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Biochemistry parameters of vegetation are important indicators of the photosynthetic
process and provide a substantial amount of data about the status of ecosystems.
Estimation of these parameters are greatly affected by the correlations of spectral bands
and the sensitivity of each biochemistry parameter to inversion models. Hence, reducing
the spectral dimension and inefficient computation process using an appropriate
inversion strategy is significant for biochemistry parameters’ estimation. In this work,
we used band-selection-based artificial neural networks (ANNs) combined with feature
weighting (FW) and principal component analysis (PCA) process to reduce the
sensitive spectral correlations and to improve the inversion model predictability for four
biochemistry parameters: chlorophyll a and b (Cab), carotenoid (Car), equivalent water
thickness (EWT), and leaf mass per area (LMA). We analyzed the model performance
by conducting different inversion strategies, including: (1) linking reflectance (R),
transmittance (T), and R&T spectral properties in different numbers of band to four
biochemistry parameters; (2) simultaneously and then separately inverting them using
FW- and PCA-ANNs considering their sensitivity to the ANN model; and (3) choosing
a spectral subset from R, T spectrum for EWT, and LMA inversion successively. The
results show that: (i) the FW- and PCA-ANN models exhibit efficient improvements
by selecting less spectral characteristics; (ii) concurrently inverting EWT and LMA can
achieve a satisfactory R2, while it is inappropriate for Cab and Car whose optimal R2

are obtained by separately inverting all four biochemicals; (iii) the properties of R, T, and
R&T spectra exhibit various performances on parameters inversion.

Keywords: spectral band correlation, artificial neural networks, band selection, vegetation biochemistry
parameter, spectral property

INTRODUCTION

Vegetation is one of the most important components of the ecosystem on earth, and it assimilates
CO2 while releasing O2 to maintain a normal energy exchange with the surrounding environment
(Piao et al., 2006; Koetz et al., 2007). Meanwhile, the growing status of vegetation (GSV), including
the health-stress status and the functioning process, refers to the proper functioning of the entire
ecosystem (Féret et al., 2017). Biochemistry parameters [e.g., chlorophyll (Cab) and carotenoid
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(Car) contents, equivalent water thickness (EWT), leaf mass per
area (LMA)], are significant indicators of photosynthesis activity,
which is closely related with the GSV (Delegido et al., 2010).
Therefore, accurate and fast estimation of them is a general but
efficient approach to estimating the relationship between GSV
and environmental stress.

Spectra of reflectance (R) and transmission (T) remotely
sensed in wide range bands have been proven to be potential
applications for biochemistry parameters’ estimation of
vegetation (Sun et al., 2018). Several analysis methods about such
spectral data, such as mathematics regression and intelligent
algorithms, have been widely conducted. Most of these methods
focused on linking spectral indices to Cab, EWT, and other
pigments (Hunt and Rock, 1989; Delegido et al., 2010; Wu et al.,
2010). Admittedly, it has indeed improved the analysis models by
combining optimization algorithms, such as partial least squares
(PLS) (Du et al., 2016), stepwise multiple linear regression (Liu
et al., 2014), support vector machines (Mountrakis et al., 2011),
and artificial neural networks (ANNs) (Latt and Wittenberg,
2014). However, some evident drawbacks, such as the used
wavelengths not always being related with the compounds
of interest but occasionally being associated with biomass,
canopy structure, or other biochemicals, were observed (Yi
et al., 2007). Moreover, the analysis model is inconsistent with
vegetation types and even yields contrasting results because of
different spectral properties, such as R, T, or R&T (Li et al.,
2014; Sun et al., 2018). Furthermore, many uncertainties of
the inversion model, such as the correlated and redundant
information between bands and each biochemical, makes a great
difference on the inversion results (Goel, 1988), but few pieces
of research considered whether it was necessary to analyze these
parameters simultaneously or separately. Therefore, appropriate
selection of feature bands against special biochemicals should
be conducted before applying numerous analysis models,
including ANNs (Zhao et al., 2013). This is an efficient inversion
strategy to increase the sensitivity of special spectral bands to
each biochemical.

The ANNs can assimilate multidimension variables for
relationship modeling of biochemicals by simulating human
neurons. The workload of ANNs becomes considerably larger
with substantial variables, and the effects of some correlated and
redundant data from numerous bands and biochemicals will also
be integrated into the models, thereby overwhelming most useful
data of the compounds of interest. Consequently, the ANNs
with high-dimension variables (both spectra and biochemicals)
may inevitably suffer from the overlearning problem just like
the overfitting in regression analysis (Yao et al., 2015). Yi et al.
(2007) used principal component analysis (PCA) to select feature
variables for ANNs for rice nitrogen status monitoring and then
compared them using multiple linear regression. Although the
authors obtained unsatisfactory R2 values, applying PCA-based
models on the R spectrum showed great potential in nitrogen
analysis. A study by Yang et al. (2017) has proven the availability
of PCA-ANN on estimating the leaf nitrogen contents of rice
based on laser-induced chlorophyll fluorescence LiDAR data. In
the present study, another band selection method was utilized
with the ANN model for comparison with PCA-ANNs, namely,

feature weighting (FW), which was introduced by Huang and He
(2005). FWs are calculated depending on the divergence between
different classes, including vegetation species and biochemistry
parameter contents. Thus, values of FWs directly relate sensitivity
of feature bands to biochemicals. This is different from PCA
whose selected variables, called principal components (PCs), are
linear combinations of original data, thereby diminishing the
data dimension without any loss of innate information about
biochemistry parameters (Song et al., 2011).

This investigation aims to estimate the performance of
inversion strategy in biochemistry parameter analysis using
band-selection-based ANN models (FW- and PCA-ANNs). The
analysis process was conducted by designing different strategies,
including: (1) linking R, T, and R&T spectral properties in
different numbers of bands to four biochemistry parameters;
(2) simultaneously and then separately inverting them with the
ANN method to evaluate whether analyzing all biochemicals
together makes a great difference on model inversion; and (3)
inverting the EWT and LMA in a spectral subset chosen from
R, T spectrum successively.

DATABASES AND ANALYSIS METHODS

We firstly describe two experiment databases used in this study
and then simulate R and T spectra using the PROSPECT-5
model (Féret et al., 2008) with special distribution features of the
biochemical parameters. The range of synthetic parameters are
limited based on two experimental databases. Different inversion
strategies based on synthetic and experimental data are then
compared to find the optimal one for each parameter. In the
analysis process, the band-selection-based ANN models are used.

Databases Description
Three databases were used in this study. Two of them were
published independent databases, i.e., ANGERS and LOPEX. The
first database was measured in Angers, France, by Jacquemoud
et al. (in June 2003) (Féret et al., 2008). It contained 276
vegetation leaf samples (43 species) with their corresponding R
and T spectra and a variety of biochemistry parameters, such as
total Cab, Car, EWT, LMA, etc. The spectra of R and T (400–
2450 nm) in this database were measured using the laboratory
spectrophotometer or field spectroradiometers with different
spectral resolutions. The details can be found in studies by
Féret et al. (2008) and Lichtenthaler (1987). The second database
(LOPEX) was measured by the Joint Research Center of European
Commission in 1993 (Hosgood et al., 1995), which consisted of
320 samples, namely a total of 45 vegetation species, and the
range of the wavelength was 400–2500 nm. In this database, five
spectra were measured for each leaf, and only 64 fresh leaves
were available. In both databases, we chose four biochemistry
parameters for analysis cases including Cab (µg/cm2), Car
(µg/cm2), EWT (cm), and LMA (g/cm2), which cover a variety
of leaf biochemical compositions. Some statistic values for each
parameter in the two databases are listed in Table 1. These
two experimental databases contain lots of vegetation species,
but not enough to represent the variety of GSV, and there is a
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TABLE 1 | The statistic features for each parameter for two experiment databases.

Statistic feature Biochemistry parameters

Cab (µg/cm2) Car (µg/cm2) EWT (cm) LMA (g/cm2)

Min-value 0.78 0 0.0003 0.0017

Max-value 106.72 28.35 0.053 0.033

Mean-value 41.07 9.55 0.0115 0.0053

Standard deviation 20.56 4.70 0.0060 0.0031

question about the accuracy of the pigment content in the LOPEX
database. Thus, synthetic spectra were simultaneously designed
as the third database.

Some studies indicated that these parameter features mostly
follow a Gaussian distribution, while for EWT is fitted with
lognormal distribution more definitely (Féret et al., 2011).
Hereby, distribution information of the four parameters should
be considered when generating the synthetic data. It is also
noteworthy that the spectra feature of vegetation (including R
and T) are affected by numerous biochemical parameters, and
some of them are also highly correlated with each other in some
special spectral bands. Thus, a synthetic database with compound
distribution information of biochemical parameters has been
designed to model R and T spectra and then to test the inversion
strategy in this study. The synthetic data was synthesized with
two parts, i.e., D1 in Table 2, Gaussian distribution considered
high correlation among each parameter and D2 of Gaussian
distribution. Each part of the synthetic database has a total of
500 spectral samples with 2% Gaussian noise for each band
and its statistic features for each parameter were based on the
experimental values of the measured database in Table 1.

The Inversion Strategy of Biochemistry
Parameters
In this study, four biochemistry parameters were inverted. The
inversion accuracy of them greatly depended on the appropriate
inversion strategy because of the performance of algorithms
and correlation between biochemistry parameters. Thus, the
analysis process in the present investigation is designed as
follows: (1) different spectral characteristics (i.e., R, T, and
R&T) are considered as input variables of ANNs; (2) four
biochemistry parameters are separated as the single input
of the ANNs model and then inverted simultaneously; and
(3) the inversion process for EWT and LMA is conducted
repeatedly in a spectral subset after sensitivity analysis based
on R and T spectra. In the abovementioned analysis process,
the input variables of ANN were selected using two different
characteristic selection methods, described in section “Methods
of Spectral Characteristics Selection.” The inversion results were
then compared with that using all the spectral characteristics and
then the PLS regression (PLSR) method.

The parameters EWT and LMA are sensitive with spectral
characteristics mostly in the short wavelength infrared (SWIR)
range (approximately 1300–2000 nm), which is also correlated
with the leaf structure (Ceccato et al., 2002). Thus, the correlation
effects must be considered when analyzing EWT and LMA. On

this basis, we extended and reset the sensitive band ranges of
EWT and LMA (i.e., 750–950, 1300–1700, and 1850–2000 nm)
with a total of 753 wavelengths. Then, the abovementioned
analysis processes are conducted again. The inversion strategy
was presented in Figure 1.

Artificial Neural Networks
Traditional feed-forward ANNs are used in this study, which
consist of three layers (i.e., input, hidden, and output). The
ANNs work by learning from the input information xi, and
then freely change and modify the synaptic weights ai of xi.
After summing all these modified neurons, the output values yi
can be represented by ui (Eq. 1) and bias bi using a non-linear
activation function.

ui =
n∑

i=1

aixi (1)

Where n is the input number. The ANNs are trained iteratively
to minimize the mean square error (MSE, Eq. 2) between the
network outputs and inputs, namely the biochemistry parameter
contents and leaf spectral characters respectively in this paper.
The four biochemistry parameters can be used as a whole or single
dependent variable for the ANN model.

MSE =
∑N

i=1(yPRE − yMEA)2

N
(2)

Where N is the sample number, and yPRE and yMEA denote
the predicted and measured values, respectively. Many train
functions are available for ANNs analysis. We select four
commonly used functions, i.e., Levenberg-Marquardt Algorithm
(trainlm), Bayesian regularization algorithm (trainbr), Quasi-
Newton Algorithm (trainbfg), and One Step Secant Algorithm
(trainoss). For medium-scale networks, the trainlm is the fastest
training algorithm, and its Jacobian matrix can be divided into
several sub-matrixes for large networks, which can overcome
the disadvantage of occupying large amounts of memory. The
trainbr works as a Bayesian regularization process that updates
the weight and bias values based on the L-M algorithm. It
minimizes the combination of squared errors and weights which
are then determined to produce and optimize a network that
generalizes well. The trainbfg needs more storage space, but
uses fewer iterations and time per iteration than the other
methods when it converges, which is more suitable for small
networks. More details about these training functions can be
found in the book (Yegnanarayana, 2009) and the documents of
software MATLAB 2014b.

In present ANNs, the MSE is 10-5, the hidden size is
10, and the maximum iterations (epochs) are 100. The ANN
training process will terminate once each condition is met,
namely obtaining an optimal network model. Then, the created
networks can be used to validate and test the remaining 20% of
data. Additionally, the coefficient of determination (R2, Eq. 3,
y is average of yMEA) and the root-mean-square error (RMSE)
of output layers were implemented to indicate the prediction
performance of ANNs. High R2 and low RMSE indicates the
high accuracy of the ANNs model in predicting vegetation
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TABLE 2 | The R2/RMSE of FW- and PCA-ANNs models for analyzing four parameters together based on two synthetic databases.

Spectra FW-ANNs (R2/RMSE) PCA-ANNs (R2/RMSE)

Cab Car EWT LMA Cab Car EWT LMA

D1: Gaussian distribution considered high correlation among each parameter

R 0.46/7.071 0.35/1.623 0.59/0.00191 0.71/0.00111 0.39/6.471 0.40/1.121 0.82/0.00193 0.75/0.00123

T 0.52/6.001 0.48/1.092 0.65/0.00174 0.79/0.0014 0.74/8.362 0.70/1.642 0.79/0.00213 0.72/0.00133

R & T 0.76/8.922 0.75/1.672 0.87/0.00194 0.80/9.3e-44 0.76/7.732 0.70/1.582 0.84/0.00223 0.77/0.00133

D2: Gaussian distribution

R 0.88/18.341 0.68/4.362 0.84/0.00271 0.73/0.00263 0.81/14.964 0.91/3.181 0.82/0.00294 0.82/0.00134

T 0.76/21.064 0.71/4.863 0.87/0.00251 0.84/0.00221 0.67/10.481 0.826/3.414 0.90/0.00231 0.89/0.00154

R & T 0.78/27.831 0.71/6.114 0.73/0.01984 0.66/0.00321 / / / /

In the analysis process, different train functions of ANN models are chosen to optimize the inversion results. The training functions of ANN models include: 1Levenberg-
Marquardt Algorithm (trainlm), 2Bayesian regularization algorithm (trainbr), 3Quasi-Newton Algorithm (trainbfg), and 4One Step Secant Algorithm (trainoss).

biochemistry parameters.

R2
= 1−

∑(
yPRE − yMEA

)2∑(
yPRE − y

)2 (3)

Methods of Spectral Characteristics
Selection
There are more than 2000 wavelengths in both databases, which
indicates a heavy computation for ANNs. Furthermore, most of
the spectral characteristics in these wavelengths are correlated
with each other, which is unhelpful for the biochemistry
parameters analysis. Thus, preselecting the spectral feature is
both necessary and helpful in improving the performance of
ANNs in the special inversion strategy. In this paper, a FW-
based method (Huang and He, 2005) is used to decrease the

FIGURE 1 | The parameter inversion strategy used in this study. (I) Four
parameters were inverted based on the synthetic data using FW- and
PCA-ANNs; and then (II) FW- and PCA-ANN model was utilized to invert Cab
and Car based on measured data; (III) after resetting the sensitive band
range, EWT and LMA were inverted successively.

spectral dimension and acquire sensitive bands for biochemistry
parameters. Through this, the inputs of the ANN model change
to the reordered spectral characteristics rather than the entire
original spectral data.

We assume that the spectral data can be divided into m
classes (j = 1, 2, 3...m) according to the vegetation species and
biochemicals contents in this study. Then, the divergence of the
jth class is calculated, which presents the significant coefficient of
band λ corresponding to class j, (ηj(λ), Eq. 5). This coefficient
is in a descending sequence according to the sensitivity to
the different biochemistry parameters. Subsequently, the FWs
are calculated by seeking the band position pre−ranked in ηj(λ)

according to Eq. 4,

w (λ) =
1
n

m∑
j=1

(
Pre−ranked

)
(4)

ηj (λ) =
1
n

n∑
i=1

µi (Eλi)
2 (i = 1, 2, ..., n) (5)

where n is the number of bands and µi represents a divergence
ratio of the ith band to all bands. Then, the optimal channel
combinations are selected for biochemistry parameters analysis
by comparing the determination coefficient R2.

As it is the same as the FW-based method, PCA can decrease
the dimension of the spectra by analyzing the internal correlation
of the database. By using matrix computation and analysis, the
most significant spectral characteristics from the database are
extracted by PCA, and instead the linear combinations of the
original variables are used as ANNs inputs.

RESULTS AND COMPARISONS

In this section, we firstly invert the above four parameters
follow the inversion strategy described in section “The Inversion
Strategy of Biochemistry Parameters” based on synthetic
databases (section “Four Biochemistry Parameters Analysis Based
on Two Synthetic Databases”). According to the inversion
result based on the synthetic database, the parameters were
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FIGURE 2 | The inversion R2 for (A) Cab, (B) Car, (C) EWT, and (D) LMA in the synthetic database by using PLSR. Different spectra (i.e., R, T, and R&T) are used
and the optimal R2 has been added in the lower right of the figure.

separated or combined as different input forms for the ANN
model in sections “FW-ANNs for Cab and Car Analysis With
Different Spectral Bands” and “PCA-ANNs for Cab and Car
Analysis,” and different numbers of spectral characteristics
have been selected from more than 2000 spectral bands by
using two kinds of ANNs in both experimental databases.
Given the results for EWT and LMA were unsatisfactory,
the sensitive analysis has been utilized in section “EWT and
LMA Analysis After Sensitive Band Selection and Reordering”
to reset a new range for EWT and LMA, and then these
were reanalyzed using FW- and PCA-ANNs successively. The
PLSR method was conducted as a comparison experiment
in this section.

Four Biochemistry Parameters Analysis
Based on Two Synthetic Databases
Based on synthetic databases modeled by PROSPECT-5, these
four biochemistry parameters were inverted using FW- and
PCA-ANNs method in this section. As mentioned in section
“Databases Description,” parameters are highly correlated with
each other, which should be an important factor when

synthesizing parameters distribution. Thus, a comparison
analysis based on the synthetic database without considering the
high correlation among each parameter has also been conducted
(D2 in Table 2). Compared with using a single parameter as the
ANNs input, inverting all of them together produced a higher
R2, especially by combining Cab and Car, and EWT and LMA
together respectively (the results about separately inverting them
can be seen in Supplementary Table 1). The results in D2 show a
higherR2 but also a higher RMSE, even more so than the standard
deviation of parameters, which means the inversion accuracy is
highly affected by correlations between each parameter. Maybe
this can explain why the combinations of Cab & Car and EWT
& LMA as the ANN model inputs respectively could obtain a
relatively high R2. We also find the spectra of R&T can improve
the inversion R2 significantly based on the synthetic database D1,
especially when the R or T spectra has poor ability in Cab and Car
inversion. However, this result cannot be found in D2.

At the same time, the PLSR method has been conducted to
invert these four parameters and obtain a relatively low accuracy.
The optimal R2 values for Cab and Car can be indicated with R
spectra, while for EWT and LMA the T spectra is a better choice
with a R2 of >0.65 (Figure 2). In Figure 2, combining R and
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FIGURE 3 | The R2 of FW-ANNs models for Cab and Car analysis using different numbers of R, T, and R&T spectral bands based on the ANGERS and LOPEX
databases. Subpanels (A), (C) show the R2 of separately inverting four parameters and (B), (D) is that combining them as a whole of dependent variable for
FW-ANNs analysis. The optimal train function of FW-ANN model is trainbr.

T spectra together is no longer advantageous in biochemistry
parameters inversion whose optimal R2 is even lower than
whichever ANN model is being used.

FW-ANNs for Cab and Car Analysis With
Different Spectral Bands
Following what has been done in the synthetic database, four
parameters are separately and then simultaneously inverted
based on experimental data. In this section, we firstly analyzed
the model performance for Cab and Car. As for EWT and
LMA, the results are unsatisfactory in both databases whether
inverting separately or together, which will be reanalyzed in
section “EWT and LMA Analysis After Sensitive Band Selection
and Reordering” in more detail. The results show that FW-
ANN models exhibit a unique ability in parameters inversion
by utilizing different number of sensitive bands. These spectral
characteristics are reordered in a prior sequence on the basis
of the FW values of each wavelength. In this sequence, the first
t bands have been chosen as the input variables of the ANN
model for biochemical analysis (t = 100, 200, 500, 1000), and
then compared with all spectral bands were used (i.e., t = 2051

and 2101 for the ANGERS and LOPEX databases, respectively,
in Figure 3).

In the ANGERS database, most ANN models for Cab and
Car obtain a R2 of >0.7 and require fewer than 2051 bands.
When all parameters are simultaneously inverted (Figure 3B),
the highest R2 for Cab and Car is obtained with 500 feature bands
regardless of the used spectra (R, T, or R&T, the optimal R2 are
listed in Table 3). Being separated as a single dependent variable
for ANN models, the required band numbers for the optimal
R2 can be decreased to 200, except for R spectra which require
500 sensitive bands (Figure 3A), with a R2 of approximately
>0.9. Once a high R2 is obtained, the performance of FW-
ANN models gradually degenerate until all bands are utilized.
Compared with the ANGERS database, the R2 values of the
LOPEX are generally lower (Table 3). Concretely, improvement
of R2 is obscured when simultaneously inverting all biochemicals,
even needing 2101 bands to get a higher R2. Typically, Car
inversion with an R spectra can get an R2 approximately 0.82
with all 2101 bands, which is almost the same with that using
200 bands (Figure 3D). The model R2 with T or R&T spectra
for Car inversion can be close to 0.8 and the needed bands
numbers are just 100 when completely separating them. However,
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TABLE 3 | The optimal R2 and their corresponding RMSEs for the FW-ANN models selected from five different bands.

Model accuracy Separated Together

Cab Car Cab Car

R T R&T R T R&T R T R&T R T R&T

ANGERS

R2 0.88 0.83 0.87 0.92 0.89 0.85 0.88 0.80 0.87 0.91 0.83 0.85

RMSE 6.12 7.62 8.00 1.26 1.21 2.31 6.94 8.97 8.78 1.53 1.76 2.49

LOPEX

R2 0.50 0.50 0.50 0.82 0.71 0.81 0.67 0.60 0.63 0.80 0.70 0.76

RMSE 3.08 3.06 3.36 1.03 1.13 0.87 8.19 9.78 6.93 1.00 1.48 0.95

In the analysis process of Cab and Car, R, T, and R&T spectra are used for two measured databases.

FIGURE 4 | The R2 and its RMSE (in bracket) for (A) Cab and (B) Car analysis based on PCA-ANN models in ANGERS. The different colors of the histogram
indicate the inverting strategy using R, T, and R&T spectra, respectively. The optimal train function in this section is trainbr.

the model performance tend to be lower than 0.6 when bands
are increased (Figure 3C). Being different from the results in
section “Four Biochemistry Parameters Analysis Based on Two
Synthetic Databases,” combining Cab and Car together or using
the R&T spectra is no longer enough to improve the inversion
accuracy of ANN models.

PCA-ANNs for Cab and Car Analysis
For the ANGERS database, completely separating the four
parameters as the single dependent variables for PCA-ANN
models generally achieves a higher R2 than using them as whole
dependent variables for PCA-ANNs, except for that using T
spectra to analyze Cab (Figure 4A). For both Cab and Car, the
PCA-ANN models obtain almost similarly high R2 values with
R or T spectra. The model R2 can even be increased to 0.72
with R&T spectra when separately inverting them. However, the
results for EWT and LMA are unsatisfactory. For the LOPEX
database, mostR2 values for four parameters are so low (being not
more than 0.4 which can be found in Supplementary Figure 1)
that they can be considered as a failure inversion. Besides, by

combining R&T spectra, PLSR method can indicate the Cab and
Car with an optimal R2 in ANGERS, which is consistent with
using PCA-ANNs (Figures 5A,B). However, the R2 values are
slightly lower than in PCA-ANN models which has anR2 of > 0.7.

Compared with FW-ANNs, the optimal R2 values of PCA-
ANNs are lower and are generally achieved by combining R and T
spectra together. This weakness is greatly apparent on the LOPEX
database (in Supplementary Material 2). However, PCA-ANNs
use fewer than four PCs for Cab and Car analysis but still obtain
a R2 of >0.7, which has a more efficient analysis process.

EWT and LMA Analysis After Sensitive
Band Selection and Reordering
In the entire spectral range, satisfactory results haven’t been
achieved whichever training function of ANN is being used.
Hence, the sensitive analysis among biochemistry parameters was
conducted in this section to find new sensitive spectral bands for
EWT and LMA. Evidently, the effected spectral bands for EWT
are mainly located in the SWIR range, which are mixed with other
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FIGURE 5 | The inversion R2 for (A) Cab, (B) Car, (C) EWT, and (D) LMA in ANGERS by using PLSR. The optimal R2 with different spectra has been added in the
lower right of the figure.

parameters, including LMA which exhibits a close correlation
with another spectral range in NIR. Thus, obtaining sensitive
ranges covering the NIR and SWIR is both necessary and effective
for improving the analysis process of EWT and LMA. In this
section, the sensitive bands include 750–950, 1300–1700, and
1850–2000 nm with a total of 753 wavelengths for ANN models.
As the compare experiment, all of these 753 bands are used to
invert EWT and LMA, and then FW- and PCA-ANNs are used
to invert them, as was seen in the Cab and Car in sections “FW-
ANNs for Cab and Car Analysis With Different Spectral Bands”
and “PCA-ANNs for Cab and Car Analysis.”

Analyzing EWT and LMA With 753 Wavelengths by
Using ANNs
For the ANGERS database, the T-based ANNs seem to be more
useful and efficient for EWT and LMA analysis than using R or
a combined R&T spectra with 753 wavelengths (Table 4). And

the ANN models of the EWT and LMA analysis can be evidently
improved by combining the R and T spectra together. When
integrating these 753 picked-up spectral characteristics, the R2 of
ANN models can be considerably increased to >0.55, which is
significantly higher than that without resetting sensitive ranges
(as low as 0.2–0.4) despite using R, T, or R&T spectra. In contrast
to PCA-ANNs for Cab and Car analysis in Section “FW-ANNs for
Cab and Car Analysis With Different Spectral Bands,” EWT and
LMA analyzed together have a better result than being separated,
especially using R or T spectra. The only exception occurs when
separately analyzing LMA using R&T spectra, which obtains an
R2 of approximately 0.53; this result is better than analyzing EWT
and LMA together (Table 4).

Compared with the results in the ANGER database, the
analysis results based on the LOPEX database are not entirely
satisfactory for estimating the efficiency of sensitive bands
selection and reordering, which can almost be considered as a
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TABLE 4 | The optimal R2 of ANN models for EWT and LMA analysis by using 753 R, T, and R&T spectral bands respectively.

Separated Together Separated Together

Spectra EWT LMA EWT LMA EWT LMA EWT LMA

ANGERS LOPEX

R 0.44443 0.49734 0.54653 0.51423 0.23424 0.38153 0.39823 0.43604

T 0.55261 0.55333 0.57511 0.55371 0.24873 0.21924 0.33624 0.19014

R & T 0.49474 0.52924 0.51091 0.50624 0.42633 0.31464 0.42633 0.45314

In the analysis process, different train functions of ANNs model are used (listed in Table 2). The corresponding RMSE can be found in Supplementary Material 3. The
training functions of ANN models include: 1Levenberg-Marquardt Algorithm (trainlm), 3Quasi-Newton Algorithm (trainbfg), and 4One Step Secant Algorithm (trainoss).

FIGURE 6 | The R2 of FW-ANN models for (A), (B) EWT and (C), (D) LMA analysis in two databases. The first 20, 50, 100, 200, and 500 (five scatters in each
spectral group) spectral bands of R, T, and R&T were chosen for analysis models respectively. The optimal train function is trainbfg.

failure analysis process. This lower result is consistent with the
results obtained by PCA-ANN analysis for the LOPEX database.
However, some R2 values increase to > 0.4 when simultaneously
analyzing EWT and LMA, such as in the R&T-based model,
which is higher than using separated parameters as the dependent
variables of ANNs models.

Analyzing EWT and LMA Based on FW- and
PCA-ANNs
In consideration of the poor inversion ability with all spectral
bands, the FW-ANNs were utilized to select a different number
of reordered sensitive bands (include the first 20, 50, 100, 200,

and 500 bands) to analyse EWT and LMA in the new spectral
range. PCA-ANN models with all 753 bands were then operated
successively. Certainly, the PLSR method was also conducted to
compare their ability in EWT and LMA inversion.

In the ANGERS database, the model R2 of EWT based
on the R or T spectra is improved to approximately 0.6
(Figure 6A) as the input variables increase to 500. However,
FW-ANNs models with different spectra bands are inefficient
in improving the analysis results of LMA; even most inversion
strategies obtain a lower R2 value than using all 753 bands with
ANNs (Table 4 and Figure 6B). Moreover, in the ANGERS
database, the R2 for EWT analysis with 100 R&T bands is
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FIGURE 7 | The optimal R2 and its corresponding RMSE (in bracket) of PCA-ANN models for (A) EWT and (B) LMA analysis being separated and together in
ANGERS. A total of 753 bands reset and reordered from 2051 wavelengths are used. The PCs of analysis model are less than four.

approximately 0.6 when separating it with LMA, while the R2

is just approximately 0.5 even though all 753 bands are used for
the ANNs models.

Generally, the R2 values for the EWT and LMA analysis of
FW-ANNs model in the LOPEX databases are unsatisfactory, but
some evident improvements are still observed (Figure 6C). For
instance, together with EWT, model R2 of LMA with the first 50
R spectral bands is almost the same with using 753 R&T bands
in Table 4. Moreover, the FW-ANNs model has improved the
performance of T spectra on EWT and LMA inversion, which
can even obtain an R2 of >0.45 (Figure 6D).

The improvements of the model are evident when resetting
sensitive ranges, especially for the ANGERS database based
on PCA-ANNs. Compared with the results in Figure 7 and
Table 2, the reset range contains a considerable amount of
useful information about EWT and LMA, thereby making a
big difference in inverting these two biochemistry parameters
whatever using R, T, or R&T spectra. With regard to separating or
integrating EWT and LMA by using PCA-ANN, the results don’t
show a coinciding discipline, but the T spectra greatly contributes
to the EWT and LMA analysis, especially when EWT and LMA
are the dependent variables of PCA-ANN models simultaneously
(Figure 7, 0.64 for EWT and 0.56 for LMA).

By using the PCA method among the reset 753 wavelengths,
separately analyzing EWT based on R and R&T spectra has
been ameliorated better (from low than 0.5 to 0.59, Table 4
and Figure 7A). And the R2 can even be increased to 0.64
by integrating LMA together as the inputs of T-based ANN
models. For LMA analysis based on PCA-ANNs, satisfactory R2

are obtained using T spectra integrating EWT together, which
is consistent with that using ANNs analysis with all 753 bands

in section “Analyzing EWT and LMA With 753 Wavelengths by
Using ANNs” (Table 4). Thus, it is a good analysis strategy to
invert EWT and LMA together. Similar to FW-ANNs, the R2 of
EWT models based on PCA-ANNS in the ANGERS database are
relatively higher than only using ANNs without selecting model
variables, either using R, T, or R&T spectra. This result indicates
that the band-selection-based ANNs in this paper can achieve
an efficient improvement for EWT inversion. While for LMA,
it is more difficult compared to any other parameters regardless
of which band selection method being used. The results for the
LOPEX database were presented in Supplementary Figure 2.

On the contrary, PLSR can obtain a great improvement in
EWT and LMA analysis, especially for LMA, as its R2 can be
increased from less than 0.6 to 0.7 (Figure 5D). But we should
note that some inverted values of EWT and LMA with PLSR
correspond to many different real values, marked with a black
dotted box in Figures 5C,D, which means the PLSR has the
overfitting problem.

DISCUSSION

Factors Affected the Model Predictability
The different collection conditions of spectra, including years,
sites, and vegetation species, are important factors for the
universality of inversion algorithms in practice (Li et al., 2010).
In the present study, the spectra in two measured databases
were collected by different institutions, and each of them
contained fewer than 50 vegetation species. The data from the
LOPEX database contained only 64 available spectra, which
was a limited sample size for the ANN model training and
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construction. Moreover, the accuracy of the parameters in the
LOPEX database was questionable according to the collection
institution report. These two factors would contribute to the
predictability of the ANN model for LOPEX, thus, it had a
poorer inversion accuracy than the ANGERS database. The
effect of these external factors, certainly including that from
the surrounding environment, on spectral characteristics can be
highlighted by bands selection to accurately analyze biochemistry
parameters. More than 2000 spectral bands are present for both
the ANGERS and LOPEX database, which is a huge number
of characteristics for biochemistry parameter inversion. More
useless variables considerably contribute to the computation for
the ANN model and increase the probability of the overlearning
problem, like overfitting in regression analysis (i.e., PLSR).
Fundamentally, most of these spectral bands are unhelpful
for inversion improvement, and even obstruct ANN analysis,
thereby leading to the decrease of models’ R2. Thus, FW analysis
and PCA have been conducted before the operation of the
ANN model to considerably improve the analysis process. In
this study, FW- and PCA-ANNs perform a divergent ability
on biochemistry parameter inversion with two independent
databases. Compared with applying PCA, databases have been
divided into different classes according to the above-mentioned
factors, such as vegetation species, biochemistry contents, and
sampling sites before calculating the FWs of each wavelength to
reduce correlations and divergences between different classes, as
well as those between mixed spectral bands and each other. Thus,
FW-ANN models exhibit gratifying results.

Different training functions presented diversiform
performances in biochemistry parameter inversion because of
their optimization ability, whether using the FW- or PCA-ANN
model in the synthetic database (Table 2). For two measured
databases, the optimal training function of the inversion model
for Cab and Car was trainbr, and was trainbfg for EWT and LMA.
There were some complex correlations between these external
factors, which have not been found explicitly, making it difficult
to generalize the inversion model with special training function.
The present study is the preliminary research of this inversion
strategy, and a more detailed study may follow up in the future,
which could consider more correlated factors affecting the ANN
model predictability for vegetation parameters.

Spectral Property in Special Band for
Each Parameter
The inversion performance greatly depends on the combined
forms of spectral properties, such as R only, T only, and R&T,
considering the R and T spectral response to biochemistry
parameters in different band ranges. A constant range is
insufficient to accurately analyze some of the biochemistry
parameters. Thus, considerable sensitive band ranges based on R
and T properties should be picked up against special parameters
or combined parameters. This phenomenon is evident in this
study, especially for EWT and LMA. The combined form with
considerable spectral properties (R&T) is the optimal input
of PCA-ANNs for Cab and Car analysis (Figure 4), but not
when using FW-ANNs, which achieves a high R2 with few

hundreds of R or T bands alone (Figure 3). Both EWT and
LMA considerably contribute to the R spectra in the SWIR
range. However, it is difficult to precisely invert any of them
by SWIR range alone, as the other ranges sensitive to EWT or
LMA are still needed. The NIR is a good choice, as it is greatly
influenced by LMA but not highly important for Cab and Car.
Thus, analyzing and then choosing some suitable bands from
R and T spectra, such as the FW- and PCA-based selection
conducted on two dependent databases in this study, is an
efficient inversion strategy for special biochemistry parameters
before using ANNs models.

As mentioned earlier, the special bands of EWT and LMA are
almost located in NIR and SWIR, which have a poor relationship
with Cab and Car. The Cab and Car are mainly correlated with
visible bands. When inverting these four parameters together
in the entire spectral range, this outstanding feature may be
overwhelmed by redundant correlations even though the FW and
PCA method are conducted to select the spectral characteristics
before ANN analysis. Instead, by separating them as the single
dependent variables of ANN models, the optimal results for
Cab and Car have been obtained whether using FW-ANNs
or PCA-ANNs. In contrast, the LMA mainly dominates the
R spectral range in NIR and SWIR which is also the main
sensitive range of EWT. Thus, the inversion accuracy of EWT
and LMA is mixed and greatly depends on whether both of
them are being analyzed simultaneously. Moreover, the T spectra
selected by PCA or in all 753 wavelengths outperform any of
the R and R&T spectra in inverting EWT and LMA together.
Light penetrating into the leaf can be partially absorbed by
biochemicals, and the remaining light transmitted out from
the leaf is called the T spectra. Hypothetically, the T spectra
related to the amount of radiation absorbed by EWT and LMA
can obtain a better analysis than relying on the R spectra
(Richardson et al., 2010).

Spectra Simulation and Fusing
The inversion strategy in this study is always desired to be
tested in more and more measured databases, which can offer
valuable guidance in vegetation parameter inversion. However,
there are limited measured databases after all, and some unknown
factors during the measurement may decrease the database
availability. Meanwhile, the different measurement conditions,
such as the spectral resolution or numbers of parameters, make
data combination or fusing for parameter inversion difficult. An
optimal inversion model can be established by simultaneously
using R and T spectra, such as the results for Cab and Car analysis
in Figure 3, more so than simply fusing R plus T (Du et al.,
2017), such as the data assimilation of R and T spectra, even
when including more spectral properties, i.e., the fluorescence
of chlorophyll. This has been shown to be a well-rounded
idea for biochemistry parameter analysis (Grace et al., 2010;
Stöckli et al., 2015; Li et al., 2017). Moreover, the PROSPECT,
Markov-Chain Canopy Reflectance Model, or the other physical
models of the transformation of radiation in vegetation leaf
and canopy levels could be another potential topic in accurately
and efficiently analyzing biochemistry parameters (Kuusk, 2001;
Féret et al., 2017).
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CONCLUSION

For the ANGERS and LOPEX databases, the selected spectral
properties of FW and PCA include prior and dominated
information about the four biochemicals. The FW-and PCA-
ANN models have efficiently improved the inversion results by
selecting fewer but optimal spectral variables than using ANN
analysis alone. Finding these feature ranges and then judging
whether all or some of them should be inverted together is an
efficient analysis strategy before conducting ANN models because
of the mixture and complexity of each parameter in different
sensitive ranges (e.g., being together is optimal for EWT and
LMA, while being separated is fine for Cab and Car in this
study). This condition is an interesting and valuable topic worthy
of further study.
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