the genome,
regarding the gene expression profile or the production of
secondary metabolites of commercial interest (Castro et al., 2018;
Long et al., 2019).

Few examples of polyploid complexes from the tropics have
been documented (Rice et al., 2019), which makes L. alba a
potential species for studying the polyploidization process in
non-model plants.
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