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During plant sexual reproduction, F-actin takes part in the elongation of the pollen
tube and the movement of sperm cells along with it. Moreover, F-actin is involved
in the transport of sperm cells throughout the embryo sac when double fertilization
occurs. Different techniques for analysis of F-actin in plant cells have been developed:
from classical actin-immunolocalization in fixed tissues to genetically tagged actin with
fluorescent proteins for live imaging of cells. Despite the implementation of live cell
imaging tools, fixed plant tissue methods for cytoskeletal studies remain an essential
tool for genetically intractable systems. Also, most of the work on live imaging of
the cytoskeleton has been conducted on cells located on the plant’s surface, such
as epidermal cells, trichomes, and root hairs. In cells situated in the plant’s interior,
especially those from plant species with thicker organ systems, it is necessary to utilize
conventional sectioning and permeabilization methods to allow the label access to the
cytoskeleton. Studies about the role of F-actin cytoskeleton during double fertilization
in plants with crassinucellate ovules (e.g., Agave, Yucca, Polianthes, Prochnyantes,
and Manfreda) remain scarce due to the difficulties to access the female gametophyte.
Here, we have developed a straightforward method for analysis of F-actin in the female
gametophyte of different Agavoideae sub-family species. The procedure includes the
fixation of whole ovules with formaldehyde, followed by membrane permeabilization
with cold acetone, a prolonged staining step with rhodamine-phalloidin, and Hoechst
33342 as a counterstain and two final steps of dehydration of samples in increasing-
concentration series of cold isopropanol and clarification of tissues with methyl
salicylate. This technique allows the analysis of a large number of samples in a short
period, cell positioning relative to neighbor cells is maintained, and, with the help of a
confocal microscope, reconstruction of a single 3D image of F-actin structures into the
embryo sac can be obtained.

Keywords: double fertilization, ovular apparatus, central cell nucleus, cytoskeleton, F-actin staining, fixed-tissue
staining, confocal microscopy
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INTRODUCTION

The actin cytoskeleton is a complex structure present in all
eukaryotic cells (Povarova et al., 2012). In plants, actin is an
important research target since it is involved in key cellular
processes such as cell polarity, division plane determination,
organogenesis, and intracellular signaling (Higaki et al., 2007).
During reproduction of higher plants, actin filaments also play
an important role; they are involved in pollen tube elongation
(Vidali et al., 2001), vesicle and organelle transport (Drøbak et al.,
2004; Cai and Cresti, 2009) and self-incompatibility responses
(Roldán et al., 2012). Moreover, actin is involved in the female
gametophyte development (Huang et al., 1999; Kawashima and
Berger, 2015), in double fertilization (Huang and Sheridan,
1998; Kawashima et al., 2014) and the subsequent processes of
endosperm (Świerczyńska and Bohdanowicz, 2003; Barranco-
Guzmán et al., 2019) and embryo development in the seed
(Kimata et al., 2016).

Due to its relevance, different techniques for visualization and
analysis of F-actin have been developed: from classical actin-
immunolocalization (Lazarides and Weber, 1974; Andersland
et al., 1994) and phalloidin-based labeling (Wulf et al., 1979;
Vandekerckhove et al., 1985) in fixed tissues, to genetically tagged
actin with fluorescent proteins for live imaging (Kost et al.,
1998). Among the latter, Lifeact, a short peptide consisting of
the first 17 amino acids of Saccharomyces cerevisiae Abp14p,
has revolutionized the study of F-actin physiology in eukaryotic
cells (Sheahan et al., 2004; Era et al., 2009). Despite such
progress, live-cell imaging is limited to genetically tractable
systems. Also, most cytoskeleton’s live imaging in plants has
been conducted on surface cells (Blancaflor and Hasenstein,
2000) such as pollen tubes (Cheung et al., 2008), trichomes
(Chang et al., 2019), and root hairs (McCurdy and Gunning,
1990; Colling and Wasteneys, 2005). However, the study of some
biological processes, such as female gametophyte development
and fertilization, requires the observation of the interior of the
plant, which has specific technical challenges (Blancaflor and
Hasenstein, 2000; Cheng, 2006).

The major technical challenge for female gametophyte
imaging studies is the thickness of the sporogenous layers that
cover it (Schneitz et al., 1995). These layers of nucellar tissue
lead to poor quality observations or even access prevention
of chemical and immunological dyes to their targets. The
latter is particularly true for crassinucellate ovules (e.g., Agave,
Yucca, Polianthes, Prochnyantes, and Manfreda) (Rudall, 1997),
where one or more layers of hypodermic tissues are found
between the meiocyte and the apex of the nuclei (Reddy,
2007; Endress, 2011). A first choice to solve this problem is
two-photon confocal microscopy (Diaspro and Robello, 2000;
Feijó and Moreno, 2004; Kimata et al., 2016) or, a cheaper
alternative, microtome sectioning (Stelly et al., 1984). However,
in microtomy techniques, the positioning of cells concerning
neighbor cells are often lost, and the resulting sectioned
planes are difficult to reconstruct in a single three-dimensional
(3D) image (Haseloff, 2003; Barrell and Grossniklaus, 2005).
Tissue permeabilization and clearing is an option to overcome
those obstacles (Cheng, 2006). Under this strategy, thick tissue

masses are made translucent through chemical treatments
with substances with a high refractive index such as xylene,
chloral hydrate, and methyl salicylate (Herr, 1993), reducing the
problems of light scattering and spherical aberration, allowing
high image resolution (Haseloff, 2003).

Here, we report an improved whole-mount technique to label
F-actin in the female gametophyte of thick crassinucellate ovules
of some genera of the Agavoideae sub-family and Petunia hybrida
(Rezanejad, 2008) as an example of a different plant family. This
technique combines classical tissue fixation, chemical staining,
and a tissue clarification step that significantly improves image
quality. This protocol allows the analysis of a large number of
samples in a short period, cell positioning relative to neighboring
cells is maintained, and 3D images of the cytoskeleton in deep
tissues can be obtained.

MATERIALS AND EQUIPMENT

Reagents
PIPES, 1,4-piperazinediethanesulfonic acid (Sigma, Cat. No.
P1851)

EGTA, Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (Sigma, Cat. No. E3889)

Magnesium chloride hexahydrate (Sigma, Cat. No. M2670)
Potassium hydroxide (Sigma, Cat. No. 221473)
37% Formaldehyde solution (Sigma, Cat. No. 252549)
Acetone (Sigma, Cat. No. 270725)
BSA, bovine serum albumin fraction V (Sigma, Cat. No.

10735078001)
Rhodamine-phalloidin (Molecular Probes, Cat. No. R415)
Hoechst 33258 pentahydrate (Molecular Probes, Cat. No.

H21491)
2-Propanol (Sigma, Cat. No. 190764)
Methyl salicylate (Sigma, Cat. No. M6752)
Leica immersion oil type F (Leica, Cat. No. 11513859)
Latrunculin B from Latruncula magnifica (Sigma, Cat. No.

L5288).

Materials
0.2–0.6 ml microcentrifuge tubes

Glass Pasteur pipettes and bulbs
Insulin needles and syringes
Glass slides, 75 mm× 25 mm (Corning, Cat. No. 2947)
Glass coverslips, 24 mm × 40 mm (Thermo Fisher Scientific,

Cat. No. C7931)
Straight fine point tweezers.

Equipment
TCS SPE Confocal microscope (Leica Microsystems)

EZ4 HD Dissecting stereomicroscope (Leica Microsystems)
LAS X software R© (Leica Microsystems).

SOLUTIONS RECIPES

ASB (Actin-stabilizing buffer) (Płachno and Świa̧tek, 2012)
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50 mM PIPES, 10 mM EGTA, and 1 mM MgCl2, pH 6.8
adjusted with 10M KOH. It is important to previously dissolve
EGTA and PIPES in a few drops of 10M KOH.

Fixative solution
3.7% formaldehyde in ASB. It is preferable to use the fixative

solution just after preparation; however, it can be stored at 4◦C
for up to 5 days.

Blocking solution
1% BSA in ASB. BSA solution can be stored at 4◦C.
Rhodamine-phalloidin stock solution
6.6 µM rhodamine-phalloidin in methanol. Store the solution

at−20◦C in darkness.
Hoechst 33258 pentahydrate stock solution
10 mg/ml Hoechst 33258 pentahydrate in distilled water.

Prepare 2 ml aliquots, store them protected from light at−20◦C.
Latrunculin B stock solution
20 µM latrunculin B in ethanol. Store at−20◦C in darkness.

METHODS

Sample Collection
Flower buds of different sizes, mature flowers and immature
fruits (collected at a distinct time after pollination) are collected
and processed as follows to visualize the F-actin cytoskeleton at
different stages of the female gametophyte development and early
embryogenesis (an overview of the protocol described below is
shown in Figure 1).

Dissection of Ovules
The dissection of ovules and immature seeds is performed with
the help of straight fine-point tweezers and an insulin needle
under the stereoscope.

Ovules Collection and Fixation
Ovules of the same ovary are collected in a 0.2–0.6 ml microtube
containing ASB (N.B.1) at 25◦C (room temperature). Once
enough ovules have been collected (keep in mind that a fraction
of ovules is lost during the staining process), they are incubated
in ASB at 55◦C for 5 min (N.B.2). Afterward, ovules are
fixed with a fixative solution for 7–10 min at 25◦C. Small-
sized ovules require less fixation time than larger ones (e.g.,
Agave ovules are fixed for 10 min, while Petunia ovules are
fixed for 7 min). After fixation, rinse ovules twice with ASB. If
needed, previously fixed and washed ovules can be stored up
to five days at 4◦C protected from light. Afterward, continue
the technique in section “Cuticle Solubilization and Membrane
Permeabilization.”

N.B.1 unlike similar protocols, we have used ASB
instead of MBS. EGTA contained in ASB binds Ca2+ ions,
which prevents actin filaments severing (Yin et al., 1981;
Hepler, 2016).

N.B.2 pretreatment at 55◦C allows more efficient fixative
penetration. For Asparagales species, warm buffer incubation
does not affect the structure of neither the ovule nor
actin filaments.

Cuticle Solubilization and Membrane
Permeabilization
After completing the fixation step, quickly rinse twice ovules with
acetone at−20◦C, and afterward keep them in fresh cold acetone
for 5 min. Finally, wash ovules three times with ASB or until it
remains crystalline.

Blocking and Staining
Pre-incubate ovules in blocking solution (1% BSA in ASB) for
20 min at room temperature. Then, stain ovules overnight at
4◦C with 0.33 µM rhodamine-phalloidin for labeling F-actin and
3 µg/ml Hoechst 33258 to counterstain cell nuclei (diluted in
blocking solution).

Dehydration
After the staining period (N.B.3), dehydrate ovules in isopropanol
(N.B.4) increasing-concentration solutions (75, 85, 95, and 100%)
for 7 min each at 4◦C, and finally, in 100% isopropanol for
10–12 min also at 4◦C. All isopropanol solutions must be
continuously renewed, and samples should be gently shaken to
homogenize the exposure of tissues to isopropanol.

N.B.3 it is not necessary to wash the stain with a buffer since
the next dehydration series work also as a washing step.

N.B.4 in this protocol we use isopropanol instead of ethanol
or methanol to dehydrate samples since dehydration with
isopropanol is faster and produces better quality images.

Clarification
For tissue clarification, remove isopropanol and add a 1:1 methyl
salicylate-isopropanol solution for 30–60 min. In the beginning,
ovules will remain on top of the solution, but eventually, they
will sink to the bottom of the microcentrifuge tube. Incubation
time in methyl salicylate-isopropanol concludes when all ovules
precipitate. Before observation, ovules are incubated in 100%
methyl salicylate for at least 30 min. During this time, ovules get
completely clear. Ovules can be kept in this solution in darkness
at 4◦C for about a week.

Mounting and Microscopy
Mount treated ovules directly on glass slides with 100%
methyl salicylate. Observe the samples under the confocal
microscope using a 532 nm laser for rhodamine-phalloidin
(ex/em = 540/556 nm) and a 405 nm laser for Hoechst 33258
observation (ex/em = 352/461 nm). Analyze images with LAS X R©

software or any other appropriate software.

Control of the Specificity of
Rhodamine-Phalloidin F-Actin Staining
To confirm the specificity of rhodamine-phalloidin F-actin
staining, ovules of Agave sp. were treated with latrunculin-B,
which prevents G-actin polymerization (Spector et al., 1983).
Inhibition assays were conducted following the protocol of Yuan
et al. (2002) with some modifications; in short, dissected ovules
of Agave sp. were collected in microcentrifuge tubes containing
culture medium (5 mM HEPES, 1 mM KCl, 1 mM MgCl2,
0.1 mM CaCl2, 3% w/v sucrose). Once enough ovules were
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FIGURE 1 | Overview of the main steps of the rhodamine-phalloidin staining and methyl salicylate clarification of crassinucellate ovules.
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FIGURE 2 | Main components of a mature crassinucellate ovule of the Agavoideae sub-family. (A) Schematic representation of an anatropous, bitegmic,
crassinucellate ovule of Agave. (B) Representative microphotography and (C) F-actin cytoskeleton of a mature embryo sac of Agave. c, chalaza; m, micropyle; oi,
outer integument; ii, inner integument; unt, uniseriate nucellar tissue; es, embryo sac; h, hypostase; ha, haustorium; oa, ovular apparatus; a, antipodal cells; cc,
central cell; ccn, central cell nucleus. The blue color in A and C indicate nuclei of cells (Hoechst 33258) and red color (phalloidin) represents F-actin filaments. Bar in
(B), 90 µm, in (C), 40 µm.

collected, they were incubated in culture medium with (20 nM,
final concentration) or without (control) latrunculin B for 4 h,
at 22◦C. After completing this incubation, ovules were quickly
washed three times with culture medium and, finally, fixed and
stain-cleared as described above.

RESULTS

The protocol described here can be performed in 48 h, which
includes an overnight staining incubation (Figure 1). It enables
us to perform microscopy observations of whole embryo sacs
and determine the 3D allocation of the F-actin cytoskeleton
inside them (Figures 2, 3A,C,E, 4, 5). Up to 25–30 µm
thick ovules could be observed without microtome sectioning
(Supplementary Movie 1).

Fixation time should be optimized for each plant species
and the sample developmental stage. In general, smaller ovules
and ovules in early development stages need shorter fixation
times. Cuticle solubilization and dehydration steps are also
critical; they require constant solutions renewal and gentle hand-
shaking to homogenize components. Rhodamine-phalloidin and
Hoechst 33258 fluorophores maintain their fluorescence stable
up to 10 days on samples treated with this stain-clearing
technique when they are stored at 4◦C. Moreover, co-staining
with Hoechst 33258 provides information on the spatial position
of nuclei within the cell and its relationship with actin filaments
(Figures 4C,F,I,L, 5C,F,I,L).

Latrunculin B inhibition assays were performed on Agave
embryo sacs (Figure 3) to confirm the specificity of rhodamine-
phalloidin F-actin staining. In the presence of latrunculin B,

actin filaments appeared fragmented or completely disappeared
(Figures 3B,D,F) while in the control treatment, intact actin
filaments were observed (Figures 3A,C,E).

The methyl salicylate clearing step is critical for the protocol’s
success since it allows us to get over the physical barriers
that usually impede imaging of the whole embryo sac. Sample
observation needs a minimum of 30 min incubation in methyl
salicylate after mounting; longer incubation times usually
improve image quality.

Following this protocol, we managed to visualize the F-actin
cytoskeleton in the female gametophyte of different genera
of the Agavoideae sub-family (Agave, Manfreda, Yucca, and
Prochnyanthes) (Figures 4, 5A–I) and other non-related species
with crassinucellate ovules such as P. hybrida (Figures 5J–L).

This protocol is useful for the analysis of different
female developmental stages of crassinucellate ovules,
from the differentiation of the megaspore mother cell, the
megasporogenesis, megagametogenesis, and the double
fertilization, to early stages of embryo and endosperm
development (Figures 4, 5). The rhodamine-phalloidin
staining followed by methyl salicylate clarification allows
identifying dense actin cables as well as thin actin filaments
(Figures 4B,E,H,K, 5B,E,H,K).

In the mature embryo sac, the cytoskeleton of each cell
type (central cell, synergid, antipodal cells, and egg cell) located
beneath the membrane could be observed; similarly, the F-actin
coat around the nuclei of the cells could be appreciated with great
detail (Figures 4, 5). F-actin strands that run parallel along the
chalazal-micropylar axis of the large central cell vacuole were
detected without spherical aberration. This technique allowed the
transmission of the microscope laser through the thicker tissues
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FIGURE 3 | Actin filaments in the embryo sac of Agave sp. (A,C,E) and the effect of latrunculin B (B,D,F). (A,B) show rhodamine-phalloidin staining of the control
and latrunculin B treated cells, respectively. (C,D) show Hoechst 33258 counterstaining. (E,F) are the merge of rhodamine-phalloidin and Hoechst 33258 channels.
Arrowheads indicate F-actin filaments and cables that form part of the cytoskeleton of each cell type in the female gametophyte. an, antipodal nuclei; oan, ovular
apparatus nuclei; oa, ovular apparatus; ccn, central cell nucleus. Bars, 40 µm.

that are found in the immature seeds; thus, actin cables that
connect free nuclei of the endosperm in the embryo sac could
be registered (Figures 5A–C, G–I).

DISCUSSION

Despite the great progress of fluorescent protein-tagging of
cellular targets for live-cell imaging, phalloidin conjugated with
any fluorochrome remains the gold standard for actin filament

visualization (Melak et al., 2017). Immunofluorescence- and
phalloidin-based techniques are useful for the structural analysis
of cytoskeleton, especially in fixed cells, and, even when they
share some critical steps like fixation and permeabilization
(Blancaflor and Hasenstein, 2000), each one presents its
advantages and drawbacks.

Some researchers have shown that phalloidin, fluorescent
proteins and antibodies give different imaging results (Tang et al.,
1989; Le et al., 2003; Thomas et al., 2009; Zhang et al., 2018;
Flores et al., 2019). They claim that phalloidin and fluorescent
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FIGURE 4 | Mature embryo sacs of four different species belonging to the Agavoideae sub-family stained with Hoechst 33258 (left column) and
rhodamine-phalloidin (central column), and clarified with methyl salicylate. (A–C) Agave tequilana; (D–F) Manfreda elongata; (G–I) Yucca sp.; and, (J–L)
Prochnyanthes sp. Arrowheads indicate F-actin filaments and cables that form part of the cytoskeleton of each cell type in the female gametophyte. ccn, central cell
nucleus; oan, ovular apparatus nuclei; oa, ovular apparatus. Bars, 40 µm.

proteins may induce actin bundles artifacts (Le et al., 2003);
nevertheless, others suggest those actin forms are biologically
active and produced by specific actin associated proteins (Bartles,
2000; Thomas et al., 2009; Zhang et al., 2018). In this work,
we did not observe actin bundles in surface cells stained with

phalloidin (data not shown), which were subjected to exactly the
same staining conditions as embryo sacs, where actin bundles
are abundant (Figures 3A, 4B,E,H). The latter suggests that
bundles are produced in specific cellular contexts and they are
not phalloidin induced artifacts.
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FIGURE 5 | Female gametophyte of four different species with crassinucellate ovules stained with Hoechst 33258 (left column) and rhodamine-phalloidin (central
column), and clarified with methyl salicylate. (A–C) Endosperm nuclei of an immature seed of Agave tequilana; (D–F) zygote of Manfreda elongata; (G–I) chalazal
endosperm chamber of Prochnyanthes sp.; and (J–L) mature embryo sac of Petunia hybrida. Arrowheads indicate F-actin filaments and cables that form part of the
cytoskeleton inside the embryo sac. en, endosperm nuclei; z, zygote; zn, zygote nucleus; de, developing endosperm; den, developing endosperm nuclei; ccn,
central cell nucleus; oan, ovular apparatus nuclei; oa, ovular apparatus. Bars, 40 µm.

Perhaps one of the main perks of immunolabeling is the
possibility of applying two or more antibodies on the same
sample to co-label several proteins (Shimamura, 2015) (e.g., actin
and microtubules). Despite the later, antibodies are generally

large; therefore, a proper fixation, membrane permeabilization,
and cell wall digestion result critical for the successful diffusion
of antibodies, especially into deeper cell layers (Pasternak et al.,
2015), as is the case with the female gametophyte. On the other
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hand, the relatively small size of phalloidin derivatives might be
helpful in its permeation through the cell wall and membrane of
plant cells. Thus, in the present protocol, permeabilization with
detergents like DMSO or Triton X100, and degradation of the
cell wall with enzymes were not necessary, which contribute to
shorten the duration of the technique.

In this improved method, incubation, fixation,
permeabilization, and clarification were performed in ASB to
stabilize F-actin, after the successful experience of Płachno and
Świa̧tek (2012). They managed to stain the actin filaments in
extra-ovular embryo sacs of Utricularia nelumbifolia (Płachno
and Świa̧tek, 2012). ASB contains EGTA, which binds Ca2+

ions that prevents actin filaments severing (Yin et al., 1981;
Hepler, 2016).

Due to the intrinsic features of plant cells and tissues -like
cell walls, vacuoles, and cuticle layers- most of the imaging work
has been conducted on plant’s surface cells. If inside cells need
to be observed, microtome sectioning used to be the approach.
This technique is time-consuming and provides images in only
two dimensions (Haseloff, 2003). Here, by using methyl salicylate
to clarify tissues, we accomplished the imaging of the complete
F-actin cytoskeleton within the embryo sac (Figures 3–5), a
highly vacuolated structure that is located inside the ovule and
surrounded by one or more layers of nucellar tissue (Figure 2).

Methyl salicylate has been successfully used in the structural
analysis of the female gametophyte development of Solanum
(Stelly et al., 1984) and Polianthes (González-Gutiérrez and
Rodríguez-Garay, 2016). Nevertheless, according to Richardson
and Lichtman (2015), organic solvent-based clearing methods,
which remove water from the cell, affect the capacity of
fluorophores to maintain its emission. Despite those remarks,
in our studies, the employment of methyl salicylate to clarify
tissues did not interfere in the detection and quality of the
fluorescent label.

Overall, this improved rhodamine-phalloidin staining
followed by methyl salicylate clearing of whole ovules represents
an option for the study of F-actin cytoskeleton in plant species
where tagging with fluorescent proteins is not feasible. This
approach is especially useful for imaging thick crassinucellate
ovules, which till this report has not been successfully labeled
and imaged (Escobar-Guzmán et al., 2015). Moreover, this
technique could be useful as a first, easy, and rapid approach
to visualize the actin cytoskeleton of the female gametophyte of
different plant species.
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