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The exposure to environmental stress can trigger epigenetic variation, which may have
several evolutionary consequences. Polyploidy seems to affect the DNA methylation
profiles. Nevertheless, it abides unclear whether temperature stress can induce
methylations changes in different cytotypes and to what extent a treatment shift is
translated to an epigenetic response. A suitable model system for studying these
questions is Ranunculus kuepferi, an alpine perennial herb. Diploid and autotetraploid
individuals of R. kuepferi were exposed to cold (+7°C day/+2°C night; frost treatment −1°
C cold shocks for 3 nights per week) and warm (+15° day/+10°C night) conditions in
climate growth chambers for two consecutive flowering periods and shifted from one
condition to the other after the first flowering period. Methylation-sensitive amplified
fragment-length polymorphism markers were applied for both years, to track down
possible alterations induced by the stress treatments. Patterns of methylation
suggested that cytotypes differed significantly in their profiles, independent from year of
treatment. Likewise, the treatment shift had an impact on both cytotypes, resulting in
significantly less epiloci, regardless the shift's direction. The AMOVAs revealed higher
variation within than among treatments in diploids. In tetraploids, internally-methylated loci
had a higher variation among than within treatments, as a response to temperature's
change in both directions, and support the hypothesis of temperature stress affecting the
epigenetic variation. Results suggest that the temperature-sensitivity of DNA methylation
patterns shows a highly dynamic phenotypic plasticity in R. kuepferi, as both cytotypes
responded to temperature shifts. Furthermore, ploidy level, even without effects of
hybridization, has an important effect on epigenetic background variation, which may
be correlated with the DNA methylation dynamics during cold acclimation.

Keywords: abiotic stress, alpine plants, apomixis, DNA methylation, methylation-sensitive amplified fragment
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INTRODUCTION

Epigenetic studies try to explain the heritable changes in gene
expression and function which determine the phenotype of an
organism and cannot be linked to DNA sequence changes
(Richards, 2006). There are mainly four different epigenetic
mechanisms: a) methylation of cytosine residues in the DNA, b)
remodeling of chromatin structure through chemical modification
of histone proteins, c) histone proteins modification that can lead
to extent alteration of DNA wrapping, and d) regulatory processes
mediated by small and non-coding RNA molecules (miRNA).
These processes do not act independently from each other and can
produce epigenetic changes that affect genes expression, by e.g.
activating, reducing or completely disabling the activity of
particular genes (Berger, 2007).

DNA methylation is defined as the addiction, catalyzed by
several methyltransferases, of a methyl group to the 5' C of a
cytosine residue in the DNA sequence, which is associated with
silencing of transposons, imprinting, and silencing of both
transgenes and endogenous genes (e.g. Grossniklaus et al.,
2001; Zilberman et al., 2007; Jones, 2012). In plants, DNA
methylation is the best understood epigenetic mechanism and
several studies intimate it exhibits a transgenerational
inheritance (e.g. Vaughn et al., 2007; Johannes et al., 2009;
Finnegan, 2010; Hirsch et al., 2013). It is well documented that
DNA methylation can be dynamic, as biotic or abiotic
environmental stimuli can trigger methylation changes and
lead to different DNA methylation profiles (e.g. Sherman and
Talbert, 2002; Dowen et al., 2012). Except for environmental
stimuli, genomic stresses such as hybridization and
polyploidization can induce DNA methylation changes
(Adams and Wendel, 2005; Grant-Downton and Dickinson,
2005; Dong et al., 2006; Jones, 2012). Furthermore, DNA
methylation has been exhibited to mediate phenotypic
plasticity within a single generation (Bossdorf et al., 2010) and
between generations (Boyko et al., 2010).

Polyploidy is a heritable condition of organisms that refers to
the possession of more than two complete sets of chromosomes
and is considered to have evolutionary consequences on
angiosperms (Comai, 2005), as polyploidization events in
plants seem to be correlated with phenotypic innovation and
speciation (Madlung, 2013; Soltis et al., 2014). During the
formation of polyploids, several alterations in DNA
methylation in allo- and autopolyploids are occurring (Li et al.,
2011). As DNA methylation is related with regulation of gene
expression (Bird, 2002; Yan et al., 2010; Law and Jacobsen, 2010),
it is implied the decisive role of epigenetic regulation in regaining
the genomic balance and the structural and functional
remodeling after polyploidization (Soltis et al., 2010; Hegarty
et al., 2011; Madlung and Wendel, 2013; Alonso et al., 2016b).
Several studies demonstrate that the epigenetic consequences of
polyploidy can lead to gene expression alterations (e.g. gene
silencing) and genome-wide transcriptional rewiring (Baubec
et al., 2010; Li et al., 2011; Song and Chen, 2016). However,
most studies deal with polyploid hybrids (allopolyploids).
Allopolyploids show more pronounced alterations in gene
expression than autopolyploids due to effects of a hybrid
Frontiers in Plant Science | www.frontiersin.org 2
genome additionally to genome duplication (e.g., Chen, 2007).
Moreover, DNA methylation alterations can be ignited ad hoc by
polyploidization during the first generations following the event
(Paun et al., 2007). A variation in the patterns of cytosine
methylation regarding wild populations of polyploids
putatively unravels their local adaptation and functional
plasticity (Paun et al., 2010; Rois et al., 2013; Schulz et al.,
2014) and may be advantageous for the invasion success of
some species (Ainouche et al., 2009).

Uncovering the putative role that polyploidy plays at
adaptation to extreme conditions is correlated with the several
effects of polyploidy on vigor, physiology, morphology, and other
adaptive traits (Li et al., 2011; te Beest et al., 2012). Successful
polyploidization events can result in increased survival fitness in
harsher environments and may have important side effects on
mechanisms, which are related to stress response (Li et al., 2011).
Hence, it is hypothesized that polyploidy helps plants to adjust
their growth and exposure of reproductive tissues to cold
temperatures by offering a putative adaptive advantage in alpine
dwarfism (Körner, 2003), as polyploids achieve it by reducing cell
number and increasing cell size (te Beest et al., 2012). This strategy
can additionally help for rapid sprouting of the polyploidy plants
directly after snow melting (Körner, 2003). According to Comai
(2005), a selective advantage of polyploidy can be the way it may
affect the mode of reproduction of the organism in absence of
sexual mates, by favoring the establishment of asexual
reproduction. The perpetuation of asexual reproduction mode
on some polyploids is suggested that profits further their
adaptation under stress conditions (Körner, 2003).

A suitable model system for studying the correlation of
temperature effects, ploidy level, and methylation profiles is
Ranunculus kuepferi Greuter and Burdet, a high-mountain
perennial herb. The species occurs mainly with diploid and
autotetraploid cytotypes and has a gradient distribution
primarily across the European Alps and at altitudes between
1300 and 2800 m (Burnier et al., 2009; Cosendai and Hörandl,
2010; Cosendai et al., 2011; Kirchheimer et al., 2016; Schinkel
et al., 2016). The comparison of diploid and autotetraploid
cytotypes facilitates the study of effects of genome duplication
without side-effects of hybridity. Regarding the reproduction
mode of these cytotypes, diploid plants are predominantly
sexual, whereas tetraploid plants are facultative apomictic
(aposporous), with varying proportions of sexual and asexual
seeds (Burnier et al., 2009; Schinkel et al., 2016).

Through the distribution of the species a pronounced
geographical parthenogenesis in the European Alps (Cosendai
et al., 2013) is indicated: diploid populations are restricted to the
south-western Alps, while tetraploid populations colonize
previously glaciated areas in the northern, central, and eastern
Alps (Küpfer, 1974; Burnier et al., 2009; Cosendai and Hörandl,
2010) as well as the northern Apennines and Corsica. Tetraploid
populations arise also at higher elevations in the European Alps
than diploids and exhibit a pronounced niche shift towards
colder temperatures (Kirchheimer et al., 2016; Schinkel et al.,
2016). This niche differentiation between diploid and tetraploid
cytotypes of R. kuepferi is associated with their reproduction
April 2020 | Volume 11 | Article 435
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mode, and asexual taxa seem to have a distributional advantage
(Kirchheimer et al., 2018).

Previous population genetic studies using AFLPs throughout
the range of the species revealed that sexual and apomictic
populations show a very low genetic divergence, as only 3% of
AFLP fragments were specific for tetraploids, while all others
were shared with the diploid cytotype (Cosendai et al., 2011).
Genetic differentiation and diversity measures within cytotypes
were on a similar level (e.g., Fsts are around 0.3 for both
cytotypes; Cosendai et al., 2013). Only diploids showed
geographical structure in their refugial areas, comprising six
genetic partitions, whereas tetraploid populations exhibited no
geographical structure and comprised just three genetic
partitions that were derived from the diploids' gene pool
(Cosendai et al., 2013). Moreover, a high individual genetic
diversity in tetraploids is observed and is in line with multiple
origins, allelic diversity and high frequencies of facultative
sexuality (Cosendai et al., 2013). A molecular dating revealed
that the tetraploid cytotype originated only 10–80 kyears ago
(Kirchheimer et al., 2018), probably by multiple and recurrent
autopolyploidization events (Cosendai et al., 2011; Schinkel et al.,
2017). Previous studies on methylation variation in natural
populations suggested pronounced differences between
cytotypes, and correlations of methylation variation to climatic
gradients according to elevation, but not to spatial distribution
(Schinkel et al. subm.). Hence, we hypothesize that the niche shift
of tetraploids in the Alps has rather an epigenetic than a genetic
background. However, in natural populations it is difficult to
entangle various environmental factors, and to discriminate
between phenotypic plasticity and heritable traits.

Herein, we employed the two main cytotypes of the perennial
species R. kuepferi and we exposed plants collected in the Alps
under different temperature treatments under controlled conditions,
to appraise the putative DNA methylation changes. By assessing
methylation variation with methylation-sensitive amplified
fragment length polymorphisms (MS-AFLPs) we focus on
entangling whether the methylation profiles of vegetative parts
differentiate according to ploidy levels, and how the cytotypes are
affected by a change in cold/warm conditions. We hypothesize a
temperature-sensitivity of methylation patterns, as a potential to
respond rapidly to stressful environments. We would expect that
cytotypes respond differentially to stress treatments. Since we
analyze here the same individuals under different treatments in
consecutive years, we test here mainly for phenotypic plasticity of
perennial plants. By differential analysis of types of epiloci we
further try to get insights into the dynamics of epigenetic change.
A detailed study on correlations of mode of reproduction and
methylations will be presented elsewhere.
MATERIALS AND METHODS

Plant Material and Experimental Design
Ranunculus kuepferi plants, representing diploid and tetraploid
cytotypes were collected at 81 sampling sites throughout the
distribution range of the species in the European Alps
Frontiers in Plant Science | www.frontiersin.org 3
(Kirchheimer et al., 2016) during the growing seasons of 2013
and 2014. These plants were re-potted in garden soil at the Old
Botanical Garden of Göttingen University and overwintered
outdoors, while their ploidy level was defined via flow
cytometry measurements of silica gel dried leaf material
collected in the field (Schinkel et al., 2016). To investigate the
implied temperature preferences of the two cytotypes
(Kirchheimer et al., 2016), an experiment based on the
exposure to different temperature conditions, during the
sprouting and flowering period, was designed and conducted
from 2014 onwards (see Klatt et al., 2018). Hence, a subset of
diploid and tetraploid individuals was placed in two climate
chambers MC1000E (Snijders Scientific, Tilburg, Netherlands),
where cold and warm temperature treatments were
implemented, while light regime (photoperiod: 16 h; 10 h full
light [700 µmol m-2s-1]) and all other parameters were kept
equal. In the first chamber a cold treatment was applied (+7°C
day/+2°C night; frost treatment: −1°C cold shocks for 3 nights
per week), mimicking the typical, harsh high alpine temperature
conditions at the habitats of the tetraploid cytotype (Schinkel
et al., 2016), while in the second chamber a warm treatment was
applied (+15° day/+10°C night). In the cold treatment, the
repeated moderate frost treatment is simulating temperature
conditions occurring in high mountains and provokes frost
injury in reproductive shoots, which subsequently could
emerge in full fruit loss (Ladinig et al., 2013); similar damaging
effects were observed by Klatt et al. (2018).

To elucidate further the effects of temperature treatments on
cytotypes, a reciprocal test, by rotating the cold treated plants to
the warm and vice versa, was performed. In spring of 2016 (third
consecutive flowering period under first treatment) and 2017
(first flowering period after the rotation), leaf material was
collected from the plants and was stored in silica gel. The
individuals were categorized into four groups regarding their
ploidy: Diploids 1, Tetraploids 1, Diploids 2, and Tetraploids 2
(from now on, mentioned as D1, T1, D2, and T2, respectively).
The groups that are numbered with 1 were placed first under
cold treatment, while the rest of them were first placed under
warm treatment. A subset of 100 individuals (25 per group;
Supplementary Data Table 1), originated from 57 populations,
was selected to proceed with the molecular analysis for both
years. The sampling was randomized and was targeted to cover
as precisely as possible the distribution range of the species in the
Alps (see map in Supplementary Data Figure 1).

MS-AFLP Analysis
The DNA from the leaf material was isolated using the Qiagen
DNeasy Plant Mini Kit, with a slightly modified protocol. At the
second step, 360 ml AP1 Buffer and 40 ml PVP 2.6% were added
and incubation time for the elution is prolonged 30 min. The
PVP was added to remove polyphenolic compounds from plant
DNA extracts by forming hydrogen bonds with them, as they can
deactivate proteins and hence inhibit downstream reactions e.g.
PCR (Healey et al., 2014).

In order to investigate their epigenetic response, through the
highlighting of the genome-wide patterns of epigenetic variation
(e.g. Salmon et al., 2008; Massicotte et al., 2011; Herrera et al.,
April 2020 | Volume 11 | Article 435
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2012), methylation-sensitive amplified fragment-length
polymorphisms (MS-AFLPs) were conducted. MS-AFLPs, as a
methylation detecting approach, can be applied to non-model
plants for which the genome has not been sequenced yet and
assess cytosine methylation state in a large number of
anonymous loci, which are randomly distributed over the
genome (Schrey et al., 2013).

The extracted samples of 100 individuals for each treatment
year were screened according to a slightly modified protocol of
Paun and Schönswetter (2012). Restriction and ligation were
carried out in two parallel reactions, each one with a different
restriction enzyme. The restriction enzymes, which were used,
are MspI & HpaII. They are methylation sensitive restriction
enzymes, i.e. isoschizomers, that recognize the same DNA
sequence (CCGG), but differ in the sensitivity regarding the
methylation state of C, and used as the frequent cutters, while
EcoRI is used as the rare cutter. Ligation products were subjected
to pre-selective amplification, whereupon selective amplification
was performed with a set of three primer combinations with
three selective nucleotides to each primer, used before for an
AFLP analysis on the species (Cosendai et al., 2011). Ligation,
pre-selective, and selective amplification products went through
a quality and quantity check on a 1.5% agarose gel and diluted
10-fold dilution prior to pre-selective, selective amplification and
fragment analyses, respectively.

The final selective-PCR products were prepared with GeneScan
ROX 500 (Thermo Fisher Scientific, Waltham, MA, USA) as the
internal size standard and fragment analyzed on the ABI Prism
3700/3730 (Applied Biosystems, Waltham, MA, USA) capillary
sequencer. An attempt to increase the precision of the final results
was performed, by tracking down genotyping errors and cleaning
up the data sets (Bonin et al., 2004). The technical reproducibility
of resulting electropherograms was checked by replicating 100% of
accessions, i.e. duplicates were produced for every sample used
throughout the MSAP protocol steps, to minimize the false
positive fragment peaks. Accounting for the modified lab
protocol for our species to overcome the sensitivity of restriction
enzymes, the guidelines of ASA for the importance of replicability
and reproducibility of scientific work (Wasserstein and Lazar,
2016) and the optimization of fragment detection (Arrigo et al.,
2009), the risk of false positive results was minimized.

Fragment Scoring
The analysis of electropherograms and fragment scoring were
performed using the following scoring pipeline: Peakscanner v.2
(Applied Biosystems, Life Technologies Corporation, Carlsbad,
California, USA), RawGeno 2.0-1 (Arrigo et al., 2009), and
MSAP_calc script (Schulz et al., 2013). We transformed
electropherograms of raw data into a binary dominant-marker
matrix. Peak Scanner2 was used to determine the height, width,
and the area of all peaks. The output of the Peak Scanner2 was
then imported to RawGeno 2.0-1 to proceed with the binning of
detected peaks, the analysis of replication and the filtering of
samples of low quality.

RawGeno handles a single dye color at a time, so presence/absence
of fragments binary matrices were obtained for each of the three dyes
(Blue; FAM, Green; HEX, Yellow; NED) and then they were merged
Frontiers in Plant Science | www.frontiersin.org 4
in a final binary matrix. Fragments between 50 and 600 base pairs
were scored. In order to optimize the dataset, a run of RawGeno with
an R script (Arrigo et al., 2009) was performed, which checked
stepwise (~5,760 steps) the binning and filtering parameters. Going
through the resulting table, the optimal combination of the
parameters was chosen for each dye (Supplementary Data Table
2) and the respective binary matrices were produced. The selection of
parameters represent a balance between quality measures, e.g. the
error rate and bin reproducibility, and informativity, measured with
the data polymorphism.

The merged binary matrix of optimized dataset for each
treatment year was dealt with MSAP_calc script in R (Schulz
et al., 2013), to distinguish the four possible methylation
conditions as they are described in Schulz et al., 2013, using the
“Mixed Scoring 2” approach for scoring the following conditions: I)
no methylation (both MspI and HpaII cut the restriction site), II)
holo- or hemi-methylation of internal cytosine (HMeCG or MeCG;
MspI cuts the restriction site), III) hemimethylation of external
cytosine (HMeCCG; HpaII cuts the restriction site), and IV)
holomethylation of external cytosine or of both cytosines or
hemi-methylation of both cytosines or mutations (none of them
cuts the restriction site). In “Mixed Scoring 2” condition I was
scored as 100 (non-methylated), condition II as 010 (internally-
methylated), condition III as 001 (externally-methylated), and
condition IV as “000” and refers to a non-distinguishable
situation, e.g. an ambiguous methylation or a mutation status.
Condition IV was, therefore, excluded from further statistical
analyses. In “Mixed Scoring 2” approach both group of fragments
are comprised, so potential inadequacies of methylation- and non-
methylation Scoring were avoided and more of the underlying
information of the epiloci is utilized (Alonso et al., 2016a).

Statistical Analyses
MSAP_calc script returned an epigenetic binarymatrix, which presents
themethylation condition (externally-, internally- and non-methylated)
of each epilocus with the corresponding score and a matrix with
descriptive parameters at the group level. The subsequent statistical
analyses were mainly performed in R (R Development Core Team,
2019) under R Studio (RStudio Team, 2016).

The descriptive parameters matrices were adopted from the
MSAP_calc script and used as input for barplots in ggplot2
(Wickham, 2009). In accordance with descriptive statistics, the
percentages of each epilocus for each individual were calculated
regarding the predefined groups for each year of analysis and the
groups with some individuals through the years. These
percentages were used to produce the respective boxplots with
ggplot2 R package and were arcsine-transformed in Excel 2016 to
match a normal distribution of data. Based on the arcsine-
transformed percentages, multiway ANOVAs regarding
pairwise comparisons of the groups (ploidy versus treatments,
year versus groups) and the non-parametric tests of Wilcoxon
and Kruskal-Wallis were computed.

To estimate the epigenetic variances within and among the
groups for each treatment year, the groups of same individuals
through the treatment years, the cytotypes, and the treatments as
well as the respective epigenetic phenotypic differentiation (FST),
several global and locus-by-locus AMOVAs were conducted,
April 2020 | Volume 11 | Article 435
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using ARLEQUIN (Excoffier and Lischer, 2010), version 3.5.2.2.
Binary matrices were treated before with AFLPdat script (Ehrich,
2006) to get an output file in Arlequin format. Both modes of
AMOVA were based on the option for haplotypic data computed
with pairwise differences, a gamma value of 0 and a permutation
number of 50.000. Measures as FST (homologous to FST), which
describe genetic population structuring, should be equally
applied to specify population or group differentiation at the
epigenetic level (Bossdorf et al., 2008).
RESULTS

Epigenetic Patterns of Each Year of
Treatment
The MS-AFLP analysis was conducted on all (100) individuals
for the 2017 treatment and on 99 of them for the 2016 treatment,
as RawGeno scoring discarded one individual belonging to T2,
because of its low quality. Across the 2016 analysis, 754
fragments were scored, while for 2017, the scorable fragments
were 493. Furthermore, in the D1, T1, D2, and T2 groups 401,
562, 485, 559 and 260, 258, 266, 232 polymorphic markers were
detected for 2016 and 2017 analyses, respectively (see Table 1).

In 2016, all diversity measures (percentage of polymorphic
loci, private loci, and Shannon index) suggest an overall higher
diversity for tetraploids, mostly due to internally-methylated and
non-methylated markers. In 2017, this trait is reversed as
diploids show a higher diversity of markers in these epiloci. All
the described differences were consistent under cold treatment
and more sporadic under warm treatment (Table 1).

The hypothesis of the ploidy effect is confirmed for both years of
analysis, as the three different types of epiloci for diploids and
tetraploids differed significantly under the same conditions
(Figure 1). More specifically, in externally-, non- and internally-
methylated epiloci the ploidy levels under cold treatment (pairs: T1/
D1 for 2016 and T2/D2 for 2017) differ significantly (p-values2016
< 0.001, < 0.001, < 0.05 and p-values2017 < 0.05, < 0.01, < 0.001
respectively). The ploidy effect is also observed under warm
treatment for the non-methylated epiloci of 2016 analysis and
externally- as well the internally-methylated epiloci of 2017
analysis (p-value2016 = < 0.001 and p-values2017 = 0.0373, 0.04599
respectively). A treatment effect within the same year and ploidy
level is prominent only for the internally-methylated epiloci of the
diploid individuals under 2017 analysis (p-value2017 < 0.05).

Correlation of Epigenetic Patterns Under
the Treatment Shift
In order to test how the methylation patterns change with the
reversed treatment, pairwise comparisons of same individuals
between 2016 and 2017 treatment years were performed. The
treatment shift, as for both directions (Warm to Cold and Cold
to Warm), affected the number and the proportion of
polymorphic epiloci for the groups with same individuals
(Figure 2).
Frontiers in Plant Science | www.frontiersin.org 5
TABLE 1 | Measures of epigenetic diversity within the four groups of Ranunculus
kuepferi obtained for all the types of epiloci.

Diploids
1 (D1)

Tetraploids 1
(T1)

Diploids 2
(D2)

Tetraploids 2
(T2)

2016
All (754 epiloci)
Polymorphic epiloci
(%)

53.18 74.54 64.32 74.14

Private epiloci 32 43 32 44
Mean Shannon's
diversity

0.27 0.45 0.36 0.44

Externally-
methylated (255
epiloci)
Polymorphic epiloci
(%)

45.1 65.49 60.39 60.39

Private epiloci 19 23 22 13
Mean Shannon's
diversity

0.17 0.38 0.27 0.31

Internally-
methylated (254
epiloci)
Polymorphic epiloci
(%)

72.05 67.72 74.41 74.02

Private epiloci 12 7 8 22
Mean Shannon's
diversity

0.42 0.43 0.47 0.44

Non-methylated
(245 epiloci)
Polymorphic epiloci
(%)

42.04 91.02 57.96 88.57

Private epiloci 1 13 2 9
Mean Shannon's
diversity

0.21 0.55 0.34 0.57

2017
All (493 epiloci)
Polymorphic epiloci
(%)

52.74 52.33 53.96 47.06

Private epiloci 52 41 96 27
Mean Shannon's
diversity

0.21 0.23 0.23 0.23

Externally-
methylated (287
epiloci)
Polymorphic epiloci
(%)

55.05 65.51 54.7 58.89

Private epiloci 18 36 26 16
Mean Shannon's
diversity

0.22 0.29 0.25 0.32

Internally-
methylated (119
epiloci)
Polymorphic epiloci
(%)

48.74 26.89 50.42 30.25

Private epiloci 26 2 38 11
Mean Shannon's
diversity

0.17 0.1 0.2 0.12

Non-methylated
(87 epiloci)
Polymorphic epiloci
(%)

50.57 43.68 56.32 31.03

Private epiloci 8 3 32 0
Mean Shannon's
diversity

0.23 0.19 0.2 0.09
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Regarding the treatment effect hypothesis through descriptive
statistics, boxplots and statistical significant tests propose that
both cytotypes changed significantly their methylations under
Cold to Warm shift and vice versa, for non- and internally-
methylated epiloci (Figure 3).

However, the cytotypes do not differ from each other in their
response to the temperature changes. Furthermore, in non- and
internally-methylated epiloci the pair D1/D2 differs significantly
(p-values <0.001 from Warm to Cold and p-values <0.005, <
0.001 from Cold to Warm), and as well does the T1/T2 pair (p-
values <0.001 for both directions). Moreover, the corresponding
comparison of tetraploids under the shift from Cold to Warm
treatment gave significant differences also for the case of
externally-methylated epiloci (p-value = < 0.005).

Concerning the global AMOVA results, a higher epigenetic
variation within than among the groups was found in the
diploids for all types of epiloci. Regarding the groups of
tetraploids, the epigenetic variation is greater among than
within them for non- and internally-methylated epiloci, but
not for externally-methylated ones (Table 2). These differences
in variation were accounted for both directions of treatment
shifts. The FST values are greater than 0.15, except for the
externally-methylated epiloci of diploids that were alternated
from Cold to Warm treatment. Values are ascending from
externally- to non- and internally-methylated epiloci.

Similarly, locus-by-locus AMOVA revealed lowest percentages
of significantly differentiated epiloci in externally-methylated
epiloci, followed by non-methylated epiloci, and highest
percentages in internally-methylated epiloci, for both ploidy levels
Frontiers in Plant Science | www.frontiersin.org 6
and treatment shifts. In addition, under the change from Warm to
Cold both ploidy levels exhibit more significantly differentiated
epiloci, than the ones for the reciprocal change. For this tendency we
observed the exceptions of externally- and internally-methylated
epiloci for diploids and tetraploids individuals, respectively
(Table 2).
DISCUSSION

In the current study, patterns of epigenetic variation in two
cytotypes of R. kuepferi along cold (stress) and warm (control)
temperature treatments were explored and comparisons for the
same individuals after the shift of treatments were performed.
The results confirmed the correlation of methylation profiles
with the ploidy level, under the same treatment conditions and
for both years of analyses. Furthermore, tetraploids had
significantly more epiloci than diploids, regarding overall,
externally- and non-methylated epiloci under cold treatment of
2016, while for the 2017 analyses the diploid individuals, have
more internally-methylated epiloci under both treatments, more
non-methylated epiloci under cold treatment and less externally-
methylated epiloci under both treatments.

The response to the reciprocal change of treatments is
supported by the comparisons of methylation patterns of same
individuals before and after the treatment shift. Overall, the
treatment shift resulted in a drastic decrease of scorable
fragments and, regardless of the shift's direction, a significantly
lower number of internally- and non-methylated epiloci.
FIGURE 1 | Boxplots of polymorphic epiloci (%) of the four R. kuepferi groups for each year of treatment. For test statistics see Table S3.
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A

B

FIGURE 2 | Barplots for comparison of scorable fragments, in absolute numbers (see data in Table 1), for (A) Cold to Warm and (B) Warm to Cold (vice versa)
shift, among the same R. kuepferi individuals.
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Moreover, the significant higher number of internally-
methylated epiloci under cold treatment, compared to warm in
the same year, indicates a temperature-sensitivity of DNA
methylation patterns of 2017 among diploids.

Subsequently, we will attempt to interpret all results
according to the two factors ploidy level and treatment.

Epigenetic Patterns and Ploidy Level
The observed difference in methylation patterns of the ploidy
levels, for both years of analysis, is in contrast to the very low
genetic differentiation of cytotypes in wild populations in the
AFLP study of Cosendai et al. (2011, 2013). Moreover, variation
in DNA methylation patterns over short timescales appears to be
spontaneous and independent from genetic background (Vidalis
et al., 2016). The epigenetic differentiation of cytotypes was also
observed in methylation patterns studied in wild populations of
R. kuepferi (Schinkel et al., subm.). Since tetraploid R. kuepferi is
autopolyploid, we can also rule out side-effects of hybridity on
methylation patterns (e.g., Chen, 2007). The consistency of
results suggests that polyploidization affects methylation
variation independently from genetic background variation
and environment. Strikingly, for 2016, tetraploids showed
significantly more epiloci than diploids do. Other studies have
shown that autopolyploidy can trigger de novo methylation in
the model system Taraxacum officinale (Verhoeven et al., 2010a)
and the endemic species of the Iberian Peninsula, Dianthus
broteri (Alonso et al., 2016b) as well as increase the global
cytosine methylation in six species of the grass species complex
Cymbopogon (Lavania et al., 2012).
Frontiers in Plant Science | www.frontiersin.org 8
Cold treatment conditions were quite similar to the natural
habitat conditions of the tetraploid R. kuepferi plants in the Alps
(see also Klatt et al., 2018). They have an extended biogeographical
and altitudinal distribution (Cosendai and Hörandl, 2010; Schinkel
et al., 2016; Kirchheimer et al., 2016), but neither geographical
structure nor isolation-by-distance appeared in their gene pool
(Cosendai et al., 2013). The lack of genetic structure in tetraploids
is probably due to their recent origin and rapid postglacial
colonization of the Alps (Kirchheimer et al., 2018). Kirchheimer
et al. (2016) suggested that tetraploids' niche optimum is placed in
the direction of cooler conditions than the one for diploid cytotype,
probably due to the change in the reproductive system of an
originally warm-adapted species during postglacial re-colonization
of higher regions in the Alps (Kearney, 2005; Hörandl, 2006).
Tolerance to cooler conditions allows tetraploids to surmount
high elevation barriers and establish new populations throughout
a greater distribution range (Kirchheimer et al., 2018). The shift to
facultative apomixis may have additionally facilitated rapid
colonization (Kirchheimer et al., 2018). Warm treatments rather
reflected the natural temperature conditions of the diploids in the
southwestern Alps. DNA methylation patterns in the wild
populations indeed followed rather a temperature gradient than
the biogeographical pattern and they seem to correlate with
reproduction mode of each cytotype (Schinkel et al., subm.).
Previous cold/warm treatments by Klatt et al. (2018) in climate
growth chambers suggested indeed some influence of temperature
on mode of reproduction in diploids, and overall a high phenotypic
plasticity in this trait. However, this earlier study did not include a
reciprocal change of treatments. The potential correlations of
FIGURE 3 | Pairwise comparison of polymorphic epiloci (%) regarding the same R. kuepferi individuals, which went through the reciprocal treatment shift from 2016
to 2017. For test statistics see Table S3.
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reproduction mode and the epigenetic patterns of each cytotype
regarding our experiments will be discussed elsewhere, as our main
aim of the current study is to decipher the ploidy-treatment
linked effects.

Hence, the results of the first treatment in 2016 may still reflect
to a great extent the background methylation profiles from the
natural habitats, potentially related to differential cold acclimation of
diploids and tetraploids. Correlating these background studies with
the dynamics of DNA methylation during cold acclimation (Liu
et al., 2017), the findings of 2016, which represented the 3rd year
(2014–2016) of cultivation in growth chambers under the same
conditions, are slightly deciphered.

The evolutionary aspects of stress-induced epigenetic
variation as well as the epigenetic inheritance have been
noteworthy discussed (e.g., Wendel and Rapp, 2005; Richards,
2006; Bossdorf et al., 2008; Richards et al., 2017). The exposure to
biotic or abiotic environmental stresses can trigger epigenetic
changes that seem to persist even after the stress is relieved,
resulting in a stress memory that can be stable throughout the
lifetime of an organism or even across generations, especially in
plants (Richards et al., 2012). The observed cytotype
differentiation of methylation in R. kuepferi could reflect such
a heritable pattern as ploidy levels, which are highly stable within
natural populations (Cosendai and Hörandl, 2010; Schinkel
et al., 2016).

Epigenetic Patterns and Treatment
Regarding the treatment effect on the DNA methylation patterns,
only after the reciprocal change of treatments for the same
individuals we observed significant changes of the methylation
profiles. We suggest that an extreme change of temperature is
needed to alter methylation patterns independently from ploidy
variation. However, such extreme temperature shifts do occur under
natural weather conditions in the Alps, and alpine plants have to be
tolerant to temperature extremes between day and night, extreme
low temperatures down to −24°C in higher altitudes, as well as
different weather conditions and seasons (Körner, 2003). The high
phenotypic plasticity in methylation patterns, which we observed in
R. kuepferi, may be responsive to the fluctuating climatic conditions.
Several studies insinuate increases in epigenetic variation in
response to different environmental factors (Verhoeven et al.,
2010b; Dowen et al., 2012; Verhoeven and Preite, 2013; Nicotra
et al., 2015; Foust et al., 2016). The 2017 results for R. kuepferimay
empower the argument of cold-induced DNAmethylation changes,
as described by e.g. Song et al. (2015) regarding the alpine to
subnivale species Chorispora bungeana. Furthermore, in the alpine
speciesWahlenbergia ceracea, adaptive plasticity in methylation was
observed in low-elevation plants (Nicotra et al., 2015), while forest
trees set off several epigenetic mechanisms, including DNA
methylation, to elicit rapid phenotypic variations, which help
them respond to environmental changes (Mamadou et al., 2018).
We cannot rule out that perennial plants like R. kuepferi change
their methylation profile over their lifetime independently from
environmental influence. However, it is unlikely that such a drastic
shift from one year to another would be just an effect of ageing, as it
occurred synchronously in plants from different origins. Our plants
showed no signs of senescence.
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Hereby, concerning the comparison of same individuals for
the two years of analysis, less fragments were detected after the
shift of treatments, i.e. 754 for 2016 in contrast to 493 for 2017.
The “Mixed Scoring 2” approach used in the current study for
fragment detection (Schulz et al., 2013) does score “000” for the
condition IV, which refers to the uninformative state of
fragments' absence due to methylation polymorphisms (Zhang
et al., 2007) or restriction site polymorphisms/mutations.
Methylation polymorphisms may affect both the external
cytosine (e.g., MeCCGG, MeCMeCGG) as well as the internal
cytosine (e.g. HMeCHMeCGG, MeCMeCGG), and correct
interpretation of changes of methylation status from one to the
other is often complicated (Fulnecek and Kovarik, 2014).
Remarkably, the loss of epiloci appeared in both cytotypes of
R. kuepferi and just affected internally-methylated and non-
methylated loci. This observation may point at an inability of
MspI to cut within the CG context. Hence, we cannot readily
interpret our pattern as demethylation process, but rather as
indicative of a high methylation dynamics, or even mutational
change since 5-methylcytosin can convert to a thymine via
deamination. However, our results suggest that types of epiloci
react differentially to abiotic stress, which is in line with
involvement of differential methyltransferase families and
positions in the genome (e.g. Alonso et al., 2016a).

Our speculations refer to the potential of DNA methylation
mechanisms to respond to abiotic environmental stress
(Richards et al., 2017) and the complex network of them with
the other epigenetic mechanisms. It is known that DNA
methylation, as an important epigenetic mechanism, is
involved in diverse biological processes such as transposon
proliferation, genomic imprinting, and regulation of gene
expression (e. g. Law and Jacobsen, 2010) and together with
histone modifications and non-histone proteins, encompasses
chromatin structure and accessibility (Zhang et al., 2018). The
aforementioned phenotypic plasticity in methylations may
improve the phenotypic response of plants during acclimation
and adaptation to heterogeneous environments (Nicotra
et al., 2010).

The lower number of internally- and non-methylated epiloci
after the shift, referring to the methylation profiles of the same
individuals, regardless the direction of treatment's change and
the ploidy level, and the greater number of externally-methylated
epiloci of tetraploid individuals, highlight likewise the response
to the new abiotic conditions after the shift from cold to warm
conditions. This epigenetic variation may depict the dynamics of
DNA methylation under stress conditions (Bartels et al., 2018;
Zhang et al., 2018) and the epigenetic control on the phenotypic
plasticity of the species (Zhang et al., 2012; Richards et al., 2017).

Kooke et al. (2015) suggested that a DNA demethylation is
responsible for variation of phenotypic plasticity by extending its
environmental sensitivity. Furthermore, DNA methylation in
response to abiotic environmental stress could regulate gene
expression (e.g. Steward et al., 2002; Shan et al., 2013; Rakei et al.,
2016), mostly by global demethylation of genomic DNA, while
DNAmethylation is believed to play a role in the maintenance of
cell stability under stress (Song et al., 2015). However, since the
Frontiers in Plant Science | www.frontiersin.org 10
interpretation of our methylation profiles is not straightforward
we can just confer a high dynamics from our experiments.

Global AMOVA results for tetraploids reflect these DNA
methylation dynamics as a response to the change of temperature,
from warm to cold conditions and vice versa. Interestingly,
regarding the shift from warm to cold, the higher variation
among the tetraploid groups for the non-methylated epiloci may
underline the, hypothetically, important role of methylation
dynamics under cold treatment. The locus-by-locus AMOVA
results, which indicate the epigenetic phenotypic differentiation at
each locus, support the hypothesis of cold stress affecting the
epigenetic variation, as there were overall more significantly
differentiated epiloci for the shift from warm to cold, also for the
diploid groups.

To summarize, the current study demonstrates a ploidy effect
on the DNA methylation profiles, mainly under cold treatment,
and a significant differentiation of them as a response to the
reciprocal temperature treatment experiments. This phenotypic
plasticity may affect the potential of the two cytotypes, and
therefore also the two different reproduction modes, to tolerate
cold stress. Differential response of the different types of epiloci
suggest a high epimutational dynamics.
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