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When subject to vegetational shading, shade-avoiding plants detect neighbors by
perceiving reduced light quantity and altered light quality. The former includes
decreases in the ratio of red to far-red wavelengths (low R:FR) and low blue light ratio
(LBL) predominantly detected by phytochromes and cryptochromes, respectively. By
integrating multiple signals, plants generate a suite of responses, such as elongation of a
variety of organs, accelerated flowering, and reduced branching, which are collectively
termed the shade-avoidance syndrome (SAS). To trigger the SAS, interactions between
photoreceptors and phytochrome-interacting factors are the general switch for activation
of downstream signaling pathways. A number of transcription factor families and
phytohormones, especially auxin, gibberellins, ethylene, and brassinosteroids, are
involved in the SAS processes. In this review, shade signals, the major photoreceptors
involved, and the phenotypic characteristics of the shade-intolerant plant Arabidopsis
thaliana are described in detail. In addition, integration of the signaling mechanisms that
link photoreceptors with multiple hormone signaling pathways is presented and future
research directions are discussed.

Keywords: shade-avoidance syndrome, photoreceptors, phytochrome-interacting factors, phytohormones,
signaling mechanisms
INTRODUCTION

Sunlight is the energy source for plant growth. The spectrum of solar radiation utilized by green
plants for conducting photosynthesis is termedphotosynthetically active radiation (PAR; 400–700 nm).
When PAR or light quality is lower than a certain saturation (Morgan and Smith, 1978), plants receive
optical signals caused by canopy shade. To reduce the degree to which they are affected by the shade,
a series of responses termed the shade-avoidance syndrome (SAS) is triggered (Morgan and
Smith, 1978; Smith, 1982; Smith and Whitelam, 1997).

During the evolution of plants, selective advantages have led to phenotypic differences among
species. Some shade-tolerant plants, such as Alocasia, have thin leaves that contain a high chlorophyll
content. Their leaf epidermal cells, similar to a camera lens, focus light on the mesophyll tissues so
that weak light can be utilized to conduct effective photosynthesis (Middleton, 2001). However, with
respect to the shade-intolerant Arabidopsis thaliana, at the seedling stage, hypocotyls and stems
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growing in a shaded environment are severely elongated. The
cotyledon and early true leaves grow at a higher position on the
stem to weaken the degree to which the plants are shaded. At the
rosette stage, the shade signals result in upward bending of the
cotyledon and true leaves, which is termed hyponasty. As a result
of hyponasty, the leaf lamina is placed at a higher, more favorably
lit position (Figure 1). In addition, shade signals weaken
expansion of the leaf lamina but strengthen petiole elongation.
Longer petioles enhance the amplitude of fluctuation in blade
position to avoid the shade environment caused by surrounding
plants (Casal, 2012). During the period of cauline leaf growth,
shade signals result in earlier flowering and fewer branches. As for
vegetative Arabidopsis, it typically grows similar to a rosette, and
elongation of the internode and generation of cauline leaves is
associated with subsequent reproductive growth and
development. Accelerated flowering allows plants to complete
the life cycle quickly to reduce the chance of future shade.
Reduction in branching is an additional response of plants to
avoid shade, because in Arabidopsis prolific development of
branches from the basal rosette will undoubtedly increase the
proportion of shaded tissues.

In this manner, immovable plants can adjust their growth
strategy and change their spatial configuration to capture greater
amounts of sunlight and occupy a larger spatial area during
competition with surrounding plants (Ballaré et al., 1990).
Undoubtedly, under high-density planting, some responses of
shade-avoidance, such as reorientation of leaves toward more
light, are beneficial to plants. However, some effects on the
perception of shade signals, such as elongation growth and
accelerated flowering at inappropriate phases, may be
detrimental for yield (Donohue et al., 2001; Kebrom and
Brutnell, 2007). Although breeding programs have led to
improved performance of new cultivars under high planting
density, many crops remain sensitive to and responsive to
canopy shade. Here, based on recent progress in understanding
the SAS, shade signals and key regulatory factors are reviewed,
mostly focusing on Arabidopsis. In addition, current knowledge
Frontiers in Plant Science | www.frontiersin.org 2
of the signaling mechanisms linking several photoreceptors with
a variety of hormone signaling pathways is discussed.
PERCEPTION OF SHADE SIGNALS
BY PHOTORECEPTORS

Light Signaling
Light signaling refers to the alterations of surrounding light
conditions perceived by the plant photoreceptors. When the
vegetation is dense, the majority of red light (R; l = 600–700 nm)
and blue light (B; l = 400–500 nm) is preferentially absorbed by
crop leaves at a higher position. The reflected or transmitted light
is enriched in the green (G; l = 500–580 nm) and far-red
(FR; l = 700–800 nm) spectral regions, leading to a decrease in
the ratio of R:FR (low R:FR) and low blue light (LBL). Plants
perceive these shade signals through multiple photoreceptors,
which in turn initiate signaling cascades to cause the SAS (Morgan
and Smith, 1978; Smith, 1982; Smith andWhitelam, 1997).

Under normal conditions, R:FR is approximately 1.2–1.5 at
midday, varying little with season or weather conditions.
Underneath the vegetation canopy, the value can be as low as
0.05 (Smith, 1982). On the basis of previous research, four
approaches can be adopted to simulate and study the shade
signal. As early as 1978, by ensuring PAR, Morgan and Smith
(1978) added far red light to white light to reduce R:FR and
applied treatments to study the SAS in plants. The PAR can be
provided artificially or through sunlight, and in this manner, the
plant can be exposed to light of the ideal R:FR ratio. The second
approach is realized by applying a pulse of far-red light at the end
of the daily photoperiod. To achieve the expected results, this
brief decrease in R:FR must be drastic. Given that R:FR fluctuates
during the day, slight variation in R:FR may be ineffective. In
addition, the light of certain wavebands can be reduced with
color filters placed above the plant or around the stem (Yanovsky
et al., 1995). Finally, using a genetic approach, mutants with
FIGURE 1 | Phenotype of Arabidopsis plants grown under low or high red: far-red light (R:FR) ratio. (A) Phenotype of Arabidopsis plant grown in an open
environment under white light. (B) Phenotype of Arabidopsis plant grown under high-density canopy shade (R:FR ratio 0.2–0.4).
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optical-signal defects can be treated to observe the physiological
and molecular outputs under real sunlight and shade light
conditions (Sellaro et al., 2010; Sellaro et al., 2011). Although
some of the afore-mentioned experiments may encounter
technical difficulties in accurately simulating the natural
environment, such experimental conditions are conducive to
study the SAS.

Photoreceptors
At least five classes of photoreceptors in plants are recognized.
These classes comprise phytochromes that absorb red and far-
red light, cryptochromes that absorb UV-A light (l = 315–400
nm) in the blue light and near ultraviolet areas, phototropin that
absorbs blue light, the ZEITLUPE (ZTL) group of proteins that
absorb blue-green light, and UV-B RESISTANCE 8 (UVR8)
discovered in 2011 that absorbs UV-B light (l = 280–315 nm)
(Chory, 2010; Rizzini et al., 2011; Losi and Gärtner, 2012).

The two photo-convertible isoforms of phytochromes are the
red light-absorbing form (Pr) and far-red light-absorbing form
(Pfr). Five phytochrome genes (PHYA– PHYE) have been
identified in Arabidopsis (Franklin and Quail, 2010). PHYB
plays a prominent role in regulation of the SAS. Arabidopsis
phyB mutants display a constitutive SAS under normal and high
R:FR environments, suggesting that PHYB plays a negative role
in the control of the SAS (Reed et al., 1993). PHYB, PHYD, and
PHYE function redundantly to regulate leaf morphology and
flowering time in response to low R:FR (Aukerman et al., 1997;
Devlin et al., 1998; Franklin et al., 2003). Given gene replication,
PHYC is probably descended from the PHYA lineage (Mathews
and Sharrock, 1997). PHYA is rapidly degraded in its Pfr form,
whereas PHYB–PHYE are all relatively stable in the respective
Pfr forms (Bae and Choi, 2008; Franklin and Quail, 2010; Casal,
2013). Previous studies have shown that the SAS induced by
PHYB deactivation is gradually antagonized by PHYA, which is
intensely induced by low R:FR to inhibit the excessive elongation
response of seedlings (Martinez-Garcia et al., 2014). In addition,
as the receptor of far-red light, PHYA plays a key role in de-
etiolation in FR-rich environments, such as extremely low R:FR
(Shinomura et al., 2000; Rausenberger et al., 2011; Casal
et al., 2014).

Monocotyledon species harbor three phytochromes, namely
PHYA, PHYB, and PHYC (Kay et al., 1989). Maize has two
PHYB alleles, PHYB1 and PHYB2, which are completely or
partially functionally redundant on apical dominance,
elongation reaction, and flowering time (Sheehan et al., 2004;
Sheehan et al., 2007). Sorghum phyB1 mutants exhibit SAS
phenotypes, such as insensitivity to photoperiod, elongation
reaction, low chlorophyll content, and no presentation of de-
etiolation under high-intensity red-light radiation (Finlayson
et al., 2007; Kebrom et al., 2010). In addition, the rice phyB
and phyC mutants and the double mutants phyAphyB and
phyAphyC all show early flowering and the SAS (Jumtee et al.,
2009; Sun et al., 2015).

In Arabidopsis, the cryptochrome group includes three genes,
namely CRY1, CRY2, and CRY3. Under any light condition,
CRY1 can be detected in the nucleus and cytoplasm, whereas
CRY2 is mainly enriched in the nucleus and is degraded under
Frontiers in Plant Science | www.frontiersin.org 3
blue light (Yu et al., 2007). CRY1 and CRY2 not only act
upstream of PHYTOCHROME INTERACTING FACTOR 4
(PIF4) and PIF5 , but also physical ly interact with
phytochrome-interacting factors (PIFs) to modulate activities
of PIFs to promote growth under low-intensity blue light
(Pedmale et al., 2016). Activation of the UVR8 photoreceptor
enhances rapid PIF5 degradation via the ubiquitin-proteasome
system to attenuate plant responses to canopy shade (Hayes
et al., 2014; Mazza and Ballaré, 2015; Sharma et al., 2019). In
Arabidopsis, ztl mutants are hypersensitive to red light and ZTL
interacts with PHYB and CRY1 (Somers et al., 2000; Jarillo et al.,
2001; Kevei et al., 2006). ZTL is shown to modulate PHYB‐
mediated shade signaling via an auxin-dependent manner in the
wild tobacco Nicotiana attenuate (Zou et al., 2019).
SIGNALING PATHWAYS OF SAS

Shade-avoidance responses involve a cascade reaction of the light
signal system, plant hormone signaling pathways, and growth
regulation (Smith and Whitelam, 1997; Yang and Li, 2017).
Current progress in this field of study has mainly focused on
the model plant Arabidopsis and limited research has been
conducted on other plants, especially crops. According to
current knowledge, the Pfr of PHYB interacts with PIFs, which
are phosphorylated and degraded. As the main switch for the
cascade reaction of multiple downstream signals (Figure 2), PIFs
function by regulating the expression of downstream
transcription factors that positively or negatively modulate
diverse growth processes, such as earlier flowering, elongation
reaction, and branching (Khanna et al., 2004; Leivar et al., 2008;
Lorrain et al., 2008; Leivar and Quail, 2011; Li L. et al., 2012).
PIF Transcription Factors
As transcription factors of the basic helix–loop–helix (b-HLH)
family, the prominent function of PIFs is to mediate light signal
transduction by interacting with photoreceptors to regulate plant
growth and development, such as photomorphogenesis and SAS
(Huq and Quail, 2002; Kim et al., 2003; Salter et al., 2003; Huq
et al., 2004; Oh et al., 2004; Penfield et al., 2005; Shin et al., 2007).
Some PIF proteins, such as PIF1 and PIF3, interact with both
PHYB and PHYA, whereas other PIFs, such as PIF4, PIF5, and
PIF7, interact preferentially with PHYB (Khanna et al., 2004;
Leivar et al., 2008). After interaction with PHYB, PIF3, PIF4, and
PIF5 are quickly phosphorylated, then degraded by proteasomes
through ubiquitination (Khanna et al., 2004; Leivar et al., 2008;
Lorrain et al., 2008). However, unlike its homologs, PIF7 is not
rapidly degraded in light (Leivar et al., 2008). Shade treatment
rapidly decreases the amount of phosphorylated PIF7 but
increases the amount of dephosphorylated PIF7, which is
important in the function of PIF7 in regulating the SAS (Li L.
et al., 2012). And studies have shown that 14-3-3 proteins
negative regulators of the shade response can delay the de-
phosphorylation and nuclear import of PIF7 in response to
shading (Huang et al., 2018).
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PIF4 and PIF5 are positive regulators of the SAS (Lorrain
et al., 2008). Compared with the wild type, hypocotyls of the
single mutants pif4 and pif5 and the double mutant pif4pif5
display decelerated elongation growth in the case of simulated
vegetative shade (Lorrain et al., 2008). Over-expression of full-
length or truncated PIF5 causes the constitutive SAS, even in the
absence of shade signal (Lorrain et al., 2008). Perception of low
R:FR by the phytochromes stimulates the accumulation of PIF4
and PIF5, which ultimately modulate elongation growth (Lorrain
et al., 2008). Similar to PIF4 and PIF5 (Lorrain et al., 2008; Soy
et al., 2012), PIF1 and PIF3 are also conducive to SAS, except that
the magnitude of their contribution is weaker than that of PIF4
and PIF5 (Leivar et al., 2012a). Within 10 h after treatment with
low R:FR illumination, pif4pif5 double mutants retain shade-
avoidance responses to reduced R:FR (Cole et al., 2011), although
this shade responsiveness was attenuated in pif7 mutants (Li L.
et al., 2012). Compared with PIF quartet (PIFq; PIF1, PIF3, PIF4,
and PIF5) members, PIF7 plays a dominant role in the PHYB-
mediated SAS because of the severer shade-defective phenotype
of pif7 mutants (Li L. et al., 2012; Mizuno et al., 2015). In
Frontiers in Plant Science | www.frontiersin.org 4
addition, PIF7 directly affects the biosynthesis of auxin by
activating downstream genes including YUCCA8 and YUCCA9
in low R:FR (Li L. et al., 2012). However, the residual
responsiveness of pif7 and pifq mutants to low R:FR indicates
that other currently unknown pathways or factors control this
process. It is worth stating that seedlings of pif4 and pif5 fail to
elongate under LBL, indicating that PIF4 and PIF5
predominantly mediate responses to LBL (Pedmale et al., 2016).

Other Regulatory Factors
Overexpression of PIF3-LIKE 1 (PIL1) causes a shift in the
biological clock and extreme elongation of hypocotyls (Salter
et al., 2003), and these processes are dependent on PIF4 and PIF5
(Salter et al., 2003; Lorrain et al., 2008). During 2 h treatment
with low R:FR, the hypocotyl elongation of pil1 mutants was
inhibited (Lorrain et al., 2008), but after continuous treatment
for 5 d under low R:FR, significant elongation of hypocotyls was
observed (Roig-Villanova et al., 2006). These results indicate that
in the regulation of hypocotyl elongation induced by low R:FR,
PIL1 plays both positive and negative roles.
FIGURE 2 | Molecular mechanism of the shade-induced elongation growth in Arabidopsis thaliana. Low R:FR enhances the functions of PIF4/5/7 by inhibiting the
activity of phyB under shaded conditions. During the early shade response, low R:FR signal activates PIF4/5/7, thus promoting auxin biosynthesis in the cotyledon,
which is then transported out to the hypocotyl where it induces cell elongation. Under prolonged shade conditions, PIF4/5/7 modulate IAA signaling pathway to
increase auxin sensitivity. The binding of DELLA and PIF proteins simultaneously results in PIF inactivation. ATHB2, ATHB4, REV, HFR1, and PARs are positively
regulated by PIFs. HFR1 and PARs bind to PIFs to form non-functional complexes to inhibit the SAS by means of a negative feedback loop. PIFs inhibit the
expression of miR156 to mediate shade-avoidance response (SAS). UVR8 and central clock components PRR proteins negatively regulate SAS through triggering
PIF degradation and repressing transcriptional activity of PIF proteins, respectively. Under a shade condition, stable and accumulated TCP17 protein positively
regulate SAS via activating PIF4 and PIF5. Low blue light levels depressed CRY1 activity and also increase the abundance of PIF4 and PIF5 to trigger hypocotyl
elongation with no alteration in detectable auxin amounts or sensitivity. Arrows indicate positive regulation; blunt arrows indicate negative regulation. Pfr, Far-Red light
absorbing, biologically active form of phytochrome. Pfr to Pr conversion is optimized by far-red light wavelengths (725–735 nm). Pr, Red-light absorbing, biologically
inactive form of phytochrome. Pr to Pfr conversion is optimized by red wavelengths (660–670 nm).
April 2020 | Volume 11 | Article 439

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Plant Shade-Avoidance Syndrome
An additional b-HLH gene, LONG HYPOCOTYL IN FAR-
RED LIGHT (HFR1), is quickly up-regulated by low R:FR, and its
high expression level is maintained during the following several
days (Sessa et al., 2005). Accumulation of HFR1 is induced by
prolonged illumination of low R:FR and, subsequently, non-
active heterodimers with PIF4 and PIF5 are formed (Sessa et al.,
2005; Hornitschek et al., 2009). Compared with the wild type,
hypocotyl elongation of hfr1 mutants is more significantly
promoted by low R:FR, whereas transgenic seedlings
overexpressing HFR1 display suppressed hypocotyl elongation
(Sessa et al., 2005; Galstyan et al., 2011). Similar to HFR1, even
with treatment using the protein synthesis inhibitor
cycloheximide (CHX), the transcripts of atypical b-HLH
trans c r ip t i on f a c to r s PHYTOCHROME RAPIDLY
REGULATED 1 (PAR1) and PAR2 are induced quickly and
reversibly by low R:FR (Roig-Villanova et al., 2006). These
findings indicate that under low R:FR, PIFs activate HFR1,
PAR1, and PAR2 by means of a negative feedback loop to
inhibit the SAS (Zhou et al., 2014). Therefore, PAR1, PAR2,
and HFR1 are activated by low R:FR, but function negatively by
forming a negative feedback loop.

In addition to b-HLH transcription factors (PIFs, PIL1,HFR1,
PAR1, and PAR2), members of the homeodomain-leucine zipper
(HD-Zip) II and HD-Zip III classes of transcription factors are
involved in regulation of the SAS (Brandt et al., 2012; Turchi
et al., 2015; Merelo et al., 2017). As the first HD-Zip II gene
observed to be rapidly and reversibly regulated by changes in R:
FR light, ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2/
HAT4) is involved in the elongation response induced by
changes in light quality (Carabelli et al., 1993; Carabelli et al.,
1996; Steindler et al., 1999). Seedlings with raised levels of
ATHB2 show the elongation response under high R:FR,
whereas loss-of-function of ATHB2 results in an attenuated
elongation response under low R:FR (Carabelli et al., 1993;
Carabelli et al., 1996; Steindler et al., 1999). PHYB, PHYD, and
PHYE are involved in the regulation of ATHB2 by low R:FR light
(Franklin et al., 2003) and ATHB2 is recognized by PIF5 in vivo
(Hornitschek et al., 2012). Under a shade environment,
inactivation of PHYB increases the stability of PIF proteins,
which induces transcriptional expression of ATHB2 and ATHB4
(Hornitschek et al., 2012: Gallemí et al., 2017). Subsequently, the
elongation reaction of plants is further promoted. Four
additional HD-Zip II genes, HOMEOBOX ARABIDOPSIS
THALIANA 1 (HAT1), HAT2, HAT3, and ATHB4, are
indicated to be up-regulated by low R:FR (Ciarbelli et al., 2008;
Sorin et al., 2009). In addition, under white light, athb4hat3
mutants do not display a significant difference from the wild
type, whereas under low R:FR hypocotyl growth is significantly
inhibited compared with that of the wild type (Sorin et al., 2009).

The HD-Zip III transcription factors represented by
REVOLUTA have also been shown to positively regulate not
on ly the aux in b iosynthes i s gene TRYPTOPHAN
AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and
YUCCA5 (YUC5) but also the HD-ZIP II genes HAT2, HAT3,
ATHB2/HAT4, and ATHB4 (Brandt et al., 2012). Compared with
wild-type plants, rev mutants display significantly shorter
Frontiers in Plant Science | www.frontiersin.org 5
hypocotyls under low R:FR, whereas seedlings that express
functional REV exhibit slightly longer hypocotyls in simulated
sunlight (Brandt et al., 2012; Merelo et al., 2017). Both HD-Zip II
and HD-Zip III proteins are positive regulators of the SAS, but
whether they function together in the regulation of downstream
gene expression is unknown.

In plants, the TEOSINTE BRANCHED 1, CYCLOIDEA, and
PCF (TCP) family of transcription factors perform important
functions at diverse stages of plant growth and development,
such as leaf morphogenesis, petal development, and flowering
(Efroni et al., 2008; Huang and Irish, 2015). It has been recently
demonstrated that TCP17 and two additional homologs, TCP5
and TCP13, can activate auxin biosynthesis to initiate hypocotyl
elongation induced by shade through both PIF-dependent and
-independent pathways. Under constitutive white light, tcp5
tcp13 tcp17 triple mutants exhibit a slight hypocotyl defective
phenotype, whereas under shade hypocotyl elongation of the
triple mutants was reduced significantly, suggesting a positive
function of TCPs in mediating the SAS (Zhou et al., 2018).
Recently, accompanying research findings prove that central
clock components PSEUDO-RESPONSE REGULATORS
(PRR1/TOC1, PRR5, PRR7, PRR9) negatively regulate shade-
avoidance response by directly repressing transcriptional activity
of PIF proteins (Franklin, 2020; Zhang et al., 2020). Two other
clock rhythm related proteins EARLY FLOWERING 3 (ELF3)
and CONSTANS were suggested to regulate shade-avoidance
and PIF7 was involved (Jiang et al., 2019; Zhang et al., 2019).

In addition to the afore-mentioned transcription factors,
additional proteins and microRNAs are involved in regulation
of the SAS. Ectopic expression of the upland cotton gene
FLOWERING PROMOTER FACTOR 1 (FPF1) in transgenic
Arabidopsis results in SAS responses, such as earlier flowering
and elongation of petioles and hypocotyls (Wang et al., 2014;
Wang et al., 2015). Under low R:FR, accumulated PIF proteins
can bind directly to promoters of multiple members of the
MIR156 gene family to inactivate the expression of these
MIR156 genes, thus inducing the expression of SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE (SPL) genes as the
targets of MIR156 genes. The activated SPL genes regulate a
suite of essential agronomic traits, such as plant height, branch
number, petiole length, leaf number, leaf area, and flowering time
(Xie et al., 2017). Recruited by PIF7, ARABIDOPSIS MORF
RELATED GENE 1 (MRG1) and MRG2 were combined with
H3K4me3/H3K36me3 to induce histone acetylation and, in this
manner, the two genes promote the expression of shade-
responsive genes, which include YUCCA8 and IAA19 that
participate in the biosynthesis and signaling pathways of auxin,
and PACLOBUTRAZOL RESISTANCE1/BANQUO1 (PRE1/
BNQ1), which is involved in brassinosteroid-regulated cell
elongation (Peng et al., 2018).
ROLES OF PHYTOHORMONES IN SAS

When plants grow in a shade environment, the perception of
PHYB to low R:FR down-regulates the active Pfr form of PHYB.
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As a result, PIF transcription factors accumulate in the nucleus
and control the expression of downstream shade-responsive
genes. Low blue light levels depressed CRY1 activity and also
increase the abundance of at least PIF4 and PIF5, particularly
when combined with low R:FR. In fact, PIFs are emerging as
hubs of signal integration, activating several of their targets,
including auxin synthesis-related genes, to control plant
developmental responses to shade signals (Hornitschek et al.,
2012; Li L. et al., 2012; Zhang et al., 2013). Within 1 h of low R:FR
treatment, free indole-3-acetic acid (IAA) contents in
Arabidopsis shoots increased by over 50% (Tao et al., 2008; Li
L. et al., 2012; Kohnen et al., 2016). In addition to auxin,
gibberellin is also an important hormone involved in SAS
(Garcia-Martinez and Gil, 2001; Djakovic-Petrovic et al., 2007;
Kurepin et al., 2007a).

Auxin
Many studies have shown that, as the main natural form of
auxin, indole-3-acetic acid (IAA) plays important roles in
regulating growth and developmental processes, such as
maintenance of apical dominance, responses to light,
geotropism, formation of roots and stems, differentiation of
vascular bundles, embryonic development, and stem elongation
(Zhao, 2018). The gene SHADE AVOIDANCE 3 (SAV3)/
TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1
(TAA1) was identified using a forward genetic screen for
mutants defective in SAS responses (Tao et al., 2008).
Mutation of SAV3/TAA1 causes insensitivity of hypocotyl
elongation to low R:FR illumination (Tao et al., 2008).
Predominantly expressed in the cotyledon, TAA1 encodes a
crucial enzyme that catalyzes conversion of tryptophan (Trp)
to indole-3-pyruvic acid (IPA) (Stepanova et al., 2008; Zhou
et al., 2011). The conversion of IPA to IAA is a rate-limiting step
in IAA biosynthesis, which is completed by the catalysis of flavin
monooxygenase encoded by YUCCA (YUC) genes (Won et al.,
2011). YUC2, YUC5, YUC8, and YUC9 are directly activated by
PIF4, PIF5, and PIF7, and the yuc2yuc5yuc8yuc9 deletion
mutants were defective in shade-avoidance responses
(Hornitschek et al., 2012; Li L. et al., 2012). In hypocotyls,
shade induces expression of the auxin output protein
PINFORMED 3 (PIN3), and the sensitivity of pin3-3 mutants
to shade is severely impaired (Friml et al., 2002). Additional
studies indicate that PIN3-mediated SAS might be universally
adapted to shade-intolerant plants, because PIN3 is
predominantly localized on the lateral cellular of endodermis
cells to form an essential auxin gradient under low R:FR light
(Keuskamp et al., 2010).

In addition to the synthesis and transport of auxin, the
signaling transduction of auxin also plays an important role in
the SAS induced by low R:FR. The deletion mutant tir1 of the
auxin receptor TRANSPORT INHIBITOR RESPONSE 1 (TIR1) is
insensitive to low R:FR illumination, and the TIR1 antagonist a-
(phenylethyl-2-one)-IAA significantly inhibits hypocotyl
elongation under low R:FR (Dharmasiri et al., 2005; Roig-
Villanova et al., 2006). In hypocotyls, the high level of PIF4
may induce transcripts of the early auxin-responsive genes
MSG2/IAA19 and IAA29, which in turn reduce the expression
Frontiers in Plant Science | www.frontiersin.org 6
level of the growth-repressive gene IAA17 (Hornitschek et al.,
2012; Li L. et al., 2012; Pucciariello et al., 2018). Recent studies
demonstrate that three auxin-responsive factors (ARF6, ARF7,
and ARF8) are conducive to hypocotyl elongation in low R:FR
environments (Reed et al., 2018). With regard to PHYB-
mediated shade-avoidance responses, auxin contents and
auxin-related genes are up-regulated to promote growth
(Keuskamp et al., 2010), but hypocotyl elongation triggered by
LBL does not involve alteration in detectable auxin amounts or
sensitivity (Pedmale et al., 2016). Further evidence suggests that
there are two stages in auxin’s roles in SAS (Villanova et al.,
2007). During the early hours in shade, the responses are
mediated by increased levels of the hormone auxin (Tao et al.,
2008; Li L. et al., 2012; Kohnen et al., 2016). But in prolonged
shade, the abundance of PIFs, selected auxin receptors and their
downstream transcriptional regulators are converted to enhance
growth responses, while auxin levels return to those observed
before shade (Pucciariello et al., 2018).

Gibberellin
Gibberellins, first identified in rice, play an important role in
regulating diverse developmental processes, such as seed
germination, cell elongation, flower induction, and fruit
development (Hauvermale et al., 2012). The hypocotyl
elongation induced by the phyB null mutation in response to
low R:FR or LBL is significantly inhibited in a gibberellin-
synthesis mutant background (Reed et al., 1996; Djakovic-
Petrovic et al., 2007). Furthermore, gibberellin synthesis
inhibitor PAC could also inhibit the hypocotyl growth of
seedlings in the background of phyB mutation, low R:FR or
LBL (Reed et al., 1996; Djakovic-Petrovic et al., 2007). Under an
identical PAR intensity, in which stem elongation of leguminous
plants and oilseed rape is induced in a low R:FR environment,
the content of endogenous GAs in the shoot tip is increased
(Gawronska et al., 1995; Beall et al., 1996; Potter et al., 1999).
GIBBERELLIN 20-OXIDASE 3 (GA20OX3), which is a critical
factor involved in GA synthesis, is significantly up-regulated by
low R:FR (Devlin et al., 2003). The afore-mentioned results
reveal that GA is extremely important for hypocotyl elongation
induced by shade-avoidance.

Definitive proof that PHYB affects GA content is presently
lacking because GA has various active forms. Compared with the
wild type, the contents of some active forms in the phyB mutant
do not differ significantly, whereas the amounts of certain other
active forms are too low to detect (Reed et al., 1996). Although it
is unclear whether PHYB regulates GA synthesis, the phyB
mutant is insensitive to GA treatment (Reed et al., 1996),
which indicates that PHYB and GA signals may show a
different relationship. After GA binds with the receptor, the
activated receptor induces degradation of DELLA growth
repressors in the GA signaling pathways. In Arabidopsis, the
DELLA proteins consist of five members: GIBBERELLIC ACID
INSENSITIVE (GAI) (Peng et al., 1997), REPRESSOR OF GA
(RGA) (Silverstone et al., 1998), RGA-Like1 (RGL1), RGL2, and
RGL3 (Lee et al., 2002; Wen and Chang, 2002; Cheng et al.,
2004). The transcript level of GAI is up-regulated in a low R:FR
environment under the control of PHYB, and is moderated by
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PHYA (Devlin et al., 2003). Previous studies indicate that phyB
mutants contain constitutively low contents of RGA and low R:
FR results in a sharp (within minutes) decrease in RGA
accumulation (Leone et al., 2014). When low R:FR treatment,
the petiole length of the quadruple mutant gai/rga/rgl1/rgl2 does
not differ significantly from that of the wild type, but the
hypocotyl is longer than that of the wild type (Djakovic-
Petrovic et al., 2007). This demonstrates that degradation of
DELLA proteins is not necessary for petiole elongation, but the
integration of other signaling pathways plays an important role
in the regulation of hypocotyl elongation after degradation of
DELLA proteins (Djakovic-Petrovic et al., 2007). Accumulation
of DELLA proteins abolishes the interaction between PIFs and
the promoter of the target gene to suppress PIF transcriptional
activity for coordination of hypocotyl elongation (De Lucas et al.,
2008; Feng et al., 2008). Additional research suggests that DELLA
proteins also stimulate PIF degradation, which is independent of
the light-mediated PIF3 degradation pathway, as it can occur in
the absence of activated PHYB and the LIGHT-RESPONSE BTB
E3 ligase system (Li et al., 2016).

Brassinosteroid
In Arabidopsis, shade-induced hypocotyl elongation was absent
in BR biosynthesis mutant dwarf1 (Luccioni et al., 2002) and rot3
(Kim et al., 1998), as with wild-type seedlings treated with the BR
synthesis inhibitor brassinazole (Keuskamp et al., 2011).
Brassinosteroids (BRs) are also essential for petiole growth
under low R:FR (Kozuka et al., 2010). Expression of the BR
receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) was up-
regulated by low R:FR (Roig-Villanova et al., 2006; Sorin et al.,
2009). BRASSINAZOLE-RESISTANT 1 (BZR1), regulating BR
signaling pathway, interacts with DELLAs to inhibit the
expression of BR-responsive genes (Li Q. F. et al., 2012). BZR1
and PIF4 physically interact and co-regulate their target genes of
highly enriched in auxin-responsive and cell wall-related genes,
which are repressed by light (Oh et al., 2012; Kohnen et al., 2016).
Moreover, the DELLA–BZR1–PIF4 module antagonizes light
signaling by activating the auxin signaling and up-regulating
the expression of genes related to longitudinal expansion of cells
(Casal, 2013; De Lucas and Prat, 2014). Therefore, the module
may also play a similar role in responding to shade, but further
research is needed. Although certain factors in the BR metabolic
pathway are involved in the SAS, the underlying mechanism of
their responses to low R:FR or LBL requires further investigation.

Ethylene
Ethylene, as an endogenous plant-synthesized small molecule,
acts at trace levels to regulate diverse developmental processes in
plants. Low R:FR increases ethylene concentrations in wild-type
tobacco (Pierik et al., 2004). In Arabidopsis, shade-induced petiole
elongation is absent in the ethylene-insensitive mutants ein2-1
and ein3-1eil1-3, suggesting that ethylene is a positive regulator of
shade-induced petiole elongation (Pierik et al., 2009). In
Arabidopsis, transcription of 1-AMINOCYCLOPROPANE-1-
CARBOXYLIC ACID SYNTHASE (ACS2) is negatively
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controlled by PHYB (Rodrigues et al., 2014). Compared with
wild-type plants, a significantly higher concentration of ethylene
is produced in phyAphyB mutants, and multiple phenotypes of
phyAphyB mutants are rescued by application of an ethylene
biosynthesis inhibitor (Foo et al., 2006). Similarly, in Brassica
napus BnCRY1-overexpression seedlings, the transcript levels of
ACS5 and ACS8 are reduced compared with those of the WT
seedlings (Sharma et al., 2014). These results suggest that ethylene
synthesis may be negatively regulated by PHYB and CRY1.
Moreover, ethylene promotes hypocotyl elongation by
increasing PIF3 expression in light-grown seedlings (Zhong
et al., 2012). In Arabidopsis, transcripts of ACS4 and ACS8,
which encode critical enzymes in the ethylene biosynthesis
pathway, are stimulated by PIF5 (Thain et al., 2004; Khanna
et al., 2007). These results suggest an intensive crosstalk between
ethylene and PHYB, but the roles of ethylene signal components
in SAS are worthy of further studies.
SAS IN CROP

Under high-density planting, the reorientation of leaves towards
more light increases individual fitness, but the achievements of
elongation growth and accelerated flowering at inappropriate
stages are at the expense of leaf area, tiller, and biomass
(Donohue et al., 2001; Kebrom and Brutnell, 2007; Carriedo
et al., 2016). Although breeders have weakened some of the
responses of staple crops by targeting yield, they have not
completely eliminated them. A major challenge will be to
determine which responses should be manipulated in order to
have a significant impact on crop yield, yield stability, crop
health, and/or plant quality (Ballaré and Pierik, 2017). Prior to
this, the phenotypes and signal transduction mechanisms of
different crops in shade need to be clarified. As other plant
species, both internodes and petioles of tomato plants are
elongated more when exposed to low R:FR. Unlike other
species, the size of the shoot apical meristem (SAM), incipient
leaf primordia, and the leaf blade of tomato plants are enlarged
when exposed to shade. The alteration of leaf morphology has
been observed both in cultivated (Stepanova et al., 2011) and
wild species (Chitwood et al., 2012). It is shown that low R:FR
light produced a typical SAS in Medicago sativa, with increased
internode and petiole lengths, but unexpectedly with delayed
flowering (Christian et al., 2019). Furthermore, a genome-wide
expression analysis of rice also uncovered inadequate induction
of auxin-responsive genes in the coleoptile when the seedlings
were exposed to low R:FR light (Liu et al., 2016). Coincidentally,
the Gene Ontology (GO) analysis of maize seedlings exposed to
low R:FR light revealed the lack of an enrichment in auxin-
responsive genes among those induced by low R:FR light (Wang
et al., 2016). Therefore, it is inferred from extensive data
collection that auxin response may be a feature of shade-
avoidance in dicotyledonous plants, rather than play an
important role in monocotyledons (Kurepin et al., 2007b;
Procko et al., 2014; Iglesias et al., 2018).
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DISCUSSION

The above findings robustly indicate that mult iple
photoreceptors as well as several central circadian components
connect immediately to downstream transcriptional networks
through direct binding to, and repression of, the members of PIF
quintet (PIF1, PIF3, PIF4, PIF5, and PIF7) that comprise the
signaling hub (Franklin, 2020; Zhang et al., 2020). Arabidopsis is
an excellent model system to uncover and dissect mechanisms
regulating the shade-avoidance responses, some of which are
likely to be conserved during evolution. Some important
differences are emerging from the analysis of other plant
species, so more experimental evidences need to be verified in
other plants. Under natural conditions, plants undergo a variety
of stress conditions in addition to shade. Low R:FR conditions
seem to mostly suppress adaptive responses to phosphate
deficiency, drought, pathogens as well as beneficial microbes in
the soil (Courbier and Pierik, 2019). Low R:FR can enhance
freezing tolerance, but the impact of low R:FR on some
environmental stresses may become more aggressive as global
temperatures increase (Courbier and Pierik, 2019; Romero-
Montepaone et al., 2020). Unraveling the interplay between
canopy shade and other stresses, both biotic and abiotic
stresses, is beneficial for improving plant fitness and resistance
at high planting density. In the future, in addition to further
exploration of the regulatory network of shade-avoidance
responses, focus on the mechanism of shade-tolerance
responses is also required. Although the phenotypic plasticity
of shade-tolerant species is low (e.g. scant elongation under low
light), the plasticity of some characteristics, especially the
morphological characteristics of optimizing light capture, can
be high in these plants (Smith, 1982; Valladares and Niinemets,
2008). Cardamine hirsuta is a close relative of Arabidopsis
Frontiers in Plant Science | www.frontiersin.org 8
thaliana, and it is suggested that the lack of a shade-induced
hypocotyl elongation response in C. hirsuta results from the
enhanced repressor activity of the phytochrome A photoreceptor
(Molina-Contreras et al., 2019). Exploitation of the molecular
basis of shade-avoidance and shade-tolerance to improve crop
yield and quality is of considerable importance for high-
density cultivation.
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