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Periods of drought, that threaten crop production, are expected to become more
prominent in large parts of the world, making it necessary to explore all aspects of
plant growth and development, to breed, modify and select crops adapted to such
conditions. One such aspect is the xylem, where influencing the size and number
of the water-transporting xylem vessels, may impact on hydraulic conductance and
drought tolerance. Here, we focus on how plants adjust their root xylem as a response
to reduced water availability. While xylem response has been observed in a wide
array of species, most of our knowledge on the molecular mechanisms underlying
xylem plasticity comes from studies on the model plant Arabidopsis thaliana. When
grown under water limiting conditions, Arabidopsis rapidly adjusts its development to
produce more xylem strands with altered identity in an abscisic acid (ABA) dependent
manner. Other hormones such as auxin and cytokinin are essential for vascular
patterning and differentiation. Their balance can be perturbed by stress, as evidenced
by the effects of enhanced jasmonic acid signaling, which results in similar xylem
developmental alterations as enhanced ABA signaling. Furthermore, brassinosteroids
and other signaling molecules involved in drought tolerance can also impact xylem
development. Hence, a multitude of signals affect root xylem properties and, potentially,
influence survival under water limiting conditions. Here, we review the likely entangled
signals that govern root vascular development, and discuss the importance of taking
root anatomical traits into account when breeding crops for enhanced resilience toward
changes in water availability.

Keywords: Arabidopsis, drought, root, development, xylem

ROOT XYLEM CHARACTERISTICS ARE INFLUENCED BY
CHANGES IN WATER AVAILABILITY

Agricultural drought refers to conditions of insufficient water availability rendering conditions
unsuitable for plant growth (Wilhite and Glantz, 2009). Understanding mechanisms of plant
response to water limitation can help in the breeding of crops with enhanced survival under
such conditions. For long, focus has been put on above ground traits or root system architectural
properties, but recently more attention has been given to how anatomical parameters and, in
particular, xylem structures of the roots influence water transport and drought resilience. The
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tracheary elements of the xylem form hollow vessels or tracheids
that are structurally reinforced with lignified secondary cell walls
(SCW), providing the ability to withstand the strong negative
pressure generated by the transpiration pull and promote bulk
water movement from the roots to the shoot. The geometrical
and physical properties of the tracheary elements influence water
transport capacity and research in a wide array of species suggests
that xylem traits are important for the ability of plants to
withstand periods of reduced water availability (Lucas et al.,
2013). The importance of root xylem characteristics for drought
tolerance was recently underscored by a study identifying
Arabidopsis thaliana (Arabidopsis) ecotypes with enhanced root
hydraulic conductance (Tang et al., 2018). Through genome
wide association studies this trait was linked to XYLEM NAC
DOMAIN1 (XND1) (Tang et al., 2018), a well-known negative
regulator of xylem differentiation (Zhao et al., 2008, 2017). The
xnd1 loss of function mutants in the Col-0 ecotype had increased
root xylem area, and higher aquaporin activity, resulting in
enhanced hydraulic conductance compared to wild type, and
these plants also displayed enhanced drought tolerance on soil
(Tang et al., 2018). Similar root anatomical traits were associated
with enhanced hydraulic conductance, drought tolerance and
increased yield in field grown soy bean (Glycine max) plants
(Prince et al., 2017). Interestingly, wheat varieties bred to
instead possess smaller xylem diameter displayed higher grain
yield during drier growth periods because of improved use of
subsoil water (Richards and Passioura, 1989). In line with this,
drought exposed rice may respond with formation of smaller
xylem diameter (Henry et al., 2012). This strategy is similar
to what is observed in drought stressed poplar (Populus nigra
L. × Prunus maximowiczii) trees, which adjust their xylem
development to produce thinner but more xylem vessels in
their wood (Arend and Fromm, 2007). Thinner xylem vessels
increase resistance but reduce risk of embolisms, which occurs
under water limiting conditions (Lucas et al., 2013). Thus,
different species may benefit from different strategies, but the
occurrence of xylem modifications under drought in different
species grown under both lab and field conditions suggests
these to be important adaptive responses to water limitation.
Hence, the molecular mechanisms underlying these responses are
potentially important targets for crop breeding programs. Here,
we discuss a number of hormones and small molecules known,
primarily from studies in Arabidopsis, to affect root xylem
patterning and differentiation and how the current knowledge
can be employed to optimize plant behavior under normal and
drought conditions.

ABA REGULATES XYLEM
DEVELOPMENT VIA MIRNA165

Under conditions of reduced water availability, in vitro-grown
Arabidopsis responds with reduced root growth and suppressed
lateral root development (Rowe et al., 2016). Recently, it was
found that this also causes major changes to the root’s internal
anatomy (Jang and Choi, 2018; Ramachandran et al., 2018; Bloch
et al., 2019). Normally, the Arabidopsis root stele has a diarch

anatomy: a xylem axis traverses the stele with one strand of
protoxylem with annular or spiral SCW at either end of the axis
and metaxylem with pitted SCW in the center (Figure 1). When
water availability is reduced, additional protoxylem strands
form, both to widen the axis and to shift the identity of the
xylem strands within the axis such that protoxylem develops in
metaxylem positions (Jang and Choi, 2018; Ramachandran et al.,
2018; Bloch et al., 2019). Identity changes were observed also
under exogenous treatment with ABA, a well-known mediator
of abiotic stress (Zhu, 2016), even below root growth-inhibiting
concentrations (Figure 1). These phenotypic alterations were
strongly attenuated when ABA signaling was compromised,
suggesting that they are ABA mediated. Strikingly, inhibition
of ABA signaling in the endodermis cell-layer, surrounding the
stele, was sufficient to partially suppress xylem identity changes,
indicating that ABA acts via a non-cell-autonomous signal
(Ramachandran et al., 2018; Bloch et al., 2019). The microRNAs,
microRNA165 (miR165) and miR166, are well-known signals
moving from endodermis into the stele to determine xylem cell
identity (Carlsbecker et al., 2010; Miyashima et al., 2011). These
miRNAs are produced in the endodermis but move into the
stele to target mRNAs of class III homeodomain leucine-zipper
(HD-ZIP III) transcription factors (TFs). The lower levels of
HD-ZIP III TFs in the periphery compared to the central stele
determine protoxylem and metaxylem identity in the peripheral
and central positions of the xylem axis, respectively (Carlsbecker
et al., 2010; Miyashima et al., 2011). Hence, upon elevated miR165
levels or in HD-ZIP III loss-of-function mutants, protoxylem
forms in the place of metaxylem, conspicuously similar to the
phenotype observed under limited water availability or ABA
treatments. Indeed, under water-limiting conditions miR165
production in the endodermis is enhanced and, consequently,
HD-ZIP III TF levels reduced, explaining the observed shift in
xylem cell identity (Ramachandran et al., 2018; Bloch et al., 2019).
Intriguingly, if miR165/166 levels instead are strongly reduced
throughout the Arabidopsis plant, by the use of an artificial
miRNA-target that sequesters miR165/166 (STTM165/166), it
results in elevated expression of ABA-related genes and enhanced
drought tolerance (Yan et al., 2016). Similar approach conferred
drought tolerance also in rice, however in rice miR166 is
expressed only in the shoot and consequently only leaf and
stem xylem number were affected (Zhang et al., 2018). Since
the HD-ZIP III TFs can influence leaf morphology as well as
root xylem development, further studies are needed to investigate
if these factors could be differentially regulated in roots and
shoot upon water stress, and how they may contribute to
ABA homeostasis.

AUXIN-CYTOKININ INTERPLAY
PATTERNS THE ROOT VASCULATURE

Under normal development, research on Arabidopsis embryos
and roots has shown that auxin plays a key role in establishing
vascular patterns where xylem and phloem are separated by
intervening procambium (Figure 1; Bishopp et al., 2011).
Central for this is the TF AUXIN RESPONSE FACTOR5
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FIGURE 1 | Hormone circuits controlling root xylem development. In the Arabidopsis seedling root, to the right, spiral-walled protoxylem vessels (light blue-green)
differentiate first followed by the pitted metaxylem vessels (dark blue-green). To the left a cartoon depicting a cross section focusing on the stele surrounded by the
endodermis. Cell types are as indicated: endodermis (green), pericycle (dark gray), procambium (light gray), protoxylem (light blue-green), metaxylem (dark
blue-green). Signaling pathways affecting xylem patterning and differentiation are shown on top of the cross section. Hormones are in bold red letters. Arrows
indicate activation, bars inhibition. Dashed arrows indicate movement. Phenotypic consequences of hormone treatments or biosynthesis/signaling perturbations for
selected experiments are displayed around the cross section. Decreased hormone levels/signaling (light blue background), enhanced levels/signaling (light red
background). A PIN3/7 mediated lateral transport focuses auxin (IAA) to a central axis within the stele (Bishopp et al., 2011). Here, auxin-activated MP induces
TMO5 that activates LOG3 and LOG4 resulting in CK biosynthesis (De Rybel et al., 2014; Ohashi-Ito et al., 2014). MP also activates AHP6 which inhibits CK
signaling (Bishopp et al., 2011). CK moves to the procambium and activates PIN3 and 7, and DOF TFs (Bishopp et al., 2011; Miyashima et al., 2019; Smet et al.,
2019). MP is required for xylem formation, as the weak mpS319 mutant has discontinuous protoxylem and mutants defective in the MP repressors IAA20 and IAA30
result in additional protoxylem (Müller et al., 2016). The auxin biosynthesis mutant wei8 tar2 lacks metaxylem because of reduced HD-ZIP III expression (Ursache
et al., 2014). The cytokinin biosynthesis mutant log3 log4 has extra protoxylem and a wider xylem axis (De Rybel et al., 2014; Ohashi-Ito et al., 2014), whereas
treatment with the synthetic CK, 6-benzylaminopurine (BA) results in loss of protoxylem due to AHP6 suppression (Argyros et al., 2008; Bishopp et al., 2011). JA
activates AHP6 expression and suppresses PIN7 expression (Jang et al., 2017, 2019). Methyl-JA treatment results in extra protoxylem and a wider xylem axis, but
mutation in the JA receptor COI does not affect xylem development (Jang et al., 2017). ABI1 mediated ABA signaling in endodermis induces miR165 and miR166,
which move into the stele to restrict HD-ZIP III mRNA, exemplified with PHABULOSA (PHB) (Ramachandran et al., 2018; Bloch et al., 2019). ABA treatment results in
protoxylem in place of metaxylem and extra protoxylem, while ABA signaling and biosynthesis mutants display xylem breaks (Ramachandran et al., 2018).
Endodermal ABA signaling enhances suberization (Barberon et al., 2016). Mobile AHP6 represses suberization resulting in passage cells for water and nutrient
uptake (Andersen et al., 2018). ABA signaling components interact with BR signaling resulting in antagonistic control of downstream targets. ABA signaling activates
ABI5, while ABI5 expression is repressed by BES1/BZR1 via BRI1-BAK1 receptor and BIN2 GSK3-mediated BR signaling, and BIN2 interferes with ABA signaling by
activating SnRK2 kinases (Planas-Riverola et al., 2019). BR activates VND TFs that induce xylem differentiation. In the in vitro vascular cell induction system VISUAL,
formation of ectopic xylem is inhibited in the BR signaling mutant bes1−1 (Saito et al., 2018).

(ARF5)/MONOPTEROS (MP) (Berleth and Jürgens, 1993;
Bishopp et al., 2011). High levels of auxin, primarily within the
xylem precursors, activate MP, which in turn induces TARGET

OF MONOPTEROS5 (TMO5) (Schlereth et al., 2010). TMO5
in complex with LONESOME HIGHWAY (LHW), controls
procambial periclinal cell divisions (Ohashi-Ito et al., 2013),
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by promoting cytokinin (CK) biosynthesis via the activation
of LONELY GUY3 (LOG3) and LOG4 (De Rybel et al., 2014;
Ohashi-Ito et al., 2014). Although CK is synthesized within
the xylem domain, CK response is low here (Bishopp et al.,
2011). Instead, CK is sensed in the neighboring procambial
cells, where it activates several DNA-binding one finger (DOF)
TFs to promote procambial periclinal cell divisions (Miyashima
et al., 2019; Smet et al., 2019). CK also promotes the
expression of auxin efflux carriers PIN3 and PIN7, which
move auxin laterally into the xylem domain (Bishopp et al.,
2011). Auxin, in the protoxylem positions, induces HISTIDINE
PHOSPHOTRANSFER PROTEIN6 (AHP6) (Bishopp et al., 2011),
a negative regulator of CK signaling (Mähönen et al., 2006),
partially explaining the reduced CK response and limited
periclinal cell divisions within the xylem axis. Within the
central xylem axis, auxin biosynthesis promotes HD-ZIP III
transcription (Ursache et al., 2014), and it is possible that these
factors contribute to the suppression of CK signaling, as they can
inhibit B-type response regulators (B-ARRs) under conditions
of high CK levels (Sebastian et al., 2015). Modeling approaches
have shown that the above described interactions are sufficient
to generate de novo patterning, replicating both a diarch and
more complex anatomical patterns that are seen in other plant
species, primarily depending on the size of the stele (Mellor et al.,
2017, 2019). The patterning factors are further intertwined, as
the HD-ZIP III TFs both interfere with auxin signaling (Müller
et al., 2016), and suppress expression of cytokinin induced DOF
TFs, while certain DOF TFs move from the phloem to positively
influence HD-ZIP III expression in intervening procambial cells
(Miyashima et al., 2019). Hence, it is conceivable that, similar
to ABA’s influence on miR165/HD-ZIP III TFs, this complex
network is targeted at multiple points by abiotic signals to alter
xylem development. It remains to be examined if the formation
of extra xylem strands, widening the xylem axis, observed under
water limiting conditions, is the effect of ABA impinging on
the delicate auxin-cytokinin balance that normally demarcates
domains of low and high periclinal division activity. Multiple
examples where abiotic stresses, and ABA specifically, intersect
with and affect auxin and cytokinin can be found in other
contexts for example in the regulation of seed germination,
cell elongation and root growth (Verslues, 2016; Bielach et al.,
2017; Huang et al., 2018). Such an intersection may therefore be
anticipated also in the regulation of vascular patterning.

ABIOTIC STRESS AFFECTS ROOT
XYLEM DIFFERENTIATION TO
INFLUENCE DROUGHT TOLERANCE

The xylem precursor cells, patterned and specified by the
auxin-cytokinin/HD-ZIP III regulatory networks, differentiate
into functional xylem vessels through a differentiation program
involving programmed cell death and SCW deposition (reviewed
by Furuta et al., 2014). Apart from XND1, TFs of another
NAC subfamily, VASCULAR NAC DOMAIN (VND), are
master regulators of xylem differentiation, and overexpression
of any of the seven VND-genes result in trans-differentiation

of other cell types into tracheary element cells (Kubo et al.,
2005; Endo et al., 2015). A hierarchical TF network with
VNDs regulating two tiers of MYB domain TFs acts directly
upstream of lignin and cellulose biosynthesis genes (Taylor-
Teeples et al., 2014; Turco et al., 2019). Network perturbation
analysis revealed that one of the HD-ZIP III TFs, REVOLUTA
is a negative regulator of lignin biosynthesis, and that the
network modulates xylem development under conditions of
iron deficiency or salt stress (Taylor-Teeples et al., 2014).
The increase in expression of lignin biosynthesis genes under
iron deficient conditions is dependent on reduction in REV
levels, while MYB46 and VND7 play crucial roles in enhancing
xylem differentiation during salt stress (Taylor-Teeples et al.,
2014). Thus, the presence of several upstream regulators
of SCW biosynthesis allows the use of specific TFs in
response to different types of stresses. Interestingly, in apple,
MdMYB88 and MdMYB122 were found to influence hydraulic
conductivity by affecting xylem density, diameter, and the
expression of SCW biosynthesis genes (Geng et al., 2018). The
activation of SCW biosynthesis genes to maintain root hydraulic
conductivity during drought stress was found to be through
their direct regulation of MdVND6 and MdMYB46, suggesting
that co-option of xylem development regulators maybe be
evolutionarily conserved.

Intriguingly, low levels of ABA, even under non-stressed
conditions, are required for the formation of continuous
xylem strands, since both ABA-biosynthesis and signaling
mutants have patches along the xylem strands that are
either retained in an undifferentiated procambial state or
are xylem cells with defective SCW formation (Figure 1;
Ramachandran et al., 2018). Suppression of ABA signaling in
cell-layers external to the stele, such as in the endodermis or
epidermis also resulted in similar discontinuous xylem suggesting
a non-cell autonomous effect of ABA. Indeed, inhibition
of ABA biosynthesis or suppression of endodermal ABA
signaling reduced MIR165A levels and consequently elevated the
expression of certain HD-ZIP III genes (Ramachandran et al.,
2018). ABA is also important during secondary development
as ABA biosynthesis mutants exhibit delayed xylem fiber
formation (Campbell et al., 2018). Contrastingly, exogenous
ABA treatment induces protoxylem differentiation closer to
the root tip in Arabidopsis and tomato (Bloch et al., 2019)
suggesting that in addition to interfering with xylem identity
ABA promotes differentiation. Interestingly, endodermal ABA
signaling acts in a similar manner to promote suberization of
the endodermis (Figure 1; Barberon et al., 2016). The movement
of AHP6 from protoxylem precursors and neighboring pericycle
cells to the endodermis represses cytokinin signaling allowing
the formation of “passage cells” lacking suberization for the
entry of water and nutrients into the stele. Increase in ABA
levels enhances endodermal suberization and reduces passage
cell number (Andersen et al., 2018). It will be important to
further explore how the differentiation programs of xylem and
endodermis are intertwined and how this may influence radial
conductivity of water and nutrients. Furthermore, endodermal
ABA signaling can also affect lateral root development (Duan
et al., 2013), hinting toward the endodermis as a hub for multiple
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developmental changes upon drought, from xylem patterning to
root architecture.

BRASSINOSTEROIDS AND
THERMOSPERMINES AFFECT XYLEM
DIFFERENTIATION AND IMPACT ON
ABIOTIC STRESS TOLERANCE

Use of Arabidopsis and Zinnia in vitro cell culture systems,
where cells are triggered to trans-differentiate into xylem cells,
have identified brassinosteroids (BR) as molecular cues that
promote xylem differentiation (Yamamoto et al., 1997; Tan
et al., 2019). The addition of BR or chemical inhibitors of
BR signaling repressors to culture media containing auxin and
cytokinin promoted xylem differentiation in a VND-dependent
manner (Kondo et al., 2014; Tan et al., 2018). Although BR
and ABA seem to act similarly with respect to promotion
of xylem differentiation, there is substantial evidence for BR-
ABA antagonism at several levels. BR and ABA responsive
TFs, BRI1 EMS SUPPRESSOR1 (BES1) and RESPONSIVE TO
DESICCATION (RD26), respectively, share common targets
but regulate them in opposing ways (Chung et al., 2014).
Under normal conditions, BR signaling promotes growth in a
BES1 dependent manner, however, upon exposure to stress the
activation of RD26 inhibits BR mediated growth through the
regulation of BES1 targets. Interestingly, while the application
of BR promotes drought tolerance in a concentration dependent
manner, genetic evidence indicates that loss of BR receptor
function can also confer drought tolerance (reviewed by Nolan
et al., 2020). Adding to the complexity, the overexpression of
one of the BR receptors, BRASSINOSTEROID INSENSITIVE1
LIKE3 (BRL3) also conferred drought tolerance, without affecting
growth, through the accumulation of osmoprotectant sugars in
the root (Fàbregas et al., 2018). The antagonistic function of
BR and ABA in growth modulation, but their similar effects in
promoting xylem formation, raises the question of whether the
two hormones might regulate similar sets of genes but under
different conditions thus providing a frame work to regulate
xylem development independent of growth inhibition. Also,
other molecules need to be included into the equation: in the BR
receptor mutant bri1, the root procambial cells differentiate into
xylem, resulting in an increased number of xylem vessels in a BR
independent manner. This is due to the positive effect that BRI1
exerts on phytosulfokine (PSK) signaling, and mutants defective
in PSK signaling display similar ectopic xylem differentiation in
procambial positions (Holzwart et al., 2018). The involvement
of BRI1 in BR, ABA, and PSK signaling provides challenges to
dissect the individual roles of these components in controlling
xylem development and if they function together in stress
mediated xylem modifications.

Another molecule with a capacity to regulate xylem
differentiation is the polyamine thermospermine. This
molecule represses xylem differentiation, as mutations in
the thermospermine synthase gene, ACAULIS5 (ACL5), result in
earlier xylem differentiation (Muñiz et al., 2008). Furthermore,

ACL5 influences procambial divisions as thermospermine
affects the translation of the auxin induced SUPPRESSORS
OF ACAULIS51 LIKE (SACL) group of bHLH TFs. The SACL
TFs are paralogs to TMO5, and compete for dimerization
with LHW, thereby restricting TMO5-mediated promotion of
procambial divisions (Katayama et al., 2015; Vera-Sirera et al.,
2015). Interestingly, the acl5 mutant, which has excess xylem
formation, is salt sensitive while mutations in the gene encoding
a thermospermine catabolizing enzyme, POLYAMINE OXIDASE
5 (PAO5), or treatment with thermospermine which results in
fewer xylem vessels, rendered the plant tolerant to salt stress
(Shinohara et al., 2019). Thus, here fewer xylem strands correlate
with an increased tolerance to salt stress, possibly by reducing the
systemic spread of salt toxicity. However, acl5 mutants displayed
wildtype-like sensitivity when exposed to drought and mannitol
treatments suggesting that different mechanisms are at play
in mediating salt and drought stress tolerance. Interestingly,
pao5 mutants, which show elevated levels of thermospermine,
spermine, and N’-acetyl spermine and have fewer xylem vessels
in the root display tolerance to drought and reduced sensitivity
to ABA thus indicating that the levels of these molecules can be
modulated during stress to alter xylem development (Shinohara
et al., 2019). A study in poplar revealed that thermospermine
level established by a negative feedback regulation between
ACL5, auxin and the HD-ZIP III TF ATHB8 is important for
proper xylem differentiation (Milhinhos et al., 2013). Further
investigations into the roles of these polyamines and how they
function together with other xylem development regulators
during stress will be important to understand how polyamine
modulation can confer stress tolerance.

LONG DISTANCE SIGNALING
COMPONENTS INFLUENCING XYLEM
DEVELOPMENT

To cope with environmental stressors, plants have developed an
array of long-distance signaling cascades that include hydraulic,
electrical, and chemical signals (Huber and Bauerle, 2016).
An example of how such long-range signals can impact root
xylem development comes from experiments where wounding
of Arabidopsis cotyledons resulted in hydrogen peroxide
accumulation in the root causing root xylem differentiation closer
to the root tip (Fraudentali et al., 2018). Jasmonic acid (JA), a
wound induced signal, may be one such long-range signal as JA
was found to cause hydrogen peroxide accumulation and early
xylem differentiation (Ghuge et al., 2015). It has been suggested
that JA and CK signaling pathways have antagonistic interactions
(reviewed by O’Brien and Benková, 2013) and they play similar
antagonistic roles in xylem development. Exogenous application
of methyl-JA for long periods caused the formation of extra
xylem strands by promoting xylem differentiation of procambial
cells. This xylem promoting effect of JA was accomplished
by interference with the auxin/cytokinin balance within the
stele, through ectopic activation of AHP6, which suppresses
cytokinin response, and repression of PIN7 expression within the
procambial domain (Jang et al., 2017, 2019). Further, reduced
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water availability activated the expression of JA responsive genes,
LIPOXYGENASE2 (LOX2) and JASMONATE INSENSITIVE 1
(JAI1/MYC2), indicating that during drought stress JA signaling
might be another pathway involved in xylem developmental
plasticity (Jang and Choi, 2018).

A recent study identified the CLAVATA3/EMBRYO-
SURROUNDING REGION-RELATED25 (CLE25) peptide to act
as a mobile signal from the root to the leaves under dehydration
conditions (Takahashi et al., 2018). Application of CLE25 to
Arabidopsis seedlings, induced ABA biosynthesis and resulted
in ABA mediated stomatal closure (Takahashi et al., 2018).
The receptor BARELY ANY MERISTEM1 (BAM1) involved in
CLE25 signaling, also associates with CLE9/10 to restrict xylem
cell number. Mutants defective in CLE9/10 display increased
periclinal cell divisions within the xylem axis resulting in more
xylem vessels (Qian et al., 2018). Interestingly, in cotyledons,
CLE9 perception and signaling through a different receptor,
HAESA-LIKE1, negatively affects the number of guard cells (Qian
et al., 2018). Hence, the mobility of CLE peptides and their ability
to control two aspects of plant development that are involved
in hydraulic conductance warrants further investigation into
how these peptides might coordinate drought stress responses
in the root and shoot.

WHAT CAN WE LOOK FORWARD TO?

Studies on Arabidopsis have revealed how different regulatory
components influence root xylem developmental. Existing
evidences point toward the repurposing of core developmental
regulators to bring about phenotypic alterations in response to
environmental perturbations. However, there are missing links
on how different environmental inputs are interpreted by the
plant. Recent progress in single cell sequencing technologies will
help identify how the developmental trajectories of specific cell
types are altered by external stimuli and find components central
to phenotypic plasticity (Rodriguez-Villalon and Brady, 2019;
Ryu et al., 2019; Shulse et al., 2019). The understanding of plant
response to water stress requires simultaneous monitoring of
various physiological characteristics, such as modifications to the
xylem vessel diameter and number, properties of the cell wall
such as lignification or suberization and composition of the soil-
root-microbiome interface (reviewed by Lynch et al., 2014). Plant

imaging platforms such as light sheet fluorescence microscopy
and Growth and Luminescence Observatory for Roots (GLO-
Roots) allow not only the analysis of root system architecture and
anatomical phenes but also the visualization of gene expression
patterns, enabling the simultaneous characterization of responses
at physiological and molecular levels (Rellán-Álvarez et al.,
2015; von Wangenheim et al., 2020). In addition, computational
simulation tools such as GRANAR, which facilitate studies on
the effect of different monocot root anatomies on root hydraulic
conductivity (Heymans et al., 2020) or OpenSimRoot, which
can be used to reconstruct root systems, in combination with
hydraulic models, will aid the study of anatomical parameters
that influence water transport (Postma et al., 2017). One has to
bear in mind, though, that varieties that constitutively employ
theoretical water saving strategies are not always best suited for
real world growth regimes (Skirycz et al., 2011). Rather, the
future of agriculture likely lies in the generation of “personalized
crops” that are designed to suit the climate, soil properties and
microbiota of a certain region. To meet such a goal, multiple
approaches will be needed, including further exploration into
the extent of natural variation. Interestingly, the Arabidopsis
C24 ecotype has been found to be tolerant to multiple stress
factors and has a unique combination of low water use and high
seed biomass (Bechtold et al., 2010; Bechtold et al., 2018), thus
the underlying genetics of this and similar studies on naturally
occurring stress tolerant populations of a species can guide
approaches in crop breeding. Alternatively, available knowledge
on regulatory networks such as those described in this review can
be harnessed to alter phenotypes specifically and rationally.
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