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Achieving the non-contact and non-destructive observation of broccoli head is the key
step to realize the acquisition of high-throughput phenotyping information of broccoli.
However, the rapid segmentation and grading of broccoli head remains difficult in many
parts of the world due to low equipment development level. In this paper, we combined
an advanced computer vision technique with a deep learning architecture to allow the
acquisition of real-time and accurate information about broccoli head. By constructing
a private image dataset with 100s of broccoli-head images (acquired using a self-
developed imaging system) under controlled conditions, a deep convolutional neural
network named “Improved ResNet” was trained to extract the broccoli pixels from the
background. Then, a yield estimation model was built based on the number of extracted
pixels and the corresponding pixel weight value. Additionally, the Particle Swarm
Optimization Algorithm (PSOA) and the Otsu method were applied to grade the quality
of each broccoli head according to our new standard. The trained model achieved an
Accuracy of 0.896 on the test set for broccoli head segmentation, demonstrating the
feasibility of this approach. When testing the model on a set of images with different light
intensities or with some noise, the model still achieved satisfactory results. Overall, our
approach of training a deep learning model using low-cost imaging devices represents
a means to improve broccoli breeding and vegetable trade.

Keywords: growth monitoring, deep learning, improved ResNet, freshness grading, ground-based imaging
system

INTRODUCTION

Broccoli (Brassica oleracea L. var. italica), which is belongs to the genus Brassica in the family
Cruciferae, is considered as an important global vegetable crop. The present broccoli cultivation
area in China is about 140,000 hectares. Broccoli is an important export vegetable in China,
especially in Zhejiang Province (Kalisz et al., 2015). The broccoli head is an important agronomic
component, which is not only used for yield estimation but also to assess plant quality and analyze
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plant resistance to biotic and abiotic stresses (Guo et al.,
2017). A variety of techniques have been used for the
quantitative measurement of broccoli head, including the
destructive measurement of geometric parameters and dry
weight, mass spectrometric analysis, and techniques using
non-contact sensors. Destructive techniques are not suitable
for the measurement of broccoli head under a controlled
environment due to its low-throughput and unsustainability.
Mass spectrometric analysis has been applied to measure the
quality and freshness of vegetation, however, the wide application
of this method is restricted by its high cost (Cho et al., 2018). The
sustainable monitoring of broccoli head can be achieved through
various technological innovations such as non-contact sensors.
Non-contact sensors, which are principally based on digital RGB
cameras, are suitable for use in agriculture due to their high
resolution, low cost, and small size. The use of RGB cameras can
provide a non-invasive and high-throughput approach to collect
morphological information about broccoli head and analyze its
health status (Dell’ Aquila, 2009). Changes in soil reflection and
weather conditions, as well as the transition between growth
stages, will all cause differences in the reflectivity, size, shape, and
color of a broccoli canopy. The existing segmentation methods
based on RGB images are of two main types: (1) those solely
based on color information; and (2) those based on multi-features
and a trained model (Hamuda et al., 2016). For example, for
the first type, Ji et al. (2007) presented a real-time segmentation
algorithm for plant images under natural outdoor conditions
by using a threshold-based method. Their experimental results
demonstrated that segmentation was generally of good quality in
the case of bare soil background. Furthermore, Wang et al. (2013)
established relationships between image feature parameters and
several plant indexes by setting threshold values based on
magnitude. The high correlation coefficients (over 0.9) which
were achieved between the segmented canopy cover and the
selected plant indexes indicate that this technique could be
used to estimate the nitrogen status of vegetation. However,
due to the complexity of field environments, color information
will be seriously affected by the illumination intensity or
shadows. In the second type of segmentation method, regions of
interest are generated by extracting multi-features and training
a classifier. Islam et al. (2017) used a support vector machine
(SVM) classifier to realize the automated detection of potato
diseases with an accuracy of 95%, which presented a path
toward the automated diagnosis of plant diseases at a very
large scale. Additionally, Yang et al. (2016) proposed a novel
plant-inspired optimization algorithm which essentially mimics
iterative root foraging behaviors, named the “hybrid artificial
root foraging optimizer,” in order to determine root density.
Cates et al. (2004) developed a novel leaf-segmentation tool
by combining a priori information with local images showing
the orientations of leave. The approach of Cates et al. (2004)
achieved higher accuracy compared to three other state-of-the-
art segmentation techniques. Moreover, Chantal et al. (2014)
used an improved method based on a non-destructive and
high-throughput machine learning method to accomplish non-
contact analysis in order to measure root architecture. Previous
methods for the segmentation of plant utilized handcrafted

features such as shape, color, and texture to quantify the pixel
character of plants. Extracting such features often requires some
theoretical knowledge of botany and a computationally expensive
preprocessing step in order to enhance differences between plants
and background, i.e., an image binarization step (Wang and Xu,
2018). To allow simple and effective segmentation, most studies
based on botanical theories use images captured in a controlled
environment with a uniform background.

Furthermore, in recent years, convolutional neural networks
(CNNs) have matured and have revolutionized computer vision.
Currently, CNNs achieve superior results in the identification
and segmentation of plants compared with state-of-the-art
traditional methods. CNNs have been used to improve the
performance of the approach for identifying and counting
plant species, to quantitatively phenotype plants grown in
controlled environments, and to provide detailed quantitative
characterization of fruits and leaves. For example, Jeon et al.
(2008) proposed an image segmentation method to detect
individual weeds using color space transformation, threshold
calculation, and the training of an artificial neural network
(ANN). Additionally, Yamamoto et al. (2014) developed
a method for the accurate detection of individual intact
tomato fruits by using a conventional RGB digital camera
in conjunction with machine learning approaches. Moreover,
Xiong et al. (2017) used a rice panicle segmentation algorithm,
called Panicle-SEG, to segment and calculate of rice panicle,
and performed phenotyping of rice panicle to assist rice
breeding. The overall accuracy of their model (more than
0.89) demonstrated the practical utility of their model for
the estimation of field yield. Furthermore, Zhang and Xu
(2018) introduced an unsupervised field image segmentation
algorithm, called Unsupervised Learning Conditional Random
Field (ULCRF), to accelerate the unsupervised segmentation of
greenhouse plant images at the organ level. Kusumam et al.
(2017) describe a 3D vision system for robotic harvesting
of broccoli using low-cost RGB-D sensors. Ramirez (2006)
develop a computer vision algorithm to locate the broccoli
head within an image of an entire broccoli plant and has
the ability to distinguish between mature and immature
broccoli heads. However, despite the improvements which have
been achieved in deep learning, the accurate segmentation
and grading of broccoli requires a large amount of training
data and depends on the quality of the images used. For
field-based imaging and analysis systems, it is important to
overcome the lack of training data and low processor capacity
to achieve a high-throughput phenotype acquisition process
(Lee et al., 2018).

Therefore, the aim of this study was to develop an automatic
method to segment near-ground RGB images of broccoli field in
order to extract broccoli head and construct a high-throughput
grading standard. Some major advantages of this approach
are that it requires only a few images and reduces the data
volume and memory requirements for the image processing. This
approach also allows the use of deep learning technology which
is not specific to agriculture and plant phenotyping. Compared
with three other approaches, the evaluation results showed better
performance regarding the segmentation and grading accuracy.
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MATERIALS AND METHODS

Experimental Setup
All experiments were conducted at the Zhejiang Academy
of Agricultural Sciences (ZAAS) Yangdu Scientific Research
Innovation Base, Haining County, Zhejiang Province, China
(latitude 30◦27′ N, longitude 120◦25′ E). Soil samples were
collected from a depth of 0–20 cm with a pH range from 4.5
to 6.5 and organic matter content of more than 30 g kg−1.
Other soil chemical properties of the experimental area are as
follows: the available phosphorous content was 20 mg kg−1, the
content of rapidly available potassium was 300 mg kg−1, and
alkali-hydrolyzable nitrogen was 300.2 mg kg−1. The broccoli
samples consisted of three varieties, named Zheqing95, Tailv1,
and Tailv2 which are the main broccoli planting varieties in
Zhejiang Province, and each variety was planted in a separate
plot. All plants were directly artificially seeded on 15 September,
2018. The three experimental plots consisted of raised beds with
a length of 20 m and a width of 1 m with the seed lines separated
by 0.3 m. The inter-row distance was 0.8 m and the inter-plant
distance was 0.35 m.

Remote Monitoring System and Image
Acquisition
The vision system was composed of an Canon EOS 90D
camera (Canon, Inc., Tokyo, Japan) with a resolution of 32.5
megapixels (6960 × 4640 pixels) and a 22.3 mm × 14.8 mm
CMOS sensor, a uniform LED surface light source, and a
Surface Laptop 2 computer (Microsoft, Corp., Redmond, WA,
United States) with an Intel Core i7-8650U processor and 8 GB
Samsung DDR4 memory. All of these devices were mounted on a
semi-automatic field self-propelled platform with dimensions of
1.5 m × 1.5 m × 1 m. The component elements of the surface
light source were 120 white LEDs (3000 K) arranged in a circular
pattern. The camera was controlled by an electronic shutter
connected to the computer by a USB 3.0 interface. The computer
installed with a visualization software named “pylon Camera
Software Suite” (BASLER, Inc., Ahrensburg, Germany) was used
to monitor the quality of the images in real time and guarantee
the data quality. The camera was located 1.5 m from the ground
level with the focal length of 18 mm and the exposure time of
1/500 s. The platform moved with a speed of 1 m/s, and the field
of view was about 0.2 m2, which generated an image sequence
with an average overlap of more than 70%. Two data acquisitions
were conducted for each of the three plots. In total, 506 images
containing grown broccoli plants were captured, and these were
used to build our original image datasets. Among these images,
300 images were obtained during our first data acquisition, which
was called “T1,” while the rest of the images were captured during
the second acquisition, which was called “T2.” In this way, we can
make our dataset contains plant images with different flower-ball
shape, color distribution and hollow degree (Figure 1).

Image Preprocessing
The plant images captured by the self-developed monitoring
system were pre-processed to denoise the background and

enhance the images. This pre-processing was performed via
several python-based scripts (Figure 2).

Background Denoising
Field images typically contain various sources of noise, which
will affect the final training results. In order to remove high-
frequency noise from the images, a Robert detection operator
was applied to extract the edge of the broccoli image (Chaudhuri
and Chanda, 1984), followed by a median filter with a size of
3∗3 pixels to remove the noise from the images (according to
the size of broccoli head and flower bud displayed in the images)
(Zheng et al., 2017).

Data Augmentation
A sufficiently large training dataset is essential to improve
the final accuracy of deep-learning projects [19]. However, in
our study of broccoli heads, it was not possible to capture
enough images due to the limitations of the indoor environment.
Therefore, in order to improve the quantity and quality of the
training images, data enhancement methods were adopted to
expand the dataset by 12 times (show in Table 1).

Random cropping
First, the original images were resized to 1440 × 1080 pixels due
to the memory limitation of the GPU. Then, three sub-images
with a size of 480× 360 pixels were randomly cropped from each
image. Thus, the number of training images was tripled.

Rotation
In order to further increase the number of training images,
the cropped images were rotated by 90, 180, and 270 degrees,
respectively, thus increasing the size of the dataset by a further
four times.

Fancy principal component analysis
The last step in the data enhancement procedure involved
applying a fancy principal component analysis (FPCA) algorithm
to change the intensity of the RGB channels in order to enhance
the contrast between the broccoli heads and the background
(Morais et al., 2019). The feature vectors were generated by the
FPCA algorithm, and then a weight factor was added to the
corresponding channel according to the extracted feature vector.
The use of FPCA can transform the illumination intensity and
color of the image without affecting the object to be recognized.

Data Analysis
The purpose of this study was to develop a general system
for the automatic detection and grading of broccoli head. This
system requires the input of orthophoto images of the field
canopy and outputs the segmentation results generated by a
novel “Improved ResNet” model and grading results determined
by a pixel clustering method. The overall flow of the method
is shown in Figure 3. Our approach comprises three steps:
(1) detect the positions of the broccoli heads and calculate the
orthophoto projection area; (2) establish a yield estimation model
based on the correlation between flower-ball area and weighing
results; and (3) conduct flower-ball grading based on a pixel
clustering algorithm.
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FIGURE 1 | Part of the trial design. (A–C) Test site location and the appearance of the greenhouse; (D) field imaging system and integrated sensors—(a) Canon
EOS 90D digital camera, (b) Surface Laptop 2 computer, (c) uniform LED surface light source.

FIGURE 2 | Flowchart of the image preprocessing.
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TABLE 1 | Dataset configuration.

Variety Original Augmentation #Train #Val/Test

Zheqing95 165 2000 1500 250/250

Tailv1 171 2000 1500 250/250

Tailv2 170 2000 1500 250/250

Architecture of the Training Models
The growing broccoli heads were detected using a CNN named
“Improved ResNet.” In order to verify the accuracy of the
model, three classical deep learning architectures were used
for comparative experiments, namely GoogleNet, VGG16, and
ResNet 50. The open-source codes of these approaches were
implemented under the TensorFlow framework.

GoogleNet
GoogleNet reduces the number of filters and training parameters
which are required compared with the traditional Inception
Structure (Tang et al., 2016). Additionally, it maximizes the depth
and width of the network and divides the multidimensional
convolution layer in the Inception Module into several smaller
one-dimensional convolution layers by decomposition factor,

which not only reduces the number of parameters in the model,
but also effectively avoids over-fitting.

VGGNet
The VGG network constructs a CNN with a depth of 16/19 layers
by repeatedly stacking small convolution cores with a size of
3∗3 and maximum pooling layers with a size of 2∗2 (Mehdipour
Ghazi et al., 2017). In this study, the VGG16 network model
was adopted; the number 16 denotes the number of layers using
convolution layer besides pooling layer. VGG16 uses convolution
blocks consisting of 2–3 convolution layers so that the network
has more receptive fields and fewer network parameters, and
also uses a Rectified Linear Unit (ReLU) activation function
to perform numerous linear transformations to achieve greater
learning ability.

ResNet
ResNet is a complete network formed by the repeated
accumulation of residual learning modules (He et al., 2016).
The introduction of residual modules solves the problem of
gradient dispersion and enhances the feature-learning ability and
recognition performance. The structure of the residual modules
is shown in Figure 4. Set x as the input and F (x, W1, W2) as

FIGURE 3 | The flow of the proposed method.
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FIGURE 4 | The structure of residual module in ResNet.

the output after the convolution of W1 and W2 (the weighting
parameters to be learned). The activation function is set as ReLU,
so the final output of the residual module unit y can be expressed
as follows:

y = F(x,W1,W2)+Wsx (1)

where W1 and W2 represent the weighting parameters
to be learned, and Ws represents a square matrix that
transforms x from the input residual module dimension to
the output dimension.

Improved ResNet
In supervised learning mode, a large amount of data is needed
to train the residual network model. However, at present, few
broccoli images are available with labels, which cannot meet the
needs of training deep network models. Therefore, in order to

improve the accuracy and generalization ability of the ResNet-
50 model, a feature- based transfer learning was adopted which
combines transfer learning and deep learning. First, ImageNet
was used to pre-train the ResNet-50 network to allow it to
extract image features, and the trained network parameters
were used as network models. Then, broccoli-head images were
precisely segmented by adjusting the parameters of the ResNet-
50 network. A three-layer adaptive network was used to replace
the full connection layers and the classification layers of the
ResNet-50 model, and the LReLUSoftplus was adopted as the
activation function of the architecture. The formulas for ReLU
and LReLUSoftplus are given as follows.

f (x) = max(0, x) (2)

f (x) =
{

ln(ex + 1)− ln 2, x ≥ 0
ax, x < 0

(3)

where x indicates the input value, and a is set as 0.01. A general
scheme of the proposed method is shown in Figure 5. M1, M2,
M3, and M4 are the four residual blocks in the ResNet-50 model,
while N1, N2, and N3 are the three components of the adaptive
network. In order to enrich the extracted features, all residual
blocks were deconvoluted to get the corresponding features
before the residual block convolution, then the deconvolution
features were fused by using weighted fusion method.

The hyper-parameters for all experiments were as follows: the
loss function was set to dice loss due to this function’s good
performance in dichotomous problems; the base learning rate
was 0.001 in the first 3000 iterations and was changed to 0.0005
in the subsequent 2000 iterations; the value of momentum and
dropout were 0.9 and 0.8, respectively; and the number of epochs
was 200 and the batch size was 64. We set the ratio of training
images, validation images and test images to 6:1:1 in order to
ensure the credibility of the training results.

Yield Estimation
After the canopy area of broccoli-head had been measured
using the deep learning approach, a yield estimation model
was developed by calculating the relationship between the
weight of head balls (mean fresh matter of the broccoli heads
within 2 h after harvest) and the segmentation area using

FIGURE 5 | A general scheme of the Improved ResNet.
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regression analysis. Here, we treat the mean fresh weights of
the broccoli heads and the mean value of the projected area
of the corresponding variety as the independent and dependent
variables of the formulas, respectively.

Grading System
An artificial grading standard for broccoli based on the sensory
yellowness of the flower-ball was adopted from Tu et al. (2007).
The details of the grading standard are shown as follows:

Level 0: unable to detect yellow flower buds;
Level 1: 1–3 yellow flower buds detected;
Level 3: detect 5% yellow area;
Level 5: 50% yellow area detected;
Level 7: yellowness degree between 50 and 75%;
Level 9: all the detection area displayed yellow color;

The yellowness degree of broccoli head can be calculated
by Eq. 4:

Y =
∑

M1 ∗ N1/M2 ∗ N2 (4)

where Y represents the degree of sensory yellowness, M1
represents the level of each broccoli under our grading system,
N1 is number of the broccoli in the corresponding level, M2 is
the highest level, and N2 is the total number of observed broccoli.
Since it was only necessary to distinguish two types of color in
our research (green and yellow) and these two parameters were
completely different, it was convenient to separate them by using
a threshold segmentation technology. In this paper, an optimized
Otsu method was used to transform the grayscale images of the
head ball into two parts and calculate the number of black and
white pixels respectively to determine the proportion of yellow
area. In our practical experience, it was not necessary to achieve
such precise grading since broccoli heads with more than 10%
yellowness area has no commercial value to any consumers. We
merged Level 4 (10% yellow area detected) to Level 9 and then
divided all the broccolis into five levels according to the new
standard (Table 2).

Data Annotation
For the supervised learning algorithm, the quality of ground truth
determines the accuracy of the final results. In the field of image
segmentation, in addition to some cases where open datasets are
available, many application scenarios require specialized datasets
for migration learning or end-to-end training. The methods for
constructing ground truth datasets can be separated into three
categories: manual labeling, automatic labeling, and outsourcing
labeling. Among them, automatic labeling usually requires a

TABLE 2 | Grading threshold for broccoli head.

Grading standard Proportion of yellow buds

Level 0 0

Level 1 <1%

Level 2 <5%

Level 3 5–10%

Level 4 >10%

second review to avoid program errors, and outsourcing labeling
introduces the risk of data leakage and loss. Meanwhile, manual
labeling is usually time consuming, although the results are
relatively reliable. In our study, the manual works were conducted
by four people using the Labelme tool to draw curved lines to
precisely segment the broccoli heads. The code of this tool1 is
open source so that it can be used by anyone to build a labeled
training dataset.

Evaluation Index
The performance of our segmentation model was evaluated using
five different metrics: (1) Accuracy; (2) Precision; (3) Intersection
over Union (IOU); and (4) Recall and (5) F-Measure. “Accuracy”
is the proportion of correctly extracted flower ball pixels to
the total number of pixels. The higher the value (approach to
1), the more accurate the segmentation is. IOU is applied to
describe the degree of ratio of intersection and union of real
and predicted values. Precision and Recall can be used to reveal
accuracy and the completeness of the segmented region. These
two indexes interact with each other, and the F-measure was
used to balance them. The computational formulas of these five
evaluation indexes are shown in Eqs 5–9:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

IOU =
Predicted ∩ GroundTruth
Predicted ∪ GroundTruth

(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F −Measure =
2 ∗ Precision ∗ Recall
Precision+ Recall

(9)

where, TP, TN, FP, and FN in Eqs 5–7 represent the numbers of
true positives, true negatives, false positives, and false negatives,
respectively. Among them, the true positives represent the
extracted pixels and the corresponding ground truth which
both belong to the flower ball region. True negatives are when
extracted pixels and the corresponding ground truth are both
background pixels. False positives are when the pixels are
classified as flower ball pixels but the ground truth results
display them as background pixels. False negatives represent
the background pixels that are not correctly discriminated. The
“Predicted” in Eq. 6 represents the prediction results achieved by
these segmentation algorithms.

RESULTS AND DISCUSSION

The experiment was conducted on images of growing broccoli
which were captured by a camera mounted on a self-developed
near-ground imaging system equipped with a series of auxiliary
imaging devices. Using our post-processing system (Microsoft

1https://github.com/wkentaro/labelme
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FIGURE 6 | The results of broccoli head segmentation using different approaches. (A) Original images, (B) annotation results (C) segmented by Improved ResNet,
(D) segmented by GoogleNet, (E) segmented by VggNet, and (F) segmented by ResNet.

Windows 10 Professional operating environment with a 12-core
Intel Core i7-8700K CPU, 16 GB of memory, and an NVIDA
GTX 1080Ti video card), the segmentation process for one test
image with a resolution of 1440∗1080 only takes 1.5 s. Moreover,
by applying compute unified device architecture (CUDA) parallel
acceleration model, the average processing time of a single image
could be increased to 0.7 s. The performance of the developed
deep learning method was evaluated using the evaluation metrics
mentioned in Section “Evaluation Index,” by comparison to
manual ground truth results. All of the models presented in this
paper are based on Python.

Broccoli Head Segmentation
The broccoli segmentation method was tested using the whole
test set. Some of the results are presented in Figure 6. In
Figure 6, three representative testing images were chosen to show
the segmentation results obtained using different approaches.
For each broccoli, the original image is shown in Line A and
the segmentation results for each compared model are shown
in Lines C–F. To demonstrate the accuracy and robustness of
deep learning for plant monitoring, the evaluation metrics of
Accuracy, Precision, IOU, Recall, and F-Measure were analyzed,
as shown in Figure 7. In this figure, the color columns represent
the mean value of the evaluation metrics. The color differences
between these columns represent the various indicators. All the
statistical analysis was performed using the SPSS 19.0 software
(IBM, Inc., Armonk, NY, United States) (Figures 6, 7).

As shown in Figures 6, 7, for Improved ResNet, the average
Accuracy and Precision for the test images are about 0.896 and
0.897, which are higher than the values obtained using the three
other contrast algorithms. Additionally, the proposed method
can achieve better consistency with labeling results. Furthermore,
the high IOU of 0.901 of the proposed method shows a high

overlapping rate between the candidate region and the labeling
area. The IOU values of the other CNN models were as follows:
GoogleNet, 0.801; VggNet, 0.799; and traditional ResNet, 0.832.
A mean value of Recall of 0.879 can be achieved by using
the Improved ResNet, compared with 0.721, 0.744, and 0.813
for GoogleNet, VggNet, and ResNet, respectively. Moreover, as
illustrated in the figure, a higher F-measure can be obtained
using Improved ResNet (F-measure is a comprehensive indicator
that accounts for Recall). Compared with the other approaches—
which achieved relatively lower F-measure values, with values of
0.751, 0.758, and 0.838 achieved using GoogleNet, VggNet, and
ResNet, respectively—the Improved ResNet had a higher mean
F-measure (0.899) with a lower standard deviation. This shows
that the proposed algorithm was able to accurately distinguish
broccoli head regions from the background region and guarantee
the integrity of flower-ball structural information.

Yield Estimation Results
All of the broccolis were harvested on 6 January 2019, and the
quality of each plant was recorded by skilled workers. The test
set contained a total of 100 broccolis, which were arranged and
numbered in order of weight and then split into an odd group and
an even group, which were used for modeling and verification,
respectively. In this study, linear regression was used to realize
non-destructive production estimation. The number of pixels
occupied by the head of broccoli as obtained by the segmentation
algorithm was used as the independent variable, and the quality
of a single broccoli was treated as the dependent variable. To
quantitatively assess the performance of the linear regression
algorithm, various popular elevation metrics were computed,
namely the determination coefficient (R2) and the normal root-
mean-squared error (NRMSE). These indexes have been widely
used to estimate the predicative power of regression models.
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FIGURE 7 | Comparison of different approaches by segmentation quality for GoogleNet, VggNet, ResNet, and the proposed method, Improved ResNet.
(A) Examples of segmentation output. Blue region-TP, Red region-FN, Orange region-FP, Purple region-TN. (B) Comparison of different approaches using various
indicators.

A larger R2 indicates a better fitting of the model, while a smaller
NRMSE indicates a better estimation. We defined R2 and NRMSE
as follows:

R2
=

1− SSE
SST

(10)

NRMSE =

√
1
N
∑N

i=1[Y(i)− Y ′(i)]2

Ȳ
(11)

relating the obtained number of pixels with the quality of each
broccoli. In Eq. 10, SSE represents the Sum of Squares for Error
and SST represents the error sum of squares. In Eq. 11, N and
Y ′(i) correspond to the number of samples and the actual value
of sample i, respectively; Y ′(i) represents the estimated value of
sample i; and Ȳ is the average actual value of the sample. For
regression analysis, the number of pixels identified for the three
species of broccoli was selected as the independent variable, and
the corresponding individual weight was used as the dependent

variable. The regression model conducted with our test set is
shown in Figure 8.

As illustrated in Figure 8A, for Zheqing95, the number of
pixels was strongly correlated with manual measurements of
plant quality (adjusted R2 = 0.90), which is consistent with the
result for NRMSE (adjusted NRMSE = 0.07). As shown in
Figure 8C, the lowest R2 occurs with the largest NRMSE ofTailv2.
These differences seem to be strongly species-specific, even in the
same growth stage. Compared with the accurate quality results,
the image-based yield estimation had two additive error sources:
(1) the head region was covered by leaves or insects; and (2)
misclassification of head pixels and background pixels. In the
first situation, the estimated production may be higher than the
actual production due to the loss of pixel statistics. This is a
technical limitation, and the RGB camera cannot remove the
occluded objects from a certain view. A possible solution is to use
opening and closing operations to remove these small holes in
the head; however, this may not suitable for broccolis with large
flower buds. An alternative solution is to recognize the leaves,
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FIGURE 8 | Correlation between pixel number and the quality of broccoli. (A) Correlation results for Zheqing95, (B) correlation results for Tailv1 and (C) correlation
results for Tailv2.

etc., independently, which will greatly increase the complexity
of the model. In the second situation, the number of pixels that
presented a certain plant is larger than the real value. This issue
can be solved by providing more training samples and fine-
tuning the hyper-parameters to improve the accuracy of the pixel
classification process.

Grading Results Based on Image
Analysis
After applying grayscale transformation and the Otsu algorithm,
the fine classification of the broccoli-head pixels was carried
out. In this study, the optimal threshold for each image was
determined by using a traversal algorithm within a small range.
The Particle Swarm Optimization Algorithm (PSOA) was used
to determine the fitness function and fitness parameters (Wang
et al., 2017). Based on the image analysis results and the new
grading standard, we provide reliable grading results for broccoli
quality (Table 3).

Then, we tested the accuracy of our method by comparing
our grading results with manual annotation results. It was
found that, using the grayscale transformation and improved
Otsu algorithm, more than 80% of broccoli heads were graded
correctly; specifically, for Zheqing95, Tailv1, and Tailv2, the
prediction Accuracy was 0.879, 0.853, and 0.841, respectively
compared with manual annotation results. Therefore, the
performance of the proposed method is appropriate for practical
use. Further research should focus on the introduction of
roundness information and bud number to build a regression
model (Table 4).

Further, an experimental comparison result was provided
to show how much segmentation quality affects the grading
results. With other approaches displayed relatively lower values,

TABLE 3 | Grading results for broccoli quality obtained by using the Particle
Swarm Optimization Algorithm (PSOA) and the Otsu algorithm.

Level 0 Level 1 Level 2 Level 3 Level 4 Accuracy

Zheqing95 31.2% 29.7% 12.5% 13.4% 13.2% 0.879

Tailv1 38.9% 37.7% 11.6% 7.8% 4.0% 0.853

Tailv2 25.1% 22.4% 25.3% 10.4% 16.8% 0.841

TABLE 4 | Comparison of the analysis accuracy of the quality of broccoli head
based on Particle Swarm Optimization Algorithm (PSOA) and the Otsu algorithm in
different varieties.

Zheqing95 Tailv1 Tailv2

Accuracy 0.879 0.853 0.841

IOU 0.855 0.844 0.843

Precision 0.825 0.894 0.899

Recall 0.838 0.841 0.873

F-measure 0.851 0.865 0.895

TABLE 5 | Comparison of the analysis accuracy of the quality of broccoli head
using different segmentation models.

Improved ResNet GoogleNet VggNet ResNet

Accuracy 0.867 0.814 0.827 0.835

IOU 0.848 0.801 0.789 0.811

Precision 0.877 0.798 0.767 0.825

Recall 0.858 0.799 0.772 0.813

F-measure 0.867 0.768 0.797 0.809

FIGURE 9 | Performance of different segmentation methods under different
light condition.

the Improved ResNet had higher mean value of evaluation
indices which indicate that the better segmentation quality could
improve the accuracy of grading results (Table 5).
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FIGURE 10 | Performance of different segmentation methods under various types of noise interference. (A) Gaussian noise, (B) Salt and Pepper noise and
(C) Rayleigh noise.
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Robustness and Efficiency Analysis
The accurate analysis of plant images acquired outdoors
is a challenging task for researchers. Compared to pot
experiments in the laboratory, segmenting field-grown vegetation
is more complex due to varying light intensity, high specular
reflectance, and ambient noise; each of these lead to the
reduction of segmentation accuracy. Therefore, in order to be
appropriate for the collection of plant phenotyping information,
the segmentation method should be sufficiently robust to
handle these unfavorable conditions. Figures 9, 10 present
metrics indicating the quality of segmentation (Accuracy,
Precision, IOU, Recall, and F-Measure) for the proposed method
under different light condition (from 1000 to 10,000 lx)
and under various types of noise interference (Gaussian
noise, Salt and Pepper noise, Rayleigh noise). In comparison,
GoogleNet, VggNet, and ResNet presented a similar analysis
throughout our experiment.

As presented in these two experiments, although the three
traditional architectures (GoogleNet, VggNet, and ResNet)
can achieve satisfactory results under moderate brightness
conditions, they performed poorly overall, particularly in
circumstances with excessive or insufficient incident light.
Additionally, the segmentation accuracy of GoogleNet and
VggNet are greatly affected by Gaussian noise, while the
traditional ResNet achieved much lower Recall and F-Measure
when Salt and Pepper noise was introduced. The Improved
ResNet achieved the highest mean Accuracy and the highest
Precision, IOU, Recall, and F-Measure of the four compared
methods. It must be noted that, we conducted all of our
experiments in a confined environment (greenhouse etc.)
because of the limitation of stability and power supply of
our image acquisition platform. In other words, it is not a
comprehensive robustness test for use under outdoor conditions.
After the vehicle is further improved, we will apply it to
outdoor conditions.

Moreover, the proposed algorithm achieved an average
running time of 0.18 s for segmenting a single image, and thus
represents a high-throughput processing method to measure the
size of broccoli heads to inform decision-making in large-scale
breeding. In our experiments, the 60 m2 field contained 1000s of
broccoli plants, and the proposed method was able to calculate
the area of the flower ball and grade all the plants within 30 s.
Considering the target number of broccoli plants and image size,
the Improved ResNet can adequately estimate biomass or yield
for online measurement. The running time for each image ranges
from 0.13 to 0.20 s. Additionally, we calculated the average time
required for each step in the Improved ResNet procedure, and
found that the most time-consuming step was segmentation. In
our future work, we will attempt to improve hardware (including
the I/O speed of the CPU and memory) in order to reduce the
segmentation time.

Limitations and Future Work
The imaging and processing procedure presented in this paper
resulted in broccoli-head images with a high resolution, and
allows the dynamic monitoring of the growth of individual

broccoli plants at different growth stages. It must be noted
that, the processing pipeline contains many steps which rely
on manual settings and tuning which questions the wider
applicability of the presented system. In the future, methods
could be developed to improve the segmentation process in an
attempt to eliminate the need for image labeling, such as semi-
supervised learning (SSL) technology (Ma et al., 2015). In cases
when there is only a small number of labeled samples, unlabeled
samples can be labeled based on the similarity between unlabeled
samples and labeled samples and the potential distribution
of unlabeled samples and other strategies which will reduce
the workload of annotation. Additionally, higher-resolution
cameras would improve the overall process, albeit at the cost
of increased processing time. Moreover, it is conceivable that
an industrial robot could be used to perform both broccoli
monitoring and automated harvesting based on the results
of image processing, however this may become excessively
cost prohibitive.

CONCLUSION

In this study, we establish a robust image processing method
for segmenting and grading broccoli head in field conditions
based on a deep learning architecture and color information.
Compared with three other approaches—namely GoogleNet,
VggNet, and ResNet—the proposed Improved ResNet algorithm
has better segmentation performance and grading accuracy.
Moreover, our model was tested under different light intensities
and noise categories to confirm its applicability. Realizing
accurate segmentation is merely the first step, being a
prerequisite for extracting image-based traits. Based on
our experimental results, many other traits, such as Above
Ground Biomass (AGB), yield, and biologic rhythm, could be
obtained using the Improved ResNet algorithm. Therefore,
this algorithm represents a powerful tool for the large-scale
phenotyping analysis of broccoli in a non-invasive and
automatized way, and could potentially facilitate breeding
research in future.
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