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Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial
roles in the precise transportation of various materials, and thus supports cell
proliferation and cellular polarization. Conventionally, plant prevacuolar compartments
(PVCs), identified as multivesicular bodies (MVBs), play important roles in both the
secretory pathway as intermediate compartments and the endocytic pathway as late
endosomes. In recent years, the PVC/MVBs have been proposed to play important
roles in both protein vacuolar delivery and unconventional secretion, but several
important questions on the new regulators and environmental cues that coordinate the
PVC/MVB–organelle membrane interactions and their biological significances remain.
In this review, we first summarize the identity and nature of the plant PVC/MVBs,
and then we present an update on our current understanding on the interaction of
PVC/MVBs with other organelles in the plant endomembrane system with focus on the
vacuole, autophagosome, and plasma membrane (PM) in plant development and stress
responses. Finally, we raise some open questions and present future perspectives in the
study of PVC/MVB–organelle interactions and associated biological functions.
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INTRODUCTION

All eukaryotic cells have a functionally interrelated endomembrane system, which is “connected”
by types of vesicle-mediated movement of materials. The plant endomembrane system consists
of numerous conserved membrane-bound organelles, including the nuclear envelope, the
endoplasmic reticulum (ER), the Golgi apparatus, the trans-Golgi network or early endosome
(TGN/EE), the prevacuolar compartment/multivesicular body or late endosome (PVC/MVB/LE),
and the vacuole. Each organelle membrane consists of a unique complex mixture of phospholipids
and proteins, which help them perform specific functions in vesicle fission and fusion during
protein transport. Over the past decades, numerous unique organelles and multiple protein
transport pathways in the plant endomembrane system have been identified and characterized,
especially the plant secretory pathway and endocytic pathway (Figure 1; Viotti et al., 2010;
Rabouille, 2017).
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In the plant secretory pathway (Figure 1, route a, black
solid arrow), newly synthesized soluble proteins contain a signal
peptide to ensure translocation into the ER lumen for correct
folding. Subsequently, they are transported into Golgi apparatus
followed by the TGN. Proteins with vacuolar sorting signals
are recognized by vacuolar sorting receptors (VSRs) as cargo at
TGN and are then transported to PVC/MVBs, which contain
numerous intraluminal vesicles (ILVs) (Tse et al., 2004), whereas
the proteins without vacuolar sorting signals will be secreted
to extracellular space (Figure 1, route b, purple dashed arrow;
Shen et al., 2013). Then, the VSRs dissociate from cargo and are
recycled back to the TGN for another round of cargo sorting
(Figure 1, route c, green dashed arrow). Finally, the cargo
proteins presented in the PVC/MVBs are transported into lytic
vacuole (LV) or protein storage vacuole (PSV) after the fusion of
the PVC/MVBs with the vacuole. This is the traditional model
for protein transport to the plant vacuole. Against this, a new
emerging model for VSR-cargo proteins sorting and receptor
recycling has emerged, which suggests that the VSR-cargo sorting
process may be initiated already at the ER or the cis-Golgi,
and then cargoes are released from the receptors in the TGN
from where the VSRs are transported back through the retromer
complex for another round of sorting (Niemes et al., 2010a,b;
Scheuring et al., 2011; Künzl et al., 2016; Robinson and Neuhaus,
2016; Früholz et al., 2018; Salanenka et al., 2018).

In the endocytic pathway (Figure 1, route d, purple solid
arrow), materials are internalized at the PM by invagination
and budding of limited subdomains of membrane into endocytic
vesicles and are targeted to the TGN, which is also defined
as EE in plants (Lam et al., 2007). After that, a subdomain
of TGN/EE membrane functions as a recycling endosome that
mediates the return of receptor proteins or lipids back to the
PM for another round of sorting, while other subdomains of
the TGN/EE membrane mature into LEs, which are identical
to the PVC/MVBs in plant cells (Tse et al., 2004). The matured
LEs or PVC/MVBs finally fuse with vacuole. Thus, proteins or
cargo from both secretory and endocytic pathways converge on
the TGN/EE and then are transported to PVC/MVBs by different
sorting machineries.

Recently, significant progress has been achieved on the
identity, biogenesis, membrane interactions, and biological
functions of PVC/MVBs in plant cells. In this review, we give
an update summary on the identification and biogenesis of plant
PVC/MVBs and then discuss its membrane fusion with vacuole
as well as the crosstalk with autophagosomes in regulating
vacuolar degradation pathways. In addition, we highlight the
membrane interaction between PVC/MVBs and the PM for its
critical function in plant pathogen defense. Last, we give a brief
comment on open questions and perspectives for future studies
on plant PVC/MVBs.

WHAT ARE PLANT PREVACUOLAR
MVBS?

In mammals, endocytosed proteins from the PM are first
delivered to EEs and then sent to LEs before final delivery

to lysosomes. LEs and EEs are two distinct organelles and
have different luminal pHs and different proteins attached to
their membranes (Russell et al., 2006). LEs were first noted
in mammalian cell by electron microscopy in Palade (1955).
Generally, the diameter of LEs is 100–600 nm with the
ILVs inside up to 50 nm in diameter. Because LEs contain
numerous ILVs inside, the LEs are also called MVBs. On
the basis of precedents from mammalian and yeast cells, LEs
mainly function as an intermediate organelle between the TGN
and lysosomes/vacuole for protein transport. Thus, LEs are
also sometimes called prelysosomal compartments (PLCs) or
prevacuolar compartments (PVCs) (Jahraus et al., 1994; Luzio
et al., 2003; Russell et al., 2006). In the secretory pathway of
mammals, lysosomal protein transported from EE/TGN to LE
is mediated by mannosyl 6-phosphate receptors (MPRs), which
recruit lysosomal acid hydrolases at the TGN. As the TGN
matures into the LE, the hydrolases are released from the MPRs
owing to the acidic environment, and MPRs are then recycled
back to the TGN for another round of sorting (Chen et al., 1997).
A similar sorting mechanism is also found in yeast, where the
sorting receptor Vps10p recycles between the Golgi apparatus
and the PVCs for the vacuolar sorting of carboxypeptidase Y
(CPY) (Conibear and Stevens, 1998).

Following the research works in mammals and yeast, it is
thus possible to use vacuolar sorting receptor (VSR), which
recycles between the Golgi apparatus and vacuole as a protein
marker to define the plant PVCs. Indeed, the pea BP-80 protein,
the first identified VSR in plants functioning in sorting acid
hydrolases to the vacuole, was found in both dilated ends of
Golgi cisternae and a morphologically undefined “prevacuole”
structure in pea root tip cells (Paris et al., 1997). Subsequent study
using Arabidopsis VSR homolog AtELP/AtVSR1 suggests that
the VSR can be found in both the uncharacterized reticulotubular
compartments and the 100-nm electron-dense uncoated vesicles
(later named as PVC/MVBs) in root tip cells of Arabidopsis
(Ahmed et al., 1997; Sanderfoot et al., 1998). In addition, VSR
antibodies were labeled and concentrated at MVBs in the thin
sections from high-pressure frozen/freeze-substituted samples or
purified MVBs from the BY-2 cell line, respectively (Tse et al.,
2004). Moreover, VSR antibody-labeled MVBs have also been
illustrated in both developing Arabidopsis seeds and germinated
mung bean (Hara-Nishimura et al., 1998; Tse et al., 2004; Wang
et al., 2007). Thus, the PVCs in plants are identified as the MVBs
and the VSR antibodies can be used as a PVC/MVB marker.

The plant VSR is a type I membrane protein, which behaves
as one transmembrane domain (TMD) with its N-terminus (NT)
facing the lumen and its C-terminus (CT) facing the cytoplasm.
The NT of VSR is responsible for cargo binding, while the
TMD and CT regions are essential and sufficient for PVC/MVB
targeting of VSR in plant cells (Li et al., 2002). The artificial
reporter proteins containing the TMD and CT regions of VSRs
(e.g., GFP-BP-80TMD/CT) colocalize with VSR antibody-labeled
punctate dots, and thus are sufficient to be used as protein
markers of the PVC/MVBs in Arabidopsis (Sohn et al., 2003; Lee
et al., 2004; Miao et al., 2006; Zhu et al., 2019).

The yeast PEP12p is a member of Qa-SNARE
proteins and functions in the vacuolar proteins transport
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FIGURE 1 | Membrane interaction network of PVC/MVBs with other organelles in the plant endomembrane system. (a,b) In the plant secretory pathway, proteins
destined for LV/PSV are sorted from TGN en route to PVC/MVB, and later deposited into LV/PSV (route a, black solid arrow). Some proteins without vacuolar sorting
signal will be secreted outside of the cell from the TGN via the “default pathway” (route b, purple dashed arrow). (c) Proteins can be recycled from either MVB/PVC,
TGN, or Golgi as retrograde protein transport (route c, green dashed arrow). (d) In the endocytic pathway (route d, purple solid arrow), proteins are internalized from
the plasma membrane or extracellular space and first reach the Early Endosomes/TGN. From there, they either move to Late Endosome/PVC/MVB for further
transport to the LV for degradation or are recycled back from TGN to the PM. (e) Protein secretion can be mediated by PVC/MVB-mediated unconventional protein
secretion routes (route e, blue dashed arrow). (f) In autophagy pathway, PVC/MVBs can interact with autophagosome for materials delivered into the LV for
degradation (route f, red solid arrow). ER, endoplasmic reticulum; CW, cell wall; LV, lytic vacuole; PM, plasma membrane; PSV, protein storage vacuole; PVC/MVB,
prevacuolar compartment/multivesicular bodies; TGN, trans Golgi network.

(von Mollard et al., 1997; Gerrard et al., 2000). In Arabidopsis,
AtPEP12 localizes between the Golgi and the vacuole as small
circular membrane-bound structures—PVCs (da Silva Conceição
et al., 1997). Besides, Rab5 family GTPases RHA1 and ARA7 are
also reported to colocalize with AtPEP12. Thus, RHA1 and ARA7
are also used as a marker of the PVC/MVBs (Kotzer et al., 2004;
Lee et al., 2004). Moreover, overexpression of the constitutively
active GTP-bound mutant of ARA7, GFP-ARA7Q69L, can
induce the enlarged PVC/MVB formation, present as ring-like
structures under the confocal microscope because of their
homotypic fusion. Moreover, overexpression of the constitutively
active GTP-bound mutant of ARA7, GFP-ARA7Q69L, can induce
the enlarged PVC/MVB formation, present as ring-like structures
under the confocal microscope, which properly originate from
their homotypic membrane fusion (Jia et al., 2013). Similarly,
the dilated ring-like structures of the PVC/MVBs are also
labeled by fluorescent-tagged VSR or ARA7 upon treatment
by wortmannin, an inhibitor of phosphatidylinositol-3 kinase
(PI-3 kinase and Vps34p in yeast) (Corvera et al., 1999; Tse et al.,
2004). Such wortmannin-induced enlargement of MVBs have

been supposed to be formed by the fusions between the TGN and
PVC/MVBs, as well as the homotypic fusions of the PVC/MVB
membrane (Wang et al., 2007; Wang J. et al., 2009). Currently, the
overexpressed ARA7Q69L and wortmannin-induced enlargement
of MVBs have been used as specific tools to identify the plant
PVC/MVBs (Figure 2A).

PVC/MVB BIOGENESIS AND
MATURATION

In mammalian cells, EE has typically two structurally distinct
domains: a central nearly spherical structure with ILVs inside
and an extensive tubular network with clathrin-coated buds
projecting into the cytoplasm (Griffiths and Gruenberg, 1991;
Tooze and Hollinshead, 1991). The TGN in plants shares
many typical features with the EE in mammalian cells on
the morphological structure (Stoorvogel et al., 1996; Kang and
Staehelin, 2008; Toyooka et al., 2009) and functions (Lam et al.,
2007; Cai et al., 2012). Indeed, the current study demonstrates
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FIGURE 2 | PVC/MVB biogenesis and maturation in plant cells. (A) PVC/MVBs mature from the tubular–vesicular TGN. Overexpression of ARA7Q69L and
wortmannin treatment can induce enlargement of PVC/MVBs. The PVC/MVB membrane localization of VSRs can be used as a marker of normal or enlarged
PVC/MVBs. (B) The working model of ESCRTs in ILV formation and membrane protein endosome sorting. Ubiquitinated cargoes are recognized by the ESCRT-0-like
protein TOLs and then transferred to ESCRT-I and ESCRT-II by the ubiquitin-binding proteins FREE1, VPS23, and VPS36. ESCRT-III is then activated by ESCRT-II via
the interaction between VPS25 and VPS20 to constrict and invaginate the membrane of PVC/MVBs to form ILVs. The ubiquitin of cargoes can then be removed by
the deubiquitinating enzyme AMSH3, which is recruited by AtBRO1 in the ESCRT-III complex. At last, the VPS4/SKD1 complex is recruited by ESCRT-III accessory
proteins to dissociate the ESCRT-III complex from the PVC/MVB membrane. (C) Tentative model of the assembly of the core retromer to endosomal membranes in
plants. The retromer complex is composed of a dimer of SNXs and of the core retromer consisting of VPS26, VPS29, and VPS35. The core retromer is recruited to
the endosomal membrane by the Rab7 GTPase RABG3f. Membrane proteins (e.g., VSRs and PINs) can be recycled by the attachment of the retromer complex to
the membrane. AtBRO1, Arabidopsis BRO1-like domain containing protein 1; AMSH3, associated molecular with SH3 domain of STAM 3; BRAF, bro1-domain
protein as FREE1 suppressor; CHMP, charged multivesicular body protein; ESCRT, endosomal sorting complexes required for transport; FREE1, FYVE domain
protein required for endosomal sorting 1; LIP5, protein homolog of mammalian lyst-interacting protein 5; VSR, vacuolar sorting receptor; PIN, PIN auxin efflux
carriers; PROS, positive regulator of SKD1; SKD1, suppressor of k+ transport growth defect 1; SNF7, sucrose non-fermenting 7; SNX, sorting nexins; TOL,
TOM1-like; ISTL1, increased salt tolerance 1; Wort, wortmannin; ILV, intraluminal vesicles; VPS, vacuolar protein sorting.

that the TGN in plant cell displays tubular–vesicular structures
with several coated buds, which functions for anterograde traffic
to the vacuole, and for proteins recycling to the PM (Lam
et al., 2007). Traditionally, vacuolar transport from the TGN/EE
to PVC/MVB is assumed to be mediated by clathrin-coated
vesicles (CCVs). However, recent data reveal that the plant
PVC/MVBs are derived from the tubular–vesicular TGN/EE
through a process of maturation (Scheuring et al., 2011). The
presence of ILVs in the PVC/MVB is formed by the invaginations
of limiting membrane of the PVC/MVB into the lumen. Because
of the formation of ILVs, the endocytosed membrane proteins

transported to the PVC/MVBs can further be separated into two
groups: one group of membrane proteins is located on the outer
membrane of the PVC/MVBs, while the other group is further
sorted into ILVs of the PVC/MVB. Such a separation is critical to
ensure that the two types of cargoes either are transported into the
vacuole lumen for degradation or remain on the tonoplast after
the PVC/MVB–vacuole fusion or are integrated into retrograde
transport vesicles (Huotari and Helenius, 2011).

It has been demonstrated that the formation of ILVs in the
PVC/MVBs and the sorting of ubiquitinated membrane proteins
require endosomal sorting complex required for transport
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(ESCRT) machinery. In mammalian cells and yeast, the ESCRT
machinery consists of five distinct ESCRT complexes (ESCRT-
0, -I, -II, -III, and the Vps4 complex) and several ESCRT-
associated proteins (Saksena et al., 2007; Williams and Urbé,
2007; Hurley, 2008). Current models from these organisms
indicate that the ESCRT-0 complex initially recognizes and
clusters the ubiquitinated cargoes and then is recruited to the
endosomal membrane by interaction with phosphatidylinositol
3-phosphate (PI3P). ESCRT-I and ESCRT-II are then sequentially
recruited by ESCRT-0 to the membrane, which, in turn, passes
the cargoes onto the ESCRT-III complex. Then, the cargoes are
deubiquitinated and the ILVs are cleaved by ESCRT-III from
the endosomal membrane and further dismantled by the VPS4
complex. In plant genome, most ESCRT isoforms have been
identified and their interaction networks are largely conserved,
except for the canonical ESCRT-0 subunits and the ESCRT-I
subunit MVB12 (Figure 2B; Richardson et al., 2011; Shahriari
et al., 2011). Interestingly, plants have evolved unique ESCRT
components to regulate ESCRT-mediated processes, such as the
VPS4/SKD1 ATPase positive regulator POSITIVE REGULATOR
OF SKD1 (PROS), the TOM1-LIKE (TOL) family proteins, and
the ESCRT-0 function like protein FYVE DOMAIN PROTEIN
REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) in
Arabidopsis (Korbei et al., 2013; Gao et al., 2014; Reyes et al.,
2014). Moreover, using genetic suppressor screening of FREE1
mutant, a plant-specific BRO1-DOMAIN PROTEIN AS FREE1
SUPPRESSOR (BRAF) and the RESURRECTION1 (RST1) have
been identified recently (Shen et al., 2018; Zhao et al., 2019).
BRAF may function as a negative regulator of ESCRT in plant.
Additionally, the suppressor protein RST1 identified a FREE1-
independent backup pathway that may mediate when needed,
which supports the previous finding that the ILVs are still
formed in the lumen of the MVBs despite the fact that all four
ESCRT complexes are silenced, and thus indicating the presence
of ESCRT-independent mechanisms of MVB biogenesis (Theos
et al., 2006). Although multiple plant unique ESCRT components
and regulators have been recovered recently, several important
questions on which protein(s) fulfill ESCRT-0 function in plant
and from where initial recognition of ubiquitinated cargo for
sorting remain largely unclear.

Distinct from mammalian and yeast cells where most
of the ESCRT localize at the MVBs membrane, the plant
ESCRT subunits have differential distribution along the
endosomal sorting route. The plant ESCRT component
TOL6 shows both PM and TGN localization patterns under
a confocal microscope (Korbei et al., 2013). In an immuno-
EM labeling study, endogenous ESCRT-I subunit VPS28
mainly localizes to the Golgi apparatus and the TGN, rather
than to the PVC/MVBs (Scheuring et al., 2011). Moreover,
the ESCRT-II subunit VPS22 mainly localizes to TGN,
whereas the ESCRT-III subunit VPS2 localizes principally
to subdomains of MVBs, and either adjacent to or partially
to TGN (Scheuring et al., 2011; Cai et al., 2014). Thus, the
different distribution patterns of plant ESCRT components
suggest that ESCRT sorting may occur at PM, and the
PVC/MVBs start maturing from the specific subdomain of
the EE/TGN, which supports the ultrastructure EM observation

that PVC/MVBs mature from the tubular-vesicular TGN/EE
(Scheuring et al., 2011).

PVC/MVBS AND VACUOLE MEMBRANE
INTERACTION: VACUOLAR PROTEIN
DELIVERY

The fusion of the PVC/MVBs with the vacuole is the final
delivery step for soluble cargoes and membrane proteins into
vacuole. This process can be divided into three sequential
steps: organelle tethering, trans-SNARE complex formation, and
membrane fusion. Consistently, the identified regulators that
play a role in the PVC/MVBs with the vacuole fusion steps
are very conserved in eukaryotic cells. However, distinct from
yeast and animal cells, plant cells contain two functional and
morphological distinctive forms of vacuoles: LVs and PSVs.
Thus, plants probably have evolved a unique mechanism in
endomembrane trafficking to maintain development and survival
under various stress conditions (Yang and Guo, 2018). The plant
LVs contain acid hydrolases playing an important role in multiple
biological processes such as protein turnover, abiotic, and biotic
stresses defense, and keeping cellular homeostasis (Tan et al.,
2019), whereas the PSVs mainly function to store proteins (Jiang
et al., 2001). Interestingly, PSVs can convert into LVs during seed
germination while LVs can also be replaced by PSVs in leaf cells,
although the detailed mechanism of the LV-PSV transition is still
largely unknown (Jiang et al., 2001; Feeney et al., 2018; Kwon
et al., 2018). The soluble proteins in LVs are mainly transported
by the PVC/MVB-mediated vacuolar pathway, while the storage
proteins in PSVs are transported by diverse routes. The fusion
of PVC/MVBs with PSVs can mediate delivery of proteases to
PSVs in protein mobilization in germinating mung bean seeds
(Wang et al., 2007; Reyes et al., 2011). In addition, proteins
located in plant unique PSVs can also be transported via CCVs,
dense vesicles (DVs) (Hohl et al., 1996; Hara-Nishimura et al.,
1998), precursor-accumulating vesicles (PACs), ER-derived dark
intrinsic protein (DIP) (Jiang et al., 2000), and protein bodies
(PBs) (Levanony et al., 1992; Rubin et al., 1992).

To identify the protein machinery that is involved in proteins
targeting LVs or PSVs, several unique genetic screening assays
have been raised in plant: (1) screening for maigo (mag) mutants
that have accumulated 12S globulin and 2S albumin based on
the many novel structures in dry seed under electro-microscope
(Shimada et al., 2006; Takahashi et al., 2010; Li et al., 2013);
(2) screening green fluorescence seed (gfs) mutants that have a
defect in vacuolar sorting of GFP-CT2, based on the detection
of fluorescent signals in the apoplasm (Shimada et al., 2003; Fuji
et al., 2007; Tamura et al., 2007); and (3) screening modified
transport to the vacuole (mtv) mutant, based on the interfered
secretion of a vacuolar marker (VAC2) to the apoplasm that
finally causes the early termination of meristems (Sanmartín
et al., 2007). By this way, several regulatory proteins have
been isolated and identified, which are required for PVC/MVB-
mediated proteins in vacuolar targeting. For example, the MAG1
protein, which encodes the core retromer component VPS29,
may be involved in retrograde trafficking of membrane proteins
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(e.g., VSRs and PINs) from the PVC/MVBs to the TGN or other
unclarified endosomes (Figure 2C; Shimada et al., 2006); the
AP-4 protein, one subunit of adaptor complex protein, encoded
by GFS4 or GFS5, interacts with VSR1 at TGN to participate
in vacuolar protein sorting (Fuji et al., 2016); MTV1 and
MTV4, which encode an epsin N-terminal homology (ENTH)
protein and an ADP ribosylation factor (ARF) GTPase-activating
protein (GAP) AGD5, respectively, are functioning in mediating
clathrin-dependent targeting of vacuolar cargoes from the TGN
to the PVC/MVBs (Sauer et al., 2013). Moreover, VSR4 encoded
by MTV2 has also been elucidated to participate in the regulation
of vacuolar protein sorting (Zouhar et al., 2010).

Currently, by combining genetic tools and molecular cell
biology approaches, the mechanism as to how PVC/MVBs
deliver soluble proteins to the LV/PSVs has been extensively
explored (Figure 3). For instance, the Rab7 family proteins,
the guanine nucleotide exchange factor VPS9a, and the MON1-
CCZ1 (MONENSIN SENSITIVITY1-CALCIUM CAFFEINE
ZINC SENSITIVITY1) protein complex have been proven to be
critical for the PVC/MVB-mediated vacuolar protein trafficking
in Arabidopsis (Cui et al., 2014; Ebine et al., 2014; Singh et al.,
2014). Besides, Q-SNARE VTI11/12 and R-SNARE VAMP727
have also been demonstrated to regulate the formation of PSVs
from PVC/MVBs (Sanmartín et al., 2007; Ebine et al., 2008). In
addition, two evolutionarily conserved tethering complexes, class
C core vacuole/endosome tethering (CORVET) and homotypic
fusion and protein sorting (HOPS), are proposed to be involved
in mediating membrane fusion process in vacuolar targeting
pathways by coordination with different sets of SNARE proteins
and RAB GTPase. For more details, CORVET coordinates
with RAB5 and the VAMP727-containing SNARE complex to
mediate membrane fusion between PVC/MVBs and the vacuole
(Figure 3, route a, blue arrow), while HOPS functions together
with RAB7 and the VAMP713-containing SNARE complex to
regulate membrane fusion between small vacuoles (Hao et al.,
2016; Brillada et al., 2018; Takemoto et al., 2018; Figure 3, route
b, purple arrow).

Interestingly, PVC/MVBs not only play an important role for
proteins in vacuole sorting but also are required for the formation
of central vacuole. Recent 3D electron tomography investigations
have demonstrated that small vacuoles served as nascent vacuoles
in LV biogenesis and parts of small vacuoles are originally
derived from PCV/MVBs via heterotypic fusion between the
PVC/MVBs and small vacuoles (Cui et al., 2019). Moreover,
the SNARE protein VTI11 and the newly identified ESCRT
component FREE1 are essential for both the formation of small
vacuoles and the heterotypic fusion of small vacuoles with the
PVC/MVBs. Importantly, the ESCRT component AMSH3 (Isono
et al., 2010) and FREE1 (Gao et al., 2015) have also been found to
regulate the vacuolar transportation of storage proteins, although
the molecular base of the underlying mechanism is still largely
unknown. In addition to the function of FREE1 in endosomal
trafficking, a recent study demonstrates that FREE1 has a
crosstalk with ABA signal pathway (Belda-Palazon et al., 2016; Li
et al., 2019). Consistently, it is proposed that the VSR-mediated
vacuolar protein targeting is also required for ABA biosynthesis
induced by osmotic stress of plants (Wang Z. -Y. et al., 2015).

FIGURE 3 | PVC/MVBs mediated vacuolar transport and crosstalk with
autophagosome. PVC/MVB maturation requires the MON1 and CCZ1
complex-mediated conversion between Rab5 and Rab7. The CORVET
complex coordinated with RAB5 and the VAMP727-containing SNARE
complex bridge the fusion between PVC/MVBs and the vacuole (route a). On
the other hand, PVC/MVBs can heterotypically fuse with the small vacuole
and then fuse with the central vacuole, which is mediated by HOPS and the
VAMP713-containing SNARE complex (route b). The crosstalk between
PVC/MVBs and autophagosome aims to form amphisome that may deliver
cargo into the vacuole via the fusion between the amphisome and the vacuole
(route c). MON1, monensin sensitivity 1; CCZ1, calcium caffeine zinc
sensitivity 1; CORVET, class C core vacuole/endosome tethering; HOPS,
homotypic fusion and protein sorting. SH3P2, SH3 domain-containing protein
2; VAMP, vesicle-associated membrane protein; VTI11, vesicle transport
v-SNARE 11; SYP, syntaxin of plants.

Thus, it will be interesting in the future to clarify the crosslink
between vacuolar protein trafficking machinery and behaviors of
phytohormone that balance the plant growth and stress response.

PVC/MVBS AND AUTOPHAGOSOME
MEMBRANE INTERACTIONS:
CROSSTALK WITH THE AUTOPHAGY
PATHWAY

Macroautophagy (hereafter autophagy) is an evolutionarily
conserved self-eating process in eukaryotes by forming
a double-membrane-bound autophagosome, to engulf a
portion of cytoplasmic materials or damaged organelles into
lysosome/vacuole for degradation. Autophagosome formation
starts from phagophore, followed by the expansion and closure
of the double membrane to form a globular double-membrane
structure (Mizushima et al., 2011; Zhang and Zhang, 2016).
It has been suggested that ER is the major membrane origin
of autophagosomes (Hayashi-Nishino et al., 2009; Ylä-Anttila
et al., 2009). However, increasing evidences have also been
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demonstrated for the coordination and crosstalk between
autophagosome and the PVC/MVB pathway (Figure 1, route
f, red solid arrow), as well as for dual roles of the PVC/MVB
localized proteins functioning in vacuolar transport and
autophagosome formation (Figure 3, route c, red solid arrow;
Kulich et al., 2013; Gao et al., 2015; Cui et al., 2018).

The crosstalk between the PVC/MVBs and autophagosomes
may contribute to the complex network of plant stress responses
(Wang et al., 2020). The first reported piece of evidence in
Arabidopsis is the PVC/MVB-localized ESCRT-III-associated
deubiquitinating enzyme Associated Molecular with SH3
domain of STAM 3 (AMSH3). Mutation of amsh3 fails
to form the central vacuole and causes a large number of
autophagosome accumulation, which indicates a malfunction
of autophagic degradation (Isono et al., 2010; Katsiarimpa
et al., 2011). In addition, the same subcellular phenotypes
can also be found in the AMSH3-related deubiquitinating
enzyme, amsh1-knockdown mutant, and its interaction
partner, the ESCRT-III components vps2.1 mutant. Impairment
of AMSH1 or VPS2.1 causes a hypersensitivity response
to starvation and early senescence, similar to autophagy
related gene mutants. Consistently, the YFP-ATG8e labeled
autophagosomes accumulate in the cytoplasm of the mutants
but are barely observable in the vacuole lumen, probably
because the maturation of autophagosomes is disturbed and
results in insufficient trafficking of autophagosomes to the
vacuole (Katsiarimpa et al., 2013). Another ESCRT-III protein
showing an autophagy-related phenotype is the Arabidopsis
Charged Multivesicular Body Protein1 (CHMP1), where the
unclosed autophagosomes accumulate in the chmp1 mutant.
Besides, CHMP1 plays a direct role in the autophagosome-
mediated degradation of chloroplast proteins into the vacuoles
and nutrient recycling under starvation (Spitzer et al., 2015).
Moreover, in the mutant of plant unique ESCRT component
FREE1, the formation of ILVs is strongly impaired and also
results in an abnormal accumulation of autophagosomes
and MVB–autophagosome hybrid structures, pointing to
a dual role for ESCRT components in regulating vacuolar
protein transport and the autophagic degradation pathway
(Hurley and Hanson, 2010; Zhuang et al., 2013; Gao et al.,
2014, 2015; Cardona-López et al., 2015; Shen et al., 2016).
Interestingly, FREE1 can directly interact with SH3 DOMAIN-
CONTAINING PROTEIN2 (SH3P2), which is also found
to be specifically translocated to the PAS upon autophagy
induction and contributes to membrane deformation in
cooperation with the phosphatidylinositol 3-phosphate kinase
(PI3K) complex (Zhuang et al., 2013; Gao et al., 2015). In
addition, it has been elucidated that SH3P2 could interact
with the ESCRT component Vps23 and AMSH3 at CCVs,
thus proposing that SH3P2 may also function to recognize
the ubiquitinated membrane proteins and deliver them to the
ESCRT machinery in clathrin-mediated endocytosis (Nagel
et al., 2017). Considering both SH3P2 and FREE1 have dual
functions in ESCRT-dependent vacuolar trafficking pathway
and autophagy, the endocytic pathway mediated by the
PVC/MVBs may operate critical role(s) in autophagosome
formation and maturation.

In addition to the ESCRT proteins, the Rab7 family proteins
may be involved in the autophagosome pathway. It is reported
that RABG3b, a homolog of Rab7 GTPase, colocalizes with
ATG8a-labeled autophagosome in an immunogold transmission
electron microscope (TEM) study under pathogen infection.
Interestingly, overexpression of the constitutively active form
RABG3b (RABG3bCA) could restore autophagic activity in
the atg5-1 mutant. By contrast, the programed cell death is
accelerated in overexpressed RABG3bCA transgenic plant upon
P. syringae treatment (Kwon et al., 2010, 2013). However,
more reliable evidences identifying regulators to support the
membrane interaction between the endocytic PVC/MVBs and
the autophagosome are still in high demand. To achieve this, it
can be especially helpful to explore the molecular mechanisms by
learning the PVC/MVB–autophagosome crosstalk employed in
mammals and yeast cells.

Consistent with that in plants, it has been reported that
several components of the ESCRT machinery have a crosstalk
in both autophagic and MVB-mediated lysosome trafficking
pathways in mammalian cell (Lamb et al., 2013). For example,
mutation of the hepatocyte growth factor-regulated tyrosine
kinase substrate (HRS) compromised the degradation ability of
aggregated proteins in autophagic pathway and caused enhanced
ER stress (Oshima et al., 2016), while dysfunction of the TOM1
in mammals inhibits the fusion between autophagosome and
lysosome that blocked the autolysosome formation (Tumbarello
et al., 2012). Both the HRS and TOM1 are ESCRT-0 components
in mammals, thus indicating that ESCRT-0 is required for the
proper function of autophagosome. Another ESCRT component
involved in autophagosome biogenesis is mammalian ALG-2
interacting protein X (Alix), which can interact with the ATG2–
ATG3 complex to accelerate basal autophagic flux (Petiot et al.,
2008; Murrow et al., 2015). Besides the ESCRT machinery, Rab
GTPase family proteins also have been elucidated to participate
in EE and autophagosome formation. Inhibition of Rab5 activity
not only inhibits endosome maturation but also decreased the
number of autophagic bodies in mammals (Zeigerer et al., 2012).
Similarly, Rab7 GTPases play multiple roles in the LEs/MVBs and
autophagosome maturation processes, as well as in their fusion
with the lysosome in mammalian cells (Hyttinen et al., 2013;
Singh et al., 2014). So far, reports on crosstalk between MVB and
the autophagic pathway remain lacking, probably because most of
the MVB-localized proteins are functionally essential, and their
mutation may lead to cell death. Future studies using better
genetic screening system (e.g., conditional induced RNAi system)
would help us to identify and characterize new regulators that are
involved in the MVB and autophagosome crosstalk pathways.

PVC/MVBS AND PLASMA MEMBRANE
INTERACTIONS: UNCONVENTIONAL
SECRETION

In the classical or conventional protein secretion pathway,
secretory proteins lacking a vacuolar sorting signal can transport
through the TGN/EE and then move into the extracellular space
(ECS) (Figure 1, route b, purple dashed arrow). Interestingly,
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it has now been demonstrated that plants also make use of
different types of unconventional protein secretion pathways
(Drakakaki and Dandekar, 2013): a Golgi–bypass secretion
pathway for signal peptide-lacking cytosolic proteins (Cheng
et al., 2009; Zhang et al., 2011) and secretion pathways mediated
by specific organelles including the central vacuole (Hatsugai
et al., 2009), the PVC/MVBs (Wang et al., 2011; Nielsen et al.,
2012; Nielsen and Thordal-Christensen, 2013), and a double-
membrane organelle termed exocyst-positive organelle (EXPO).
Recent findings suggest that the inner membrane of EXPO can
be released to ECS as an exosome-like structure upon EXPO–PM
fusion (Wang et al., 2010), although EXPO may also be related
with autophagy (Lin et al., 2015; Peěenková et al., 2018).

In mammals, exosome is the name given to vesicles that
are released through the fusion of these specific organelles with
the PM. Generally, exosomes have a diameter between 50 and
150 nm and appear to be involved in the transport of numerous
proteins, lipids, sRNA, and chemicals into the extracellular
spaces enabling cell-to-cell communication and defense response
(Théry et al., 2002; Valadi et al., 2007; Kowal et al., 2014; Tao
et al., 2019). The ILVs inside the MVBs are the major source
of exosomes that are released into ECS upon the MVB–PM
fusion (Colombo et al., 2014). Currently, several components
have been identified as being involved in the regulation of the
PVC/MVB–PM fusion process, including the cytoskeleton, Rab
GTPases, and SNAREs in yeast and mammals (Granger et al.,
2014; Mathieu et al., 2019). Because cytoskeleton is required
for the movement of MVBs to PM (Granger et al., 2014; Sinha
et al., 2016), the exosome release event is substantially inhibited
or promoted during knockdown or overexpression of the actin
binding protein cortactin. In cortactin knockdown cells, both the
number of motile MVBs and the number of PM docking sites
are decreased, whereas overexpression of cortactin increases the
efficiency of MVB–PM docking (Sinha et al., 2016). Likewise,
Rab GTPases have also been identified as regulators in the
exosome secretion process, although the precise mechanism is
not well understood. For example, overexpression of a dominant-
negative form or mutation of Rab11 in human leukemic K562
or Drosophila S2 cells causes inhibition of exosome release and
a reduction in the number of exosomes (Savina et al., 2002).
Disruption of Rab35 causes impaired secretion of proteolipid
protein (PLP)-bearing exosomes in Oli-neu cells, which may be
due to the blockage of the MVB–PM docking (Hsu et al., 2010).
More strikingly, the morphology of MVBs is abnormal and the
ability of MVBs tethering to the PM is reduced in Rab27a or
Rab27b deficiency mutants (Ostrowski et al., 2010). In addition
to Rab family proteins, SNARE proteins are also required for
both MVB docking and fusion with PM. When the N-terminal
domain of the R-SNARE vesicle-associated membrane protein
7 (VAMP7) is overexpressed, the formation of the specific
SNARE complex and exosome release are blocked due to the
accumulation of enlarged MVBs at cell periphery, indicating
that the correct expression of VAMP7 is critical for MVB–
PM fusion and exosome release in the human cell line K562
(Fader et al., 2009). Consistently, another R-SNARE protein
that may participate in MVB–PM fusion is YKT6, which is
essential for Wnt-bearing exosome secretion in mammalian

cells (Gross et al., 2012). Moreover, the synaptosomal-associated
protein 23 (SNAP-23), a plasma membrane-associated SNARE
protein, has also been revealed to play a function in MVB–PM
fusion in HeLa cells (Verweij et al., 2018).

As in mammalian cells, exosomes in plant cells are mainly
derived from the membrane fusion of the PVC/MVBs with
PM (An et al., 2007; Rutter and Innes, 2017; Figure 4, route
a). The function of exosomes in the plant extracellular space
is diverse (de la Canal and Pinedo, 2018). Most importantly,
it has been suggested that the release of exosomes may be
involved in plant–pathogen interactions (Hansen and Nielsen,
2017; Li et al., 2018). Numerous membrane-bound vesicle-like
structures with diameters of 60–150 nm that accumulated in the
extracellular space of tobacco leaf tissue can be observed under
turnip mosaic virus (TuMV) invasion conditions, and these
structures appear to be ILVs (Movahed et al., 2019). Similarly,
upon the attachment and germination of non-adapted fungal
spores on leaves, the secretion of exosomes is induced, which
contains numerous molecules that form a type of cell wall
apposition or papilla followed by the fusion of the PVC/MVBs
with the PM (An et al., 2006). Besides the materials for the
formation of papilla, exosomes are also involved in transporting
small RNAs (sRNAs), which could be taken up by fungal cells to
silence virulence effectors secreted by pathogens (Cai et al., 2018).
Indeed, upon infection with the bacterial pathogen Pseudomonas
syringae, the activity of exosome secretion is substantially
enhanced. Proteomic analyses of the exosomes, extracted from
P. syringae or salicylic acid (SA)-treated Arabidopsis rosettes,
have demonstrated that exosomes contribute to the release
of pathogen resistance-related compounds, including RPM1-
INTERACTING PROTEIN 4 (RIN4), RIN4-interacting proteins,
and PENETRATION1 (PEN1) (Rutter and Innes, 2017).

PEN1 is a PM-syntaxin, syntaxin of plants (SYP)121, which
binds with other SNAR proteins to form PM-localized ternary
SNARE complexes to resist non-adapted pathogens (Collins
et al., 2003; Kwon et al., 2008). Facing the penetration by
Blumeria graminis f. sp. Hordei (Bgh), an adapted pathogen
of barley and non-adapted pathogen of Arabidopsis, PEN1
timely interacts with SNAP33, VAMP721/722, and ARF
GTPase to accelerate the accumulation of exosomes at infection
sites to form papillae, which is essential for cell wall-based
defense of non-adapted pathogens (Assaad et al., 2004;
Nielsen et al., 2012). In addition, evidences have shown
that the GFP-PEN1 can be found outside the PM and
colocalized with the FM4-64-labeled structures during non-
adapted pathogen infection; thus, the distribution of the
PEN1/SYP121 is indeed altered from PM to exosomes. GFP-
PEN1 can also be detected at the extracellular matrix region
in the penetration site and the extrahaustorial membrane of
Arabidopsis adapted powdery mildew pathogen Golovinomyces
cichoracearum (Nielsen et al., 2012). More interestingly, the
number of ARA6-GFP-labeled PVC/MVBs also increased
and accumulated at the attack site under both fungal and
bacterial pathogen infection conditions, indicating that
GFP-PEN1-positive membrane material sorting to papillae
at the infection site may be the result of fusion between
PVC/MVBs and PM (Meyer et al., 2009; Nielsen et al., 2012;
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FIGURE 4 | PVC/MVBs and PM membrane fusion is involved in pathogen
response. PVC/MVBs can fuse with PM to form exosomes (route a).
PVC/MVBs accumulated at the non-adapted pathogen infection site to
secrete materials and proteins, which are required for the formation of papilla.
Three PM-associated SNARES, PEN1/SYP121, VAMP721/2, and SNAP33,
can be found at the infection site of powdery mildew (route b). Upon the
adapted fungal pathogen penetration, Arabidopsis disease resistance protein,
RPW8.2, can be recruited to the EHM and function as the host border control
mechanism of plant–pathogen interaction. PVC/MVBs that accumulate at the
periphery of PM-haustorium and fuse with EHM may participate in the
formation and modulation of the EHM with the assistance of several regulators
such as ARA6, ARA7, and Rab7 GTPase and thus release resistance-related
proteins (route c). EHM, extrahaustorial membrane; PEN1, penetration 1;
RPW8.2, resistance to powdery mildew 8.2; SNAP33, SNAP25 homologous
protein SNAP33; SNARES, soluble NSF attachment protein receptors.

Nielsen and Thordal-Christensen, 2013; Figure 4, route b). The
fungal pathogen PEN1 is also found enriched in extracellular
vesicles and papillae in the infected leaf cells upon bacterial
pathogen infection and SA treatment (Assaad et al., 2004;
Rutter and Innes, 2017; Li et al., 2018). Interestingly, upon
barley powdery mildew fungus invasion, the syntaxin-associated
VAMP721/722 can also mediate plant phospholipase PLDδ

secretion at penetration sites, function as a regulatory
mechanism in plant innate immunity (Xing et al., 2019).
Another SNARE protein that may be involved in plant–pathogen
interactions is Qc-SNARE BET12, which functions in the protein
secretion, because its ectopic expression affects pathogenesis-
related 1 (PR1) secretion to ECS (Peěenková et al., 2017;
Chung et al., 2018).

Besides SNARE proteins, Rab GTPases have been identified
to participate in the PVC/MVBs and the PM fusion during
host–microbe interfaces (Collins et al., 2003; Bozkurt et al.,
2015). Rab5 GTPase has two type homologs, the plant unique
ARA6 and the conventional ARA7, while Rab7 GTPase has
eight homologs (Lee et al., 2004; Mackiewicz and Wyroba,
2009). ARA6 localizes at the membrane of the PVC/MVBs
and mediates the fusion of the PVC/MVBs with the PM at
the infection site of the fungal pathogen Botrytis cinereal.
After fusion, exosomes are released to ECS, whereas ARA6

remains at PM to regulate the next round of transport of the
PVC/MVBs (Inada et al., 2016). For successful penetration,
filamentous pathogens can form a special feeding structure into
host plant cells, which is called a haustorium. This structure
is surrounded by a domain of the PM of the host cell, and
thus is also called extrahaustorial membrane (EHM) (Roberts
et al., 1993; Figure 4, route c). Another Rab5 GTPase ARA7,
known as a marker of the PVC/MVBs, is also found to
accumulate at the EHM to regulate resistance-related molecule
secretion upon invasion by powdery mildew fungus (Inada
et al., 2016). Thus, these results suggest that Rab GTPases
are involved in rerouting of the PVC/MVBs to the host–
pathogen interfere sites. Interestingly, it is also raised that
the re-routed vacuole-targeted PVC/MVBs may function as a
membrane source of the EHM, because the PVC/MVBs and
tonoplast-localized Rab7 GTPase RabG3c are recruited and
redirected to the haustorial interface after infection with the
oomycete pathogen Phytophthora infestans in tobacco leaves (Lu
et al., 2012; Bozkurt et al., 2015). However, direct immuno-
EM images showing the origin of EHM from PVC/MVBs
is still lacking. Moreover, it is still unknown if any effector
secreted by the pathogen can be recognized by the host
to trigger the movement of the PVC/MVBs to the EHM
(Wang W. et al., 2009; Kim et al., 2014; Berkey et al.,
2017). Recently, the Arabidopsis pattern recognition receptor
FLS2 and the Arabidopsis resistance to powdery mildew8.2
(RPW8.2) have been found to be recruited to the EHM upon
pathogen infection and defined as a host border control system
that plays a role in the plant–pathogen interface. Thus, it
is highly possible that the route of PVC/MVB to PM may
depend on certain effector(s) from pathogens that can be
recognized by PM-localized receptors, and finally triggers the
EHM formation.

In addition, the ESCRT machinery may play a role in
the plant–pathogen interaction site by regulating PVC/MVB
formation. Indeed, the ESCRT regulatory protein LIP5 is involved
in the basal resistance response to the bacterial pathogen
P. syringae, since the formation of both the PVC/MVBs and
the EVs were significantly compromised in lip5 mutant upon
pathogen invasion (Wang et al., 2014; Wang F. et al., 2015).
However, the underlying mechanism as to how the pathogen
triggers accumulation of the PVC/MVBs at infection sites
remains unclear.

Up to now, more specific protein pairs that are supposed
to function in the PVC/MVB–PM fusion have been identified
using artificial protein fusions or bimolecular fluorescence
complementation (BiFC) approach. It is demonstrated that the
remorin StRem1.3, receptor-like kinases BIK1, PBS1, CPK21, as
well as the PtdIns(4)-binding proteins FAPP1 and Osh2, function
as the PM-binding proteins. The Rab5 GTPases (RHA1, ARA6,
and ARA7), the Rab7 GTPase RABG3f, and the PtdIns(3)P-
binding proteins Vam7p and Hrs-2xFYVE act as tethering
proteins on the PVC/MVBs to participate in PVC/MVB–PM
tethering. Although various membrane-trafficking proteins have
been supposed to function in the PVC/MVB–PM fusion in
plants, the precise mechanism that mediates the fusion processes
remains largely unknown (Tao et al., 2019).
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CONCLUSION AND FUTURE
PERSPECTIVES

Over the past decades, substantial progress has been made
in establishing the critical roles of PVC/MVBs in endosomal
trafficking pathways in plants. Traditionally, the PVC/MVBs play
an important role in both secretory pathway as intermediate
compartments and endocytic pathway as late endosomes.
However, recent discoveries have now revealed that the
PVC/MVBs also participate in multiple fusion processes related
to autophagy or unconventional secretion.

These diverse functions place the PVC/MVBs on the center
stage, but there remain several intriguing questions for future
studies. (1) There remain many challenges to achieving a
full understanding of the PVC/MVB biogenesis, especially the
diverse distribution of the ESCRT machinery components in
plants. Moreover, we need better ways to distinguish the
PVC/MVBs from Late PVCs (Foresti et al., 2010) and to
characterize the molecular steps and processes occurring in
the maturation of the PVC/MVBs. (2) In yeast, after MVB–
vacuole fusion, many of these proteins and lipids remain
in the vacuole membrane while some are degraded in the
vacuole lumen, and others may even be recycled (Suzuki and
Emr, 2018). It will be important and interesting to address
the fate of plant PVC/MVB membrane proteins after fusion
with the tonoplast and to determine which key proteins (e.g.,
SNAREs, receptors) are involved in retrograde vacuole-to-
endosome trafficking. (3) There are increasing evidences for
the operation of a crosstalk between the PVC/MVB pathway
and the autophagy pathway, as well as for dual roles of
the PVC/MVB-localized protein function in vacuolar protein
transport and autophagosome formation. However, which
regulators (such as SNAREs and Rab GTPases) mediate the
PVC/MVB–autophagosome fusion process in plants remain to be
elucidated. In addition, although MVB–autophagosome hybrid
ultrastructures have been proposed in free1 mutant under TEM,
the dynamics of the fusion steps of the MVBs and autophagosome
are still missing. Importantly, it is also interesting to know that
the MVB–autophagosome fusion is induced in general stress
condition(s) or specific conditions. Future studies on autophagy
and the PVC/MVB pathways under multiple stresses or nutrient
limitation conditions would lead us to a better understanding of
their coordination and crosstalk in plants. (4) Further progress
still needs to be made in identifying additional components

important for pathogen-responsive PVC/MVB biogenesis and
associated PVC/MVB–PM fusion. The proteomic profiling of
their contents from isolated plant extracellular vesicles and MVB-
derived exosomes can further provide fundamental information
for the roles of PVC/MVBs in plant–pathogen interactions
(Heard et al., 2015; Rutter and Innes, 2017). Potential regulatory
activities in cell-to-cell communication or in plant–pathogen
interactions also need to be investigated. Although pioneering
studies have shed light on the roles of trafficking related proteins
in PVC/MVB–PM fusion steps, future studies using high-
resolution 3D TEM prepared from high-pressure freezing/freeze
substitution fixation (HPF/FS) are still considered useful tools
to reveal fusion steps and the underlying mechanism of
this progression.

Compared to the tremendously diverse roles of the MVBs in
mammals and yeast, the reported functions of the PVC/MVBs
in plants remain somewhat limited. State-of-the-art microscopy
technology, such as super-resolution fluorescence microscopy
with 3D structures in living cells, light-sheet microscopy for
4D imaging, as well as 3D TEM and correlative light-electron
microscopy (CLEM) approaches (Feeney et al., 2018; Wang et al.,
2019), can be expected to be useful tools for the analysis of
endosomal structure and trafficking when plants are placed under
multiple environments. This will undoubtedly bring new insights
into our understanding of the PVC/MVB membrane interaction
network and their associated functions.
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Heard, W., Sklenář, J., Tome, D. F., Robatzek, S., and Jones, A. M. (2015).
Identification of regulatory and cargo proteins of endosomal and secretory
pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell. Proteom.
14, 1796–1813. doi: 10.1074/mcp.M115.050286

Hohl, I., Robinson, D. G., Chrispeels, M. J., and Hinz, G. (1996). Transport of
storage proteins to the vacuole is mediated by vesicles without a clathrin coat.
J. Cell Sci. 109, 2539–2550.

Hsu, C., Morohashi, Y., Yoshimura, S. -I., Manrique-Hoyos, N., Jung, S.,
Lauterbach, M. A., et al. (2010). Regulation of exosome secretion by Rab35
and its GTPase-activating proteins TBC1D10A–C. J. Cell Biol. 189, 223–232.
doi: 10.1083/jcb.200911018

Huotari, J., and Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481–
3500. doi: 10.1038/emboj.2011.286

Hurley, J. H. (2008). ESCRT complexes and the biogenesis of multivesicular bodies.
Curr. Opin. Cell Biol. 20, 4–11. doi: 10.1016/j.ceb.2007.12.002

Hurley, J. H., and Hanson, P. I. (2010). Membrane budding and scission by the
ESCRT machinery: it’s all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566.
doi: 10.1038/nrm2937

Hyttinen, J. M., Niittykoski, M., Salminen, A., and Kaarniranta, K. (2013).
Maturation of autophagosomes and endosomes: a key role for Rab7. BBA Mol.
Cell Res. 1833, 503–510. doi: 10.1016/j.bbamcr.2012.11.018

Inada, N., Betsuyaku, S., Shimada, T. L., Ebine, K., Ito, E., Kutsuna, N., et al. (2016).
Modulation of plant RAB GTPase-mediated membrane trafficking pathway
at the interface between plants and obligate biotrophic pathogens. Plant Cell
Physiol. 57, 1854–1864. doi: 10.1093/pcp/pcw107

Isono, E., Katsiarimpa, A., Müller, I. K., Anzenberger, F., Stierhof, Y. -D.,
Geldner, N., et al. (2010). The deubiquitinating enzyme AMSH3 is required for
intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant
Cell 22, 1826–1837. doi: 10.1105/tpc.110.075952

Jahraus, A., Storrie, B., Griffiths, G., and Desjardins, M. (1994). Evidence
for retrograde traffic between terminal lysosomes and the prelysosomal/late
endosome compartment. J. Cell Sci. 107, 145–157.

Jia, T., Gao, C., Cui, Y., Wang, J., Ding, Y., Cai, Y., et al. (2013). ARA7(Q69L)
expression in transgenic Arabidopsis cells induces the formation of enlarged
multivesicular bodies. J. Exp. Bot. 64, 2817–2829. doi: 10.1093/jxb/ert125

Jiang, L., Phillips, T. E., Hamm, C. A., Drozdowicz, Y. M., Rea, P. A., Maeshima,
M., et al. (2001). The protein storage vacuole: a unique compound organelle.
J. Cell Biol. 155, 991–1002. doi: 10.1083/jcb.200107012

Jiang, L., Phillips, T. E., Rogers, S. W., and Rogers, J. C. (2000). Biogenesis of the
protein storage vacuole crystalloid. J. Cell Biol. 150, 755–770. doi: 10.1083/jcb.
150.4.755

Kang, B. -H., and Staehelin, L. A. (2008). ER-to-Golgi transport by COPII vesicles
in Arabidopsis involves a ribosome-excluding scaffold that is transferred with
the vesicles to the Golgi matrix. Protoplasma 234, 51–64. doi: 10.1007/s00709-
008-0015-16

Katsiarimpa, A., Anzenberger, F., Schlager, N., Neubert, S., Hauser, M. T.,
Schwechheimer, C., et al. (2011). The Arabidopsis deubiquitinating enzyme
AMSH3 interacts with ESCRT-III subunits and regulates their localization.
Plant Cell 23, 3026–3040. doi: 10.1105/tpc.111.087254

Katsiarimpa, A., Kalinowska, K., Anzenberger, F., Weis, C., Ostertag, M., Tsutsumi,
C., et al. (2013). The deubiquitinating enzyme AMSH1 and the ESCRT-III
subunit VPS2. 1 are required for autophagic degradation in Arabidopsis. Plant
Cell 25, 2236–2252. doi: 10.1105/tpc.113.113399

Kim, H., O’Connell, R., Maekawa-Yoshikawa, M., Uemura, T., Neumann,
U., and Schulze-Lefert, P. (2014). The powdery mildew resistance protein
RPW 8.2 is carried on VAMP 721/722 vesicles to the extrahaustorial
membrane of haustorial complexes. Plant J. 79, 835–847. doi: 10.1111/tpj.
12591

Korbei, B., Moulinier-Anzola, J., De-Araujo, L., Lucyshyn, D., Retzer, K., Khan,
M. A., et al. (2013). Arabidopsis TOL proteins act as gatekeepers for vacuolar
sorting of PIN2 plasma membrane protein. Curr. Biol. 23, 2500–2505. doi:
10.1016/j.cub.2013.10.036

Kotzer, A. M., Brandizzi, F., Neumann, U., Paris, N., Moore, I., and Hawes,
C. (2004). AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in

tobacco leaf epidermal cells. J. Cell Sci. 117, 6377–6389. doi: 10.1242/jcs.
01564

Kowal, J., Tkach, M., and Théry, C. (2014). Biogenesis and secretion of exosomes.
Curr. Opin. Cell Biol. 29, 116–125. doi: 10.1016/j.ceb.2014.05.004

Kulich, I., Pečenková, T., Sekereš, J., Smetana, O., Fendrych, M., Foissner, I.,
et al. (2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is
involved in autophagy-related transport to the vacuole. Traffic 14, 1155–1165.
doi: 10.1111/tra.12101

Künzl, F., Früholz, S., Fäßler, F., Li, B., and Pimpl, P. (2016). Receptor-mediated
sorting of soluble vacuolar proteins ends at the trans-Golgi network/early
endosome. Nat. Plants 2:16017. doi: 10.1038/nplants.2016.17

Kwon, C., Neu, C., Pajonk, S., Yun, H. S., Lipka, U., Humphry, M., et al. (2008).
Co-option of a default secretory pathway for plant immune responses. Nature
451:835. doi: 10.1038/nature06545

Kwon, S. I., Cho, H. J., Jung, J. H., Yoshimoto, K., Shirasu, K., and Park, O. K.
(2010). The Rab GTPase RabG3b functions in autophagy and contributes to
tracheary element differentiation in Arabidopsis. Plant J. 64, 151–164. doi:
10.1111/j.1365-313X.2010.04315.x

Kwon, S. I., Cho, H. J., Kim, S. R., and Park, O. K. (2013). The Rab GTPase RabG3b
positively regulates autophagy and immunity-associated hypersensitive cell
death in Arabidopsis. Plant Physiol. 161, 1722–1736. doi: 10.1104/pp.112.
208108

Kwon, Y., Shen, J. B., Lee, M. H., Geem, K. R., Jiang, L. W., and Hwang, I.
(2018). AtCAP2 is crucial for lytic vacuole biogenesis during germination by
positively regulating vacuolar protein trafficking. Proc. Natl. Acad. Sci. U.S.A.
115, E1675–E1683. doi: 10.1073/pnas.1717204115

Lam, S. K., Siu, C. L., Hillmer, S., Jang, S., An, G. H., Robinson, D. G., et al. (2007).
Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular
structures as an early endosome in tobacco BY-2 cells. Plant Cell 19, 296–319.
doi: 10.1105/tpc.106.045708

Lamb, C. A., Dooley, H. C., and Tooze, S. A. (2013). Endocytosis and autophagy:
shared machinery for degradation. Bioessays 35, 34–45. doi: 10.1002/bies.
201200130

Lee, G. -J., Sohn, E. J., Lee, M. H., and Hwang, I. (2004). The Arabidopsis rab5
homologs rha1 and ara7 localize to the prevacuolar compartment. Plant Cell
Physiol. 45, 1211–1220. doi: 10.1093/pcp/pch142

Levanony, H., Rubin, R., Altschuler, Y., and Galili, G. (1992). Evidence for a
novel route of wheat storage proteins to vacuoles. J. Cell Biol. 119, 1117–1128.
doi: 10.1083/jcb.119.5.1117

Li, H., Li, Y., Zhao, Q., Li, T., Wei, J., Li, B., et al. (2019). The plant ESCRT
component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling.
Nat. Plants 5, 512–524. doi: 10.1038/s41477-019-0400-405

Li, L., Shimada, T., Takahashi, H., Koumoto, Y., Shirakawa, M., Takagi, J., et al.
(2013). MAG 2 and three MAG 2-INTERACTING PROTEIN s form an ER-
localized complex to facilitate storage protein transport in Arabidopsis thaliana.
Plant J. 76, 781–791. doi: 10.1111/tpj.12347

Li, X., Bao, H., Wang, Z., Wang, M., Fan, B., Zhu, C., et al. (2018). Biogenesis and
function of multivesicular bodies in plant immunity. Front. Plant Sci. 9:979.
doi: 10.3389/fpls.2018.00979

Li, Y. -B., Rogers, S. W., Tse, Y. C., Lo, S. W., Sun, S. S., Jauh, G. -Y., et al. (2002).
BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar
compartments. Plant Cell Physiol. 43, 726–742. doi: 10.1093/pcp/pcf085

Lin, Y., Ding, Y., Wang, J., Shen, J., Kung, C. H., Zhuang, X., et al. (2015). Exocyst-
positive organelles and autophagosomes are distinct organelles in plants. Plant
Physiol. 169, 1917–1932. doi: 10.1104/pp.15.00953

Lu, Y. J., Schornack, S., Spallek, T., Geldner, N., Chory, J., Schellmann, S., et al.
(2012). Patterns of plant subcellular responses to successful oomycete infections
reveal differences in host cell reprogramming and endocytic trafficking. Cell
Microbiol. 14, 682–697. doi: 10.1111/j.1462-5822.2012.01751.x

Luzio, J. P., Poupon, V., Lindsay, M. R., Mullock, B. M., Piper, R. C., and Pryor, P. R.
(2003). Membrane dynamics and the biogenesis of lysosomes. Mol. Membr.
Biol. 20, 141–154. doi: 10.1080/0968768031000089546

Mackiewicz, P., and Wyroba, E. (2009). Phylogeny and evolution of Rab7 and Rab9
proteins. BMC Evol. Biol. 9:101. doi: 10.1186/1471-2148-9-101

Mathieu, M., Martin-Jaular, L., Lavieu, G., and Théry, C. (2019). Specificities of
secretion and uptake of exosomes and other extracellular vesicles for cell-
to-cell communication. Nat. Cell Biol. 21, 9–17. doi: 10.1038/s41556-018-02
50-259

Frontiers in Plant Science | www.frontiersin.org 12 April 2020 | Volume 11 | Article 425

https://doi.org/10.1038/ncb1991
https://doi.org/10.1038/ncb1991
https://doi.org/10.1074/mcp.M115.050286
https://doi.org/10.1083/jcb.200911018
https://doi.org/10.1038/emboj.2011.286
https://doi.org/10.1016/j.ceb.2007.12.002
https://doi.org/10.1038/nrm2937
https://doi.org/10.1016/j.bbamcr.2012.11.018
https://doi.org/10.1093/pcp/pcw107
https://doi.org/10.1105/tpc.110.075952
https://doi.org/10.1093/jxb/ert125
https://doi.org/10.1083/jcb.200107012
https://doi.org/10.1083/jcb.150.4.755
https://doi.org/10.1083/jcb.150.4.755
https://doi.org/10.1007/s00709-008-0015-16
https://doi.org/10.1007/s00709-008-0015-16
https://doi.org/10.1105/tpc.111.087254
https://doi.org/10.1105/tpc.113.113399
https://doi.org/10.1111/tpj.12591
https://doi.org/10.1111/tpj.12591
https://doi.org/10.1016/j.cub.2013.10.036
https://doi.org/10.1016/j.cub.2013.10.036
https://doi.org/10.1242/jcs.01564
https://doi.org/10.1242/jcs.01564
https://doi.org/10.1016/j.ceb.2014.05.004
https://doi.org/10.1111/tra.12101
https://doi.org/10.1038/nplants.2016.17
https://doi.org/10.1038/nature06545
https://doi.org/10.1111/j.1365-313X.2010.04315.x
https://doi.org/10.1111/j.1365-313X.2010.04315.x
https://doi.org/10.1104/pp.112.208108
https://doi.org/10.1104/pp.112.208108
https://doi.org/10.1073/pnas.1717204115
https://doi.org/10.1105/tpc.106.045708
https://doi.org/10.1002/bies.201200130
https://doi.org/10.1002/bies.201200130
https://doi.org/10.1093/pcp/pch142
https://doi.org/10.1083/jcb.119.5.1117
https://doi.org/10.1038/s41477-019-0400-405
https://doi.org/10.1111/tpj.12347
https://doi.org/10.3389/fpls.2018.00979
https://doi.org/10.1093/pcp/pcf085
https://doi.org/10.1104/pp.15.00953
https://doi.org/10.1111/j.1462-5822.2012.01751.x
https://doi.org/10.1080/0968768031000089546
https://doi.org/10.1186/1471-2148-9-101
https://doi.org/10.1038/s41556-018-0250-259
https://doi.org/10.1038/s41556-018-0250-259
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00425 April 28, 2020 Time: 19:33 # 13

Hu et al. Plant MVB Membrane Interactions

Meyer, D., Pajonk, S., Micali, C., O’Connell, R., and Schulze-Lefert, P. (2009).
Extracellular transport and integration of plant secretory proteins into
pathogen-induced cell wall compartments. Plant J. 57, 986–999. doi: 10.1111/
j.1365-313X.2008.03743.x

Miao, Y., Yan, P. K., Kim, H., Hwang, I., and Jiang, L. (2006). Localization of
green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting
receptors to prevacuolar compartments in tobacco BY-2 cells. Plant Physiol. 142,
945–962. doi: 10.1104/pp.106.083618

Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of ATG proteins
in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132. doi:
10.1146/annurev-cellbio-092910-154005

Movahed, N., Cabanillas, D. G., Wan, J., Vali, H., Laliberté, J.-F., and Zheng, H.
(2019). Turnip mosaic virus components are released into the extracellular
space by vesicles in infected leaves. Plant Physiol. 180, 1375–1388. doi: 10.1104/
pp.19.00381

Murrow, L., Malhotra, R., and Debnath, J. (2015). ATG12–ATG3 interacts with
Alix to promote basal autophagic flux and late endosome function. Nat. Cell
Biol. 17, 300–310. doi: 10.1038/ncb3112

Nagel, M. -K., Kalinowska, K., Vogel, K., Reynolds, G. D., Wu, Z., Anzenberger, F.,
et al. (2017). Arabidopsis SH3P2 is an ubiquitin-binding protein that functions
together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proc. Natl.
Acad. Sci. U.S.A. 114, E7197–E7204. doi: 10.1073/pnas.1710866114

Nielsen, M. E., Feechan, A., Böhlenius, H., Ueda, T., and Thordal-Christensen,
H. (2012). Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport
required for innate immunity and focal accumulation of syntaxin PEN1. Proc.
Natl. Acad. Sci. U.S.A. 109, 11443–11448. doi: 10.1073/pnas.1117596109

Nielsen, M. E., and Thordal-Christensen, H. (2013). Transcytosis shuts the door for
an unwanted guest. Trends Plant Sci. 18, 611–616. doi: 10.1016/j.tplants.2013.
06.002

Niemes, S., Langhans, M., Viotti, C., Scheuring, D., San Wan Yan, M., Jiang, L.,
et al. (2010a). Retromer recycles vacuolar sorting receptors from the trans-Golgi
network. Plant J. 61, 107–121. doi: 10.1111/j.1365-313X.2009.04034.x

Niemes, S., Scheuring, D., Krueger, F., Langhans, M., Jesenofsky, B., Robinson,
D. G., et al. (2010b). Sorting of plant vacuolar proteins is initiated in the ER.
Plant J. 62, 601–614. doi: 10.1111/j.1365-313X.2010.04171.x

Oshima, R., Hasegawa, T., Tamai, K., Sugeno, N., Yoshida, S., Kobayashi, J., et al.
(2016). ESCRT-0 dysfunction compromises autophagic degradation of protein
aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic
and necroptotic pathways. Sci. Rep. 6:24997. doi: 10.1038/srep24997

Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., et al.
(2010). Rab27a and Rab27b control different steps of the exosome secretion
pathway. Nat. Cell Biol. 12, 19–30. doi: 10.1038/ncb2000

Palade, G. E. (1955). Studies on the endoplasmic reticulum: II. Simple dispositions
in cells in situ. J. Cell Biol. 1, 567–582. doi: 10.1083/jcb.1.6.567

Paris, N., Rogers, S. W., Jiang, L., Kirsch, T., Beevers, L., Phillips, T. E., et al. (1997).
Molecular cloning and further characterization of a probable plant vacuolar
sorting receptor. Plant Physiol. 115, 29–39. doi: 10.1104/pp.115.1.29
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