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Perennial grains could simultaneously provide food for humans and a host of ecosystem
services, including reduced erosion, minimized nitrate leaching, and increased carbon
capture. Yet most of the world’s food and feed is supplied by annual grains. Efforts to
domesticate intermediate wheatgrass (Thinopyrumn intermedium, IWG) as a perennial
grain crop have been ongoing since the 1980’s. Currently, there are several breeding
programs within North America and Europe working toward developing IWG into a
viable crop. As new breeding efforts are established to provide a widely adapted
crop, questions of how genomic and phenotypic data can be used among sites and
breeding programs have emerged. Utilizing five cycles of breeding data that span 8
years and two breeding programs, University of Minnesota, St. Paul, MN, and The
Land Institute, Salina, KS, we developed genomic selection (GS) models to predict
IWG traits. Seven traits were evaluated with free-threshing seed, seed mass, and
non-shattering being considered domestication traits while agronomic traits included
spike yield, spikelets per inflorescence, plant height, and spike length. We used
6,199 genets – unique, heterozygous, individual plants – that had been profiled with
genotyping-by-sequencing, resulting in 23,495 SNP markers to develop GS models.
Within cycles, the predictive ability of GS was high, ranging from 0.11 to 0.97. Across-
cycle predictions were generally much lower, ranging from−0.22 to 0.76. The prediction
ability for domestication traits was higher than agronomic traits, with non-shattering and
free threshing prediction abilities ranging from 0.27 to 0.75 whereas spike yield had
prediction abilities ranging from −0.22 to 0.26. These results suggest that progress
to reduce shattering and increase the percent free-threshing grain can be made
irrespective of the location and breeding program. While site-specific programs may
be required for agronomic traits, synergies can be achieved in rapidly improving key
domestication traits for IWG. As other species are targeted for domestication, these
results will aid in rapidly domesticating new crops.

Keywords: intermediate wheatgrass, genomic selection, multi-environment, domestication, perennial crops,
shared data resources

Abbreviations: BLUPs, best linear unbiased predictors; GBS, genotyping-by-sequencing; GS, genomic selection; IWG,
intermediate wheatgrass; PCA, principal component analysis; QTL, quantitative trait loci; SNP, single nucleotide
polymorphism; TLI, The Land Institute.
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INTRODUCTION

Currently, 80% of the world’s calories are provided by annual
crops (Pimentel et al., 2012), with only three crops, maize
(Zea mays), wheat (Triticum aestivum), and rice (Oryza sativa),
providing nearly 60% of human calorie consumption (fao.org).
Additionally, 70% of arable land is planted to annual crops
(Cox et al., 2010; Pimentel et al., 2012) that are resource-
intensive and can result in environmental degradation (Power,
2010; Crews et al., 2018). Perennial grain crops could provide
abundant ecosystem services while simultaneously providing
food, feed, and fuel for the global population. To date,
there are no widely planted perennial grain crops, but
recent research has resulted in large scale evaluations of
perennial rice (Huang et al., 2018) and perennial versions
of several other crops including wheat, sorghum (Sorghum
bicolor), sunflower (Helianthus), and pulses are in development
(Batello et al., 2013).

One species showing promise for domestication and wide-
scale production is intermediate wheatgrass (Thinopyrum
intermedium, IWG). Intermediate wheatgrass is native to Eastern
Europe and the Mediterranean region (Tsvelev, 1983) and
was introduced into the United States for erosion control
and forage purposes in 1932 (Vogel and Jensen, 2001). This
species was selected for domestication as a grain crop in
the 1980’s from an evaluation of nearly 100 perennial grasses
based on its seed size, vigorous growth habit, and potential
for mechanical harvest, among other desirable characteristics,
at the Rodale Institute, Kutztown, PA (Wagoner, 1990). In
the early 2000’s after two cycles of selection at the USDA’s
Big Flats Plant Materials Center, Corning, NY, breeding efforts
shifted to The Land Institute (TLI), Salina, KS (Zhang et al.,
2016). Since 2003, nine cycles of selection have been completed
at TLI. Interest in IWG has led to the development of
several other breeding programs, including the University of
Minnesota (UMN) and University of Manitoba in 2011 using
material from the third cycle of selection from TLI (TLI-
C3) (Zhang et al., 2016). Products made from IWG grain are
being sold under the trade name Kernza in limited markets
(DeHaan and Ismail, 2017).

Along with intensive breeding effort, IWG has also been
evaluated for a host of ecosystem services. Research has
shown that IWG can reduce soil nitrate leaching by 86%
or more compared to annual wheat crop systems (Culman
et al., 2013). Jungers et al. (2019) found that nitrate leaching
under perennial grasses, including IWG, were one to two
orders of magnitude less than annual maize. IWG has also
been reported to have 15 times more root growth and
nearly two times the above-ground biomass of annual wheat
(Sprunger et al., 2018), which should translate into greater
below-ground carbon storage rates. Research also indicates
that perennial landscapes have significantly increased and
diverse microbial communities, allowing for greater food web
complexity and increased nutrient cycling capacity (Culman
et al., 2010; Pugliese et al., 2019). While IWG has the
potential to provide both food and ecosystem services, factors
such as grain yield and ability to mechanically harvest must

be improved to an economically viable level for farmers to
adopt this new crop.

Breeding new crops from wild species requires domestication,
which often utilizes rare allelic mutations to facilitate the
development of crops. One common domestication trait has been
the prevention of shattering, which enables mechanical harvest.
Numerous domestication events have been recorded in barley,
rice, and sorghum (Østerberg et al., 2017), with reduction of
shattering a hallmark of domestication as the plant becomes
more dependent on humans for seed dispersal (Purugganan
and Fuller, 2009). Other key traits that have evolved through
domestication include larger seed size, free threshing seeds, and
an increase in percent seed set (Harlan et al., 1973). Within
IWG breeding, key domestication traits being targeted are greater
percent of free threshing seeds, reduction in seed shattering, and
increased seed mass.

Early work in domestication architecture through quantitative
trait loci (QTL) often suggested single or a few genes with
large effects (Koinange et al., 1996; Olsen and Wendel, 2013),
which would allow for more efficient selection than selection on
numerous loci with small effects (Falconer and Mackay, 1996).
As molecular tools and studies have improved, there has been
increasing evidence that many domestication traits are controlled
by numerous loci with small effects. While the exact number
of domestication genes is unknown (Meyer and Purugganan,
2013), in maize one study has identified nearly 500 genomic
regions that had been under selection for domestication features
(Hufford et al., 2012).

While original IWG breeding work utilized recurrent
phenotypic selection, modern genetic tools have provided
breeders with new options. One of the most promising genetic
tools for breeding is genomic selection (GS). Proposed by
Meuwissen et al. (2001), GS functions by having dense marker
coverage of the entire genome so that each QTL is in linkage
disequilibrium with a marker (Goddard and Hayes, 2007). Using
a population that has been both phenotyped and genotyped, a
model can be developed to predict the phenotype of individuals
that have only been genotyped. GS has been shown to increase
the rate of genetic gain in animal and plant breeding (Bernardo
and Yu, 2007; García-Ruiz et al., 2016; Crossa et al., 2017).
Given the predicted benefits of GS, Zhang et al. (2016) evaluated
the potential of GS in IWG for the UMN breeding program,
and currently, TLI is primarily using GS within their IWG
breeding program.

While multiple locations are breeding IWG, there has been
limited integration of information between breeding programs.
The opportunity to utilize molecular tools like GS across wide
environments could open new potentials for faster genetic
improvement, specifically by increasing the training population
size (VanRaden et al., 2009), integrating more genotypes
(Knapp and Bridges, 1990), and taking advantage of correlated
environments (Spindel and McCouch, 2016). Genomic selection
has been used to improve a variety of polygenic agronomic
traits including yield, quality and disease resistance (Rutkoski
et al., 2014; Battenfield et al., 2016; Guzman et al., 2016). For
crop wild relatives undergoing domestication, there has been
less work on the ability of GS to improve key domestication
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traits such as shattering and free threshing. Work by Zhang
et al. (2016) suggested that GS could be used to improve free
threshing in IWG.

Applying GS to IWG across multiple environments could
be a very cost-effective and efficient method to increase
IWG breeding gains, but even within annual crops there
is limited information about multi-site or multi-environment
GS compared to single site GS studies. Lopez-Cruz et al.
(2015) found that using marker-by-environment interactions
resulted in a greater prediction accuracy than using within-
environment models. A reaction norm model was used to
generate prediction accuracies up to 0.4 in wheat in different
environments throughout Kansas (Jarquín et al., 2017). In
barley (Hordeum vulgare), a multi-environment GS model
was shown to increase prediction accuracy 11% over single-
environment analysis (Oakey et al., 2016). Resende et al. (2012)
found that prediction accuracies in loblolly pine (Pinus taeda)
were relatively consistent across environments as long as the
environments were within the same breeding zone. However, in
both of these examples many of the lines had true replication,
whereas the IWG programs usually have single genotypes due
to the challenges of cloning large numbers of individuals.
As IWG breeding expands, the ability to combine data
across multiple locations and breeding programs with differing,
unreplicated, germplasm could be beneficial to increasing the rate
of genetic gain.

Given the need for new crops and the challenges associated
with developing perennial crops, this study focused on (1) How
data from diverse sites and breeding programs could be combined
to improve prediction abilities of models for enhanced selection
decisions, (2) The ability of GS to accurately predict traits
across a range of environments and traits, with emphasis on
differences between domestication and agronomic traits, and (3)
How insights gained from IWG breeding could be applied to
other potential new crops undergoing domestication.

MATERIALS AND METHODS

Plant Material and Field Establishment
Using terminology consistent with Zhang et al. (2016), we
refer to a genet as a unique individual plant with its own
genetic makeup. The genets used for this study consisted
of the TLI Cycles 6, 7, and 8 (TLI-C6, TLI-C7, TLI-C8)
and UMN Cycles 1 and 2 (UMN-C1, UMN-C2) breeding
programs. The IWG TLI-C6 consisted of 3,658 genets from
674 full-sib families grown in one site location at Salina, KS
(38.7684◦ N, 97.5664◦ W) between 2015 and 2017. Genets
were established in the fall of 2015 with 91 cm between
rows and 61 cm between columns, and phenotypic evaluations
were conducted in 2016 and 2017. DeHaan et al. (2018)
provide additional details about the TLI-C6 population. TLI-
C7 was formed from random intermating between selected
TLI-C6 genets. Genomic selection was used in the TLI-C7
generation, and a training population consisting of 1,179 genets
from approximately 4,000 genotyped genets, was planted in
the fall of 2017. TLI-C8 genets were progeny from selected

TLI-C7 individuals and consisted of 988 selected, training
population genets from approximately 3,500 genotyped genets,
with field planting occurring in the fall of 2018. Both TLI-
C7 and C8 were divided into two groups with approximately
half of each cycle being planted in an irrigated field, and the
other half in a non-irrigated field, providing two contrasting
environments for evaluation.

UMN-C1 consisted of 2,560 genets from 66 half-sib families
from TLI-C3 material. Genets were established in the field, St.
Paul, MN (44.9906◦ N, 93.1799◦ W) in the fall of 2011 with
field observations in 2012 and 2013. Additional information
about the UMN-C1 population can be found in Zhang et al.
(2016). The UMN-C2 training population consisted of 372 genets
that were established in the fall of 2014 with observations in
2015 and 2016. UMN-C2 was obtained from open-pollination
of 48 genets selected from the UMN-C1 population with
the best agronomic performance. UMN-C2 consisted of 1,656
genets, but phenotypic observations were only recorded for
372 genets, the training population for GS within the UMN
breeding program. In both cycles, genets were planted in a
single replication at a distance of 1 m rows and columns,
67 kg ha−1 of N was applied in April of each year. Weed
control in the plant nurseries was primarily done manually
with a one-time application of herbicide Dual II Magnum
(S-Metolachlor 82.4%, Syngenta) in April at a rate of 1.2 L
ha−1. Experimental genets were surrounded on all sides with
IWG plants. While each program is selecting genets for its
respective growing region, all original UMN material, i.e., UMN-
C1, came from TLI-C3, providing a common genetic link
between the programs. All genets were evaluated as single plants
with no replication.

Field Evaluations
Field evaluations were completed for several key domestication
and agronomic traits including: plant height, spikelets per
inflorescence, spike length, spike yield, shattering, seed mass, and
free-threshing. Plant height was measured after plants reached
physiological maturity and was measured from the ground to
the tip of the tallest spike. Shattering was measured on a five
point scale, with 0 representing no shattering and 4 representing
over 50% shattering by visual observation (DeHaan et al., 2018).
Spike length was measured from the peduncle to the tip of the
spike, and spikelets per inflorescence represented the average
number of spikelets per head. Not all traits were measured
for each year and genet, resulting in an unbalanced data set.
Of key domestication traits, shattering was the only trait not
observed in UMN-C1 and seed mass was not available for UMN-
C2; all other traits were recorded in all cycles. In addition,
minor differences in data collection between programs were
noted. For UMN-C1 free threshing was measured on a four-
point categorical scale, while for other years free threshing
was estimated on a 0–100 percentage scale. The four-point
scale was translated to match the percentage scale. For TLI
cycles, spike yield was the mass of clean seed from one head,
whereas in UMN cycles spike yield was estimated by weighing
the entire seed head. Trait data was measured for 2 years
with each year being considered a separate trait, with the
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exception of TLI-C8 with first year phenotypic data being
recorded in 2019.

Genotyping and Bioinformatic Methods
All genets were profiled using genotyping-by-sequencing
following protocols of Poland et al. (2012) using a two enzyme
restriction digest with PstI and MspI. Libraries were prepared by
multi-plexing 192 samples per GBS library, and all GBS libraries
were sequenced on Illumina HiSeq 2500. Single nucleotide
polymorphisms (SNPs) were called using the GBS pipeline in
Trait Analysis by aSSociation, Evolution, and Linkage (TASSEL)
software version 5.2 (Glaubitz et al., 2014) in association with
the IWG reference genome (access provided by the Thinopyrum
intermedium Genome Sequencing Consortium.1

Initial SNP discovery resulted in identifying 126,138 SNPs.
To identify a final data set, filtering was completed using the
following criteria, (1) minor allele frequency greater than 0.01,
(2) each SNP was called in 30% or more of the individuals,
(3) GBS tags uniquely aligned (one location) to the reference
genome to prevent aligning to orthologous sequences, (4) only
biallelic SNPs were retained, (5) a minimum read depth of four
tags per individual were required to call a homozygote. Using a
custom Perl script, homozygotes that had less than four reads
per site were set to missing. Heterozygotes were called with a
minimum of two contrasting tags. Additionally, any genet that
had more than 95% missing SNPs calls was discarded from the
analysis, resulting in a final data set of 23,495 SNP loci and
6,199 genets. Any missing genotype calls in the final data set
were imputed using Beagle version 4.1 using the default settings
(Browning and Browning, 2016).

The STRUCTURE program (Pritchard et al., 2000) was used to
evaluate population structure among the 6,199 genets. A subset
of 8,011 markers that had minor allele frequency greater than
0.05 and were present in more than 50% of the individuals were
used to evaluate population structure. A total of 10 subgroups
(K = 1–10) were evaluated using the admixture model with
100,000 reps and the first 25,000 as burn-in. Ten replicates of
each value of K were assessed, with Structure Harvester (Earl
and vonHoldt, 2012) used to determine the optimal number of
K. CLUMPP (version 1.1.2) (Jakobsson and Rosenberg, 2007)
was used to evaluate K = 1 and K = 2 through graphically
assigning individuals to a cluster. In addition to STRUCTURE,
principal component analysis (PCA) was performed on the
imputed marker matrix in R (R Core Team, 2017). The PCA
results were used to subset genets into two similarity groups based
on breeding programs.

Statistical Analysis
A mixed linear model using ASREML version 4.1 (Gilmour
et al., 2015) was fit to the data to develop best linear unbiased
predictors (BLUPs) for each genet in each cycle. The model
consisted of a two-step model, where each cycle was analyzed
separately (Piepho et al., 2012), and BLUPs were then combined
for GS. The model accounted for the genetic relationships
between genets using the realized additive genomic relationship

1https://phytozome-next.jgi.doe.gov/info/Tintermedium_v2_1

matrix and spatial location by fitting a separate row and column
autoregressive order 1 (AR1 × AR1) residual structure for each
site. The general form of the mixed model is (Isik et al., 2017):

y = Xb+ Zu+ e (1)

where y is a vector of observed phenotypes, X and Z are design
matrices for fixed and random effects, respectively, b and u are
vectors of coefficients for fixed and random effects, and e is
a vector of random residuals. The vector y is assumed to be
distributed normally with mean Xb and variance V, y∼ N(Xb,
V). The total variance, V, is defined as V =

(u
e
)

=
(G 0

0 R
)
. The

G structure accounts for the variation between genets using
the realized additive genomic relationship matrix and is defined
as G = σ 2

AK where σ 2
A is the additive genetic variance and

K is the realized additive genomic relationship matrix. K is
computed as θMM’ where M is a matrix with n individuals
and m columns of markers and θ is a proportionality constant
(Endelman and Jannink, 2012). The genomic relationship matrix
was computed using the function A.mat in rrblup (Endelman,
2011) R package using the methods of Endelman and Jannink
(2012). The R structure accounts for residual variation using
the row-column design for each cycle. The R for each site was
defined as R = σ 2

e 6c(ρc)⊗ σ
2
e 6r(ρr), fitting an AR1 row and

AR1 column effect with an independent error variance for each
site. A total of seven sites were fit, as TLI-C7 and TLI-C8 each
had two separate locations, whereas all other cycles were grown
in one location. 6 is an identity matrix with dimensions equal to
the number of rows or columns (6r ,6c) respectively and ρ is the
correlation parameter between rows and columns, respectively.
A minimum of 350 observations were recorded from each cycle
for use in GS models after adjusting phenotypic data for genetic
relationship and spatial location in the field.

Genomic Selection
Using the five cycles of data, GS models using the genomic
best linear unbiased predictor (GBLUP) were developed to assess
prediction ability. Within each cycle, a fivefold cross-validation
method was repeated 100 times. For each iteration of the cross-
validation, we randomly sampled all of the genets that were
in a given cycle, splitting the genets into a training population
(80% of genets) and a prediction population (20% of genets).
The GS model was fit with the training population using rrBLUP
kin.blup function (Endelman, 2011), with predictions then being
made on the prediction population. The GS model has the form
(Endelman, 2011):

y =Wg + e (2)

where y is a vector of observations (phenotypic BLUPs, section
Statistical Analysis), W is a design matrix relating genets to
observations, g is a vector of genotypic values, and e is a vector of
random residuals. The vector of genotypic values, g, is distributed
as g ∼N(0, Kσ 2

g ), where K is the realized additive relationship
matrix and σ 2

g is the additive genotypic variance.
For each iteration, a random sampling without replacement

was used to divide the training and prediction populations.
Additionally, the random sampling did not prevent full or
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half-siblings from being both in the training and prediction
populations, potentially upwardly biasing predictions. Predictive
ability was assessed using Pearson correlation between the
predicted value (genomic BLUP, GBLUP) and the BLUP for the
respective phenotype. From the GS model, variance components
were extracted to calculate genomic heritability using the
genetic variance and residual error variance using the formula
(Endelman and Jannink, 2012):

h2
=

σ 2
a

σ 2
a + σ

2
e

(3)

where h2 is narrow-sense heritability, σ 2
a is genetic variance, and

σ 2
a + σ

2
e is the sum of genetic and residual variance representing

total phenotypic variance.
To evaluate multi-environment predictions, each cycle was

used as the training population to predict all other cycles. In this
method, each cycle was fit as the training population, and then
all other cycle genets were predicted. Using BLUPs for observed
traits, accuracy was considered the correlation between the
phenotypes and the GBLUPs, with the 95% confidence intervals
for the correlation computed using the psychometric R package
(Fletcher, 2010). Along with predicting all other sites from each
site, a model was evaluated with a leave-one-out strategy, where
the training population consisted of four cycles, and the final
cycle was predicted from the combined training population.

Two other models were developed with the goal of identifying
the best ways to use the data sets to increase genetic gain. A subset
of data was made using the results of the PCA analysis to create
two similar groups, UMN-PCA and TLI-PCA. These models used
the 2nd principal component to divide UMN and TLI material
(Figure 1), with training data only consisting of genets within
a respective group. In addition, to developing training sets by
genetic similarity, each individual breeding program was used as
a prediction set to predict all other cycles. The multi-environment
models, where one cycle was predicted from all others, were
ran again using these two data subsets to evaluate the effect of
using more related training data sets in the prediction model.
A minimum of 100 genets were required to be in the training set
to make predictions for each model.

RESULTS

Phenotypic Evaluations
We analyzed 8 years of breeding program field trials
representing two independent breeding programs and
five cycles of selection. Across all sites, several traits were
measured, including the key domestication traits of free
threshing and shattering and agronomic traits like spike
yield and seed mass (Table 1). For all of these traits, a
large range in observations were observed in all cycles. For
example, individuals in most cycles ranged from no shattering
to maximum shattering. For agronomic traits, a two or
threefold range was present for spike length and spikelets per
infloresence (Table 1).

Population Structure
We implemented a Bayesian cluster method to estimate
population structure. While all genets were derived from TLI
breeding material, this study evaluated five cycles of selection
at different locations, times, and generations from the base
population, allowing for potential population structure. Results
from this analysis suggested that there was no population
grouping of genets. Further analysis using PCA confirmed
minimal population structure as the first principal component
contained 3% of the variation and the first 10 components
only accounted for 13% of the total variation. There was minor
clustering among cycles (Figure 1), with the second principal
component partially separating the UMN material and later TLI-
C6 and C7 breeding programs.

Genomic Selection Models
Within-Cycle Predictive Ability
To evaluate the potential of GS to increase the rate of genetic
gain in IWG breeding, we fit several GS models to the
phenotypic BLUPs. To determine predictive ability of GS, we fit
a random fivefold cross-validation model to each cycle and trait
individually. Using 100 iterations, within-cycle prediction ability,
correlation between predicted value and the phenotypic BLUP,
ranged from 0.11 to 0.97 (Table 2). Within cycles, prediction
abilities were generally high, with a trend that free threshing
percent, seed mass and shattering had higher average within-site
prediction compared to agronomic traits like spike yield, plant
height, and spikelets per inflorescence.

Across-Cycle Predictive Ability
After confirming that GS could accurately predict traits within
cycles, we fit GS models to predict across cycles. For each trait,
all cycles were used individually as the training population, and
then all other cycles were predicted from the chosen training
population. This resulted in predicting each cycle from four
different cycles. Across all traits, prediction ability ranged from
−0.22 to 0.76, but there were striking differences between
traits. For key domestication traits there was relatively high
predictive ability with seed shattering in a range of 0.50–0.74,
and free threshing had a range of 0.27–0.75. In comparison
the agronomic trait of spike yield had a much lower range
from -0.22 to 0.26 (Figure 2). These traits represent a general
trend that was seen among all traits and years, allowing further
discussion to be defined to domestication and agronomic traits.
All other traits are provided in Supplementary Figure S1.
Additionally for a trait with high and low predictive ability,
scatter plots of predicted versus observed values are provided in
Supplementary Figure S2.

To further investigate the validity of the across-environment
GS results, we developed GS models that used all cycle data except
for the prediction set. This resulted in a larger training population
which could increase GS accuracy. Prediction accuracy based on
all other sites ranged from 0.35 to 0.77 for domestication traits
(Figure 3). Agronomic traits such as spike yield ranged from
-0.10 to 0.37 (Table 3). The predictions from this leave-one-
out strategy were paired with the genomic heritability that was
calculated from the GS models. Plotting these two values showed
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FIGURE 1 | Scatterplot of the first two principal component axis for intermediate wheatgrass genets, made from principal component analysis on the marker matrix,
n = 6,199 genets, markers = 23,495. Each point is an individual genet that is color coded by cycle, with the 2nd principal component providing separation between
the UMN and TLI breeding programs at the dashed line. Total variance explained by each principal component is listed on the axis.

TABLE 1 | Range of phenotypic observations collected for five cycles of intermediate wheatgrass breeding trials from the University of Minnesota and The Land Institute.

Free
threshing %

Plant height (cm) Seed Mass (mg) Shattering 0–4 Spikelets per
Inflorescence

Spike length (cm) Spike yield (g)

Cycle Year n Range n Range n Range n Range n Range n Range n Range

UMN-C1 2012 494 3–75† 494 61–170 494 3.7–13.4 494 9–32 494 17–38 494 0.4–2.2‡

2013 477 3–75† 491 76–185 474 3.7–13.9 484 10–32 485 17–36 484 0.1–2.0‡

UMN-C2 2015 372 0–95 372 70–182 372 0–4 372 13–41 372 0.4–2.0‡

2016 356 0–80 368 104–190 360 0–4 367 19–37 366 0.4–1.7‡

TLI-C6 2016 2496 0–100 2482 30–180 2494 0.8–13.7 2507 0–4 2507 9–43 2506 13–60 2508 0.0–0.8

2017 1691 0–100 1278 80–170 1690 2.5–13.3 1719 0–5 1714 12–39 1707 12–53 1723 0.0–0.7

TLI-C7 2018 851 0–100 1179 35–160 848 4.0–14.6 1140 0–4 1139 8–32 1141 0–52 1140 0.0–0.9

2019 1164 0–100 1147 80–190 1162 2.9–17.2 1167 0–4 1168 11–32 1168 0.0–1.2

TLI-C8 2019 872 4–100 961 40–140 867 4.8–16.3 873 0–4 873 11–31 870 0.0–1.1

Range of phenotypic observations and the number of individuals (n) for each phenotype are displayed. †Trait was measured on a five-point categorical scale and converted
to percentages. ‡Spike yield for UMN sites measured as entire inflorescence, not just clean seed.

TABLE 2 | Within-site fivefold cross-validation genomic selection predictions for intermediate wheatgrass traits.

Free
Threshing%

Plant Height Seed Mass Shattering Spikelets per
Inflorescence

Spike Length Spike yield

Training Cycle Year r sd r sd r sd r sd r sd r sd r sd

UMN-C1 2012 0.85 0.03 0.76 0.05 0.79 0.04 0.8 0.04 0.7 0.05 0.76 0.04

2013 0.85 0.03 0.72 0.05 0.76 0.04 0.77 0.04 0.74 0.04 0.79 0.03

UMN-C2 2014 0.72 0.05 0.73 0.05 0.82 0.03 0.86 0.03 0.76 0.04

2015 0.85 0.03 0.76 0.04 0.79 0.04 0.71 0.05 0.68 0.06

TLI-C6 2016 0.96 0 0.89 0.01 0.95 0 0.97 0 0.93 0.01 0.9 0.01 0.94 0.01

2017 0.93 0.01 0.81 0.02 0.93 0.01 0.95 0.01 0.92 0.01 0.91 0.01 0.91 0.01

TLI-C7 2018 0.35 0.06 0.92 0.01 0.87 0.02 0.91 0.01 0.92 0.01 0.88 0.02 0.91 0.02

2019 0.91 0.01 0.88 0.01 0.92 0.01 0.93 0.01 0.92 0.01 0.9 0.01

TLI-C8 2019 0.79 0.03 0.84 0.02 0.78 0.03 0.85 0.02 0.11 0.07 0.84 0.02

Prediction abilities are reported as correlation (r) between predicted value and phenotypic best linear unbiased estimator (BLUP), along with the standard deviation (sd) of
100 random iterations.
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FIGURE 2 | Performance of genomic selection (GS) across five cycles. Each panel represents one trait, shattering (A), free threshing (B), spike yield (C), and
spikelets per inflorescence (D). The x-axis is the cycle that was used as the prediction population. Colored bars represent the prediction ability for each of the four
other cycles, where each cycle forms the training population. For comparison, the fivefold cross-validation within cycle is represented for each training and prediction
cycle, which usually provides the highest predictive ability. The y-axis is the prediction ability which is the correlation between the GS predicted value and the
phenotypic best linear unbiased predictor (BLUP). Error bars represent the 95% confidence interval for the correlation value.
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a significant relationship between these variables (p < 0.001,
Figure 4). Key domestication traits of shattering, free threshing,
and seed mass showed high heritability across cycle predictions.
In comparison, spike yield, spikes per inflorescence, and plant
height had lower heritability estimates and prediction accuracies.

Optimizing GS Prediction and Training Set
Finally, in an effort to determine ideal GS training populations
and enhance GS results, we used two different sub-setting
methods. The first subset utilized results from the PCA
decomposition of the genomic marker matrix to develop two
subpopulations based on relatedness, Figure 1. The second
sub-setting method used each individual breeding program
as a unique training population. Using these data sets, we
evaluated the same across-environment GS models, with the GS
training population being more closely related to the prediction
population. The GS model using all cycles in a leave-one-cycle-
out method, with all other cycles in the training population
(Figure 3), was used as the reference. A model was declared
better than the reference if the 95% confidence intervals were
non-overlapping. We tested five different training populations
for each of 55 cycle/trait combinations. The top performing
model for each combination is listed in Table 4. Overall, there

was much inconsistency between the best performing model
and each cycle/trait combination (Figure 5 and Supplementary
Figure S3). However, using the leave-one-out as a reference
resulted in the best performing model 62% of the time (34 of
55 combinations).

DISCUSSION

Combining Data Resources
The affordability of next-generation sequencing provides many
opportunities for breeding that were previously unavailable.
Particularly for programs that are implementing GS, there is
an opportunity to leverage data across breeding programs and
identify synergistic opportunities. This is particularly the case
for minor and emerging crops. We were able to combine five
cycles representing nearly a decade of breeding progress for
IWG in the Central USA. Across the two programs, many key
traits were measured each year, but there were often minor
differences in trait measurement, specifically scoring of free-
threshing and total spike yield between the TLI and UMN
programs. While our results did not show any marked difference
in these traits, i.e., consistent free-threshing prediction and

FIGURE 3 | Genomic selection (GS) performance for shattering, free threshing, spike yield, and spikelets per inflorescence, (A–D), respectively. Within each panel
the x-axis is grouped by cycle name. Predictions were made by leaving out the named cycle and predicting that cycle from all other data. The prediction ability is the
correlation between the predicted GS value and the phenotypic best linear unbiased predictor (BLUP), with standard error bars representing the 95% confidence
interval.

TABLE 3 | Genomic selection prediction abilities of intermediate wheatgrass traits across sites.

Free
Threshing%

Plant Height Seed Mass Shattering Spikelets per
Inflorescence

Spike Length Spike Yield

Prediction Site Year r CI r CI r CI r CI r CI r CI r CI

UMN-C1 2012 0.43 0.07 0.25 0.08 0.54 0.06 0.13 0.09 0.22 0.08 0.29 0.08

2013 0.58 0.06 0.32 0.08 0.42 0.07 0.10 0.09 0.42 0.07 0.37 0.07

UMN-C2 2014 0.40 0.08 0.42 0.08 0.51 0.07 0.20 0.10 0.10 0.10

2015 0.42 0.08 0.48 0.08 0.61 0.06 0.46 0.08 0.12 0.10

TLI-C6 2016 0.56 0.03 0.02 0.04 0.51 0.03 0.63 0.02 0.22 0.04 0.34 0.03 −0.08 0.04

2017 0.71 0.02 0.22 0.05 0.67 0.03 0.64 0.03 0.39 0.04 0.42 0.04 −0.10 0.05

TLI-C7 2018 0.37 0.06 0.45 0.04 0.53 0.05 0.69 0.03 0.27 0.05 0.48 0.04 0.26 0.05

2019 0.77 0.02 0.28 0.05 0.59 0.04 0.69 0.03 0.48 0.04 0.05 0.06

TLI-C8 2019 0.37 0.06 0.29 0.06 0.35 0.06 0.61 0.04 0.08 0.07 0.07 0.07

Prediction population was one cycle, with the training population comprising all other cycles. Predictive ability is reported as correlation between predicted value and
phenotypic best linear unbiased predictor (BLUP) with ± range for the 95% confidence interval for correlation.
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FIGURE 4 | Scatter plot of genomic selection predictive ability and genomic heritability for 12 traits. For each point the trait name is provided with 1 or 2 representing
year of observation where SPKYLD is spike yield; PTHT, plant height; SPKLNG, spike length; SDMG, seed mass; SPKHD, spikelets per inflorescence; SHAT,
shattering; FTH, free threshing.

TABLE 4 | Highest performing genomic selection (GS) model for each trait/cycle combination across five breeding cycles representing two different breeding programs.

Prediction site Year Free threshing Plant height Seed mass Shattering Spikelets per inflorescence Spike length Spike yield

UMN-C1 2012 MN† LOO TLI-PCA LOO KS LOO

2013 LOO LOO LOO TLI-PCA LOO LOO

UMN-C2 2014 MN MN LOO KS LOO

2015 LOO LOO LOO LOO MN

TLI-C6 2016 LOO KS LOO UMN-PCA LOO LOO MN

2017 LOO LOO LOO LOO LOO LOO MN

TLI-C7 2018 LOO LOO TLI-PCA LOO LOO LOO TLI-PCA

2019 LOO LOO KS TLI-PCA LOO KS

TLI-C8 2019 UMN-PCA LOO LOO UMN-PCA UMN-PCA UMN-PCA

Predictive ability was assessed as the correlation between the GS predicted value and the phenotypic best linear unbiased predictor (BLUP). Models differed with respect
to the training population used to develop the model. The leave one-out, LOO, model was used as the reference model and only if a model exceeded the 95% confidence
interval of the LOO model was it considered superior. †Models are: LOO, leave-one-out, prediction cycle is left out of the training set, and all other cycles are used to train
the model. MN and KS are breeding-program specific where only genets from Minnesota (or Kansas) are used to predict each cycle. For TLI-C6 2016 plant height, KS
training population would consist of TLI-C7 and TLI-C8, with TLI-C6 as the prediction population. UMN-PCA and TLI-PCA are where the training population is made from
PCA analysis of the marker matrix, with UMN-PCA encompassing most UMN lines and some of TLI that were more similar to UMN material than the TLI subset.

inconsistent spike yield across other cycles, it is unknown if
more consistent data collection would result in higher predictive
ability within this data set. As other breeding programs are
established trait standardization using crop ontology (Shrestha
et al., 2010) could greatly increase the inter-operability of
experimental data.

Genomic Selection Accuracy and
Analysis
Within-Cycle Predictive Ability
Using data generated from the field trials and next generation
sequencing, we evaluated the potential of GS to predict trait

values across geographically distant IWG breeding programs.
First, within-cycle predictions were generated to verify GS
could appropriately predict trait values (Table 2). These cross-
validation predictions were the highest GS predictive abilities
achieved because the training sets were highly related and the
training and test sets were grown in the same environment,
minimizing any genotype by environment interactions (Desta
and Ortiz, 2014; Zhang et al., 2016). These prediction
abilities provide a potential maximum value that could be
achieved utilizing the current markers and phenotypes within
the study. Additionally, these predictions show that within
breeding programs, GS could be an effective way to enhance
genetic gain in IWG.
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FIGURE 5 | Performance of genomic selection (GS) across five cycles with different training populations. Each panel represents one trait, shattering (A), free
threshing (B), spike yield (C), and spikelets per inflorescence (D). Within each panel the x-axis is grouped by cycle name. Predictions were made by: LOO, leave one
out where all data other than the predicted cycle were used in the training population. MN or TLI where only data from each separate breeding program, Minnesota
or Kansas respectively, were used as the training population. MN-PCA or TLI-PCA where principal component analysis (PCA) was used to cluster genets within
breeding programs, MN or TLI, and form the training populations. The prediction ability is the correlation between the predicted GS value and the phenotypic best
linear unbiased predictor (BLUP), with standard error bars representing the 95% confidence interval.
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Across-Cycle Predictive Ability
After evaluating within-site GS prediction, across-site predictions
were generated for all cycles. As the relatedness and environments
changed, a decrease in GS predictive ability was observed.
Within these evaluations, two general trends emerged. For key
domestication traits such as shattering and free-threshing, GS
predictions were relatively high and constant across environment
(Figure 2). For agronomic and yield related traits, the results were
inconsistent, with some sites even producing negative prediction
abilities. This suggests that certain traits may be more amenable
to multi-environment GS than other traits.

To further investigate this trend, we examined the genomic
heritability from the GS models. Plotting genomic heritability
and predictive ability (Figure 4) suggests that domestication traits
may exhibit lower genotype-by-environment interaction than
agronomic traits. Additionally, the resulting prediction abilities
of various traits were reaching the level of the trait heritability.

Domestication traits were highly predictive across
environments, possibly indicating that these traits are not
as influenced by environment as other traits. Within wheat,
there are several well-known genes that control these traits. Free
threshing in wheat is determined by a recessive mutation in the
Tg (tenacious glume) locus and the dominant mutation of the
Q gene. The Tg loci has been reported to explain up to 44% of
the variation in threshability, and at least five other quantitative
trait loci (QTLs) for threshability have been observed in wheat
(Jantasuriyarat et al., 2004). Within IWG, recent research by
Larson et al. (2019) found that QTL markers explained up
to 46% of variation for free threshing across two locations.
The Br (brittle rachis) locus controls shattering in wheat with
two dominant genes and is homoeologous to the Btr loci in
barley (Nalam et al., 2006). Traits such as free threshing and
shattering that may have larger-effect QTL could be both
increasing GS predictions as well as maintaining predictive
ability across environments.

For agronomic traits, many more QTL of much smaller size
have been reported. Bajgain et al. (2019) identified over 154 QTL
for seven agronomic traits in IWG with the largest QTL effect
sizes explaining only 4% of the phenotypic variation. Larson
et al. (2019) found 12 QTL that explained up to 27% of the
variation of spike yield in a biparental population grown in
five environments. As the number of QTL increase and their
size decreases, adequately accounting for their effects across
environments may be more challenging. Simulation studies
have shown that as heritability decreases GS accuracies are
lowered (Iwata and Jannink, 2011). Other research has indicated
that GS accuracy diminishes as the number of QTL increases
(Shengqiang et al., 2009).

Optimizing GS Prediction
Complementary to evaluating how traits may respond to GS, we
also examined how the training population could be optimized
to achieve the best results when combining data across breeding
programs. While all germplasm originated from TLI material,
UMN-C1 was only a subset of the entire TLI program and UMN-
C2 was selected for MN conditions, which are different than
KS. Additionally, from the founding lines (TLI-C3) two and

five generations of selection had occurred for UMN and TLI
respectively, allowing for potential population divergence.

We evaluated models using a leave-one-out approach for all
cycles, which should result in the largest training population
available for GS prediction. This leave-one-out strategy insured
that the models were not biased by the size or the relationship of
the training population (Desta and Ortiz, 2014) in comparison to
GS prediction made from individual cycles. Additionally, we used
PCA to develop a subset of data more related to each breeding
program to ensure any large population structure differences
did not influence GS prediction (Norman et al., 2018). Finally,
data predictions were also developed using data specific to each
breeding program.

The results from these models were inconsistent, with
the leave-one-out model performing as well as or better the
majority of the time. Often breeding program-specific or PCA-
specific subsets performed well, but there was no clear pattern
to this performance (Table 4). For example, the optimized
training set using PCA for UMN provided the best prediction
for TLI-C8 free threshing, whereas the TLI-PCA optimized
training set provided the best prediction for UMN-C1 seed
mass. In this case the training sets had optimal performance
in data sets for which they were not specifically optimized.
While developing highly optimized prediction sets has been
shown to increase prediction accuracies (Isidro et al., 2015;
Rutkoski et al., 2015) we did not note this in this data set.
This could result from the large amount of genetic variance
compared to domesticated crops. While future breeding efforts
may be enhanced by optimizing the training set, these data
suggest that increasing the training population, i.e., leave-one-
out, is generally more useful than optimizing relatedness to
prediction candidates.

Implication for Future Development
As concerted efforts to develop new crops through domestication
of crop wild relatives continues for food security and
environmental benefits (Glover et al., 2010; Mayes et al., 2012),
we have evaluated approaches for genomics-assisted breeding
of neo-domesticated crops with insights into maximizing
genetic gains. While plant breeding is both expensive and
time consuming (Crews and DeHaan, 2015; DeHaan et al.,
2016), genomic technologies provide a way to accelerate
compared to phenotypic selection (Varshney et al., 2012;
Unamba et al., 2015). Next-generation sequencing coupled
with powerful tools such as GS and genome wide association
studies could allow for significantly improving agronomic
and domestication traits in short periods of time, especially
in non-model plants. Within the TLI-IWG breeding program,
GS has reduced the breeding cycle time from 2 years to 1 year,
which should effectively double the rate of genetic gains if
the predictability is roughly equivalent to the narrow-sense
heritability. Additionally, the genetic resources generated can be
used to better understand the genetic architecture of important
agronomic and domestication traits (examples include Bajgain
et al., 2019; Larson et al., 2019).

These results show that as plant species undergo early
domestication, collaboration will accelerate progress, i.e., not
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every breeding program will have to solve the same domestication
problems and that progress can be made across programs. As
domestication traits are fixed, breeding programs can work
toward developing adapted lines for targeted growing regions.
DeHaan et al. (2016) suggest a pipeline strategy for new crop
domestication where many candidates are tested and attrition
occurs as information about candidates are gained. Cooperative
efforts in early breeding stages, along with applied genomics,
should result in more quickly advancing and developing
promising species into commercially viable crops.

These data provide several potential use cases for breeding
programs. If a program is beginning, there appears to be little
downside in utilizing training data sets from across programs.
As programs mature and have sufficient, data from multiple
years and locations, GS models can be developed within
programs. This could be especially important for agronomic
traits such as spike yield as combining data across programs
could result in negative predictions (Figure 5). However, when
looking at GS models using program-specific data, the GS
predictions were always positive, so program-specific models
may be the most conservative way to insure genetic gains. For
domestication traits, predictions were usually similar regardless
of the training population, suggesting minimal benefit to pooling
multiple locations.

Our results show that GS can be a powerful tool in breeding
programs, yet GS is not a single, stand-alone solution for
quickly developing new crops. While we envision GS
improving with larger data sets and new statistical model
development, multi-environment predictions are extremely
complex. To fully leverage genomic resources, GS should
be integrated with phenomic and environmental data.
High-throughput phenotyping is an emerging field that is
providing dense phenomic measurements (White et al., 2012;
Araus et al., 2018) that have been shown to increase GS
model accuracy (Rutkoski et al., 2016; Crain et al., 2018).
A further complement to better predict how the environment
influences phenotype will include incorporating crop models
to better understand plant development within a range
of environments (i.e., review of crop models in wheat by
Chenu et al., 2017). Future advances in these areas as well as
incorporating them into unified prediction models will allow
scientist to drive genetic gain in novel crops across a range
of environments.

CONCLUSION

Domesticating crop wild relatives is a challenging and time
consuming task (Cox et al., 2002; DeHaan et al., 2014). Previous
research at TLI has shown that a 77% increase in seed yield was
achieved in two cycles of selection, however, to reach yields of
annual wheat another 20 years of sustained breeding gains would
be required with even longer time intervals to achieve similar seed
mass to wheat (DeHaan et al., 2014).

Perennial grains derived from the domestication of wild
species hold much promise for environmental and human
benefit. To achieve these benefits, specific traits of wild species

will need to be modified. Within IWG, free-threshing and non-
shattering seed types are two key domestication traits that must
be improved for wide-scale adoption. In addition, the economic
yield of IWG must be sufficient to incentivize the transition
to new crops. Along with fixing key traits for domestication,
breeding efforts should also ensure that crops are broadly adapted
(DeHaan et al., 2016).

The ability to use molecular tools such as GS, combined
with modern breeding methodologies, may allow perennial
crops and crop wild relatives to compress the 10,000 year
selection history of many annual crops into a few decades.
While GS predictions for agronomic traits like spike yield
were low between breeding sites and environments, significant
synergies could be achieved by utilizing collective information
about domestication traits. While site-specific or regional
programs will be necessary to breed for the best locally adapted
genets, progress made toward improving key domestication
traits could be shared among all programs. This is especially
important for resource-limited programs that are domesticating
new crops, allowing improvement for traits that are less
environmentally influenced and are essential for domestication.
Early domestication work could be carried out by a single
program or shared among programs with each program
phenotyping a few lines in diverse locations to quickly and
efficiently improve key traits. As more programs are initialized
for the breeding of IWG, they will be able to identify
germplasm that has key domestication traits and be able to
focus breeding efforts toward achieving higher site-specific
agronomic performance.
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FIGURE S1 | Performance of genomic selection (GS) across five cycles. Each
panel represents one trait, A-N. The x-axis is the cycle that was used as the
prediction population. Colored bars represent the prediction ability for training
populations for other cycles. For comparison, the within cycle fivefold

cross-validation is represented for each training and prediction site, which usually
provides the highest predictive ability. The y-axis is the prediction ability which is
the correlation between the GS predicted value and the phenotypic best linear
unbiased predictor (BLUP). Error bars represent the 95% confidence interval for
the correlation value.

FIGURE S2 | Relationship of genomic selection (GS) predicted values (x-axis) and
observed values (y-axis) for two traits, including line of best fit. In panel A, a free
threshing (n = 2,496), a trait with high predictive ability is shown, while panel B
represents a trait with low predictive ability, spike yield (n = 2,508). The training
population was TLI-C7 and the prediction population was TLI-C6.

FIGURE S3 | Genomic selection (GS) performance across five cycles where each
panel represents one trait A-N. Within each panel the x-axis is grouped by the
cycle of data that was predicted, with different training populations represented by
colored bars. Leave-one-out (LOO) was a training population where the cycle of
interest was left out and all other cycles were used to predict the cycle. Breeding
program-specific training populations were developed for the Minnesota (MN) and
Kansas (KS) breeding programs. Finally, UMN-PCA and TLI-PCA are training
populations that were developed using principal component analysis (PCA) of the
marker matrix. UMN-PCA is a training population more closely related to UMN
genets while TLI-PCA is more closely related to TLI genets. The prediction ability is
the correlation between the predicted GS value and the phenotypic best linear
unbiased predictor (BLUP), with standard error bars representing the 95%
confidence interval.
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