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Spike is one of the crop yield organs in wheat plants. Determination of the

phenological stages, including heading time point (HTP), and area of spike from

non-invasive phenotyping images provides the necessary information for the inference

of growth-related traits. The algorithm previously developed by Qiongyan et al. for spike

detection in 2-D images turns out to be less accurate when applied to the European

cultivars that produce many more leaves. Therefore, we here present an improved and

extended method where (i) wavelet amplitude is used as an input to the Laws texture

energy-based neural network instead of original grayscale images and (ii) non-spike

structures (e.g., leaves) are subsequently suppressed by combining the result of the

neural network prediction with a Frangi-filtered image. Using this two-step approach,

a 98.6% overall accuracy of neural network segmentation based on direct comparison

with ground-truth data could be achieved. Moreover, the comparative error rate in

spike HTP detection and growth correlation among the ground truth, the algorithm

developed by Qiongyan et al., and the proposed algorithm are discussed in this paper.

The proposed algorithm was also capable of significantly reducing the error rate of the

HTP detection by 75% and improving the accuracy of spike area estimation by 50%

in comparison with the Qionagyan et al. method. With these algorithmic improvements,

HTP detection on a diverse set of 369 plants was performed in a high-throughput manner.

This analysis demonstrated that the HTP of 104 plants (comprises of 57 genotypes) with

lower biomass and tillering range (e.g., earlier-heading types) were correctly determined.

However, fine-tuning or extension of the developed method is required for high biomass

plants where spike emerges within green bushes. In conclusion, our proposed method

allows significantly more reliable results for HTP detection and spike growth analysis to

be achieved in application to European cultivars with earlier-heading types.

Keywords: plant phenotyping, high-throughput analysis, cultivars, spike detection, heading time point (HTP),

texture, image segmentation, spike area

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.00666
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.00666&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gladilin@ipk-gatersleben.de
https://doi.org/10.3389/fpls.2020.00666
https://www.frontiersin.org/articles/10.3389/fpls.2020.00666/full
http://loop.frontiersin.org/people/834690/overview
http://loop.frontiersin.org/people/461113/overview
http://loop.frontiersin.org/people/133398/overview
http://loop.frontiersin.org/people/174290/overview


Narisetti et al. Spike Detection

1. INTRODUCTION

Wheat is one of the major crop species in the world, with
762 million tons of grain produced annually (FAOSTAT
2018) and providing ≥ 20% of the world’s calorie and
protein demand (Braun et al., 2010). However, the increasing
world population and climate change are major threats to
sustainable crop production (Tester and Langridge, 2010).
Therefore, concentrated efforts are required to increase crop
yield and production to meet future needs. Information-based
plant breeding and precision agriculture are fundamental for
identifying suitable wheat varieties to increase wheat productivity
and production. One of the important components in both
crop breeding and precision agriculture is the monitoring
of plant developmental growth stages to apply informed-
decision-based treatments in field or greenhouse experiments.
Phenology influences grain yield components both directly and
indirectly (Snape et al., 2001; Zhang et al., 2009), and in
this aspect, quantitative assessment of crop phenology plays
an important role in precision phenotyping as a quantifier of
crop performance.

According to the Feekes scale, wheat growth can be classified
into fourmajor growth stages: tillering, stem elongation, heading,
and ripening. A more detailed sub-classification is made in
the BBCH scale (Witzenberger and Hack, 1989), with BBCH
classes 49–59 representing phenology from heading to flowering.
The determination of phenological stages is necessary for
the interpretation of growth-related traits and stress tolerance
acquired from non-invasive phenotyping. It is well-known that
the major flowering time gene PPD-H1 has a direct influence
on leaf growth in barley (Digel et al., 2016), and flowering time
genes have an impact on abiotic stress tolerance (Habte et al.,
2014; Abdel-Ghani et al., 2019). In a study employing non-
invasive phenotyping of barley growth, correlation of biomass
and tipping time (BBCH49) was high (Neumann et al., 2017)
and resulted in a constitutive biomass QTL in the region
of PPD-H1 (Dhanagond et al., 2019). However, tipping time
had to be assessed by a time-consuming visual inspection of
individual plant images across time. The relationship of biomass
to flowering time also holds true for wheat: both crops have
delayed flowering in an environment with long growing seasons
to allow longer and higher vegetative growth (Cockram et al.,
2007). Similar to barley, sensitive or insensitive Ppd-D1 alleles
in wheat have been shown to correspond to differences in leaf
area (Guo et al., 2018). In winter wheat, an earlier flowering time
of semidwarf cultivars was associated with reduced biomass at
anthesis (Maeoka et al., 2020). In dryland regions, simulations
showed that higher yield derives from an increased biomass
before anthesis leading to an increased grain number (Zhao et al.,
2019). Non-invasive imaging experiments with a large wheat
collection have been conducted to genetically dissect drought and
heat-stress tolerance (unpublished data). An automated solution
is urgently required for an effective determination of flowering
time-related growth stages through non-invasive imaging.

As a first step, a reliable method for spike detection is needed.
Once this is established, the time point of the first detection
of spikes across a time course can be determined. To date,

FIGURE 1 | Limitations of wheat spike detection using the Qiongyan et al.

(2017) algorithm. (A) The detection of spike and non-spike pixels in the wheat

plant. (B) Zoomed version of detected pixels in (A).

there have been relatively few studies concerned with wheat
spike detection and growth analysis from digital images. Most
of them are based on single spikes and needed to cut off spikes
to classify different wheat varieties using morphological image
processing algorithms, Hu moments, and neural networks (Kun
et al., 2011; Bi et al., 2010, 2011). However, these methods are
unsuitable for non-invasively detecting spikes from a whole plant
with overlapping of leaves and young developing spikes in a
high-throughput manner.

Qiongyan et al. (2017) proposed a novel approach for
detecting (young) spikes in digital images of wheat plants based
on Law’s textural (energy) features and a neural network. This
approach is based on the fact that spikes and leaves have a high
color similarity but differ clearly in texture. However, when we
applied this algorithm to one of our data sets, it turned out to
be sensitive to the high-energy leaf edges and tillers, which led to
false classifications of spike and non-spike pixels (or noisy pixels)
as shown in Figure 1. However, their method was based on four
Australian wheat varieties. In contrast, our data set is based
on a diverse collection of high-yielding mainly European elite
cultivars that are much more diverse in their plant architecture
and produce more leaves and biomass compared to Australian
genotypes. Accordingly, due to the presence of noisy pixels in the
final image segmentation, the heading time point (HTP) BBCH55
was detected too early on our dataset compared to the ground
truth data using their method. Thus, solely depending on Law’s
textural features lead to false detection of spikes in our wheat
panel. Therefore, to overcome these artifacts, an improved and
extended novel approach is proposed in this paper.

The paper is structured as follows. Section 2 deals with
the improved methodological framework of spike detection,
including data preparation, segmentation, and post-processing
algorithms. Section 3 describes the improvement of our
algorithm compared to the existing method for HTP detection
and the spike growth analysis. In summary (section 4), we draw
conclusions regarding the performance of our algorithm and
discuss its future improvements.
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FIGURE 2 | Workflow of the proposed spike detection algorithm using image processing methods. Framed rectangles represent the data modalities, and other

rectangles describe the image processing operations.

2. MATERIALS AND METHODS

2.1. Dataset
We used images from one experiment with 260 diverse winter

wheat cultivars of mainly Central European origin. Of these

lines, 220 correspond to the collection described in Voss-Fels

et al. (2019) and represent high-yielding cultivars of the past

decades. The remaining 40 lines are winter wheat elite cultivars

from the Gabi-Wheat collection (Zanke et al., 2014), representing

a similar breeding pool. Each cultivar was represented by two
biological replicates. Sowing was done in small turf trays, and
14 days after sowing (DAS) at about the 2-leaf stage, plants
were placed for vernalization into a growth chamber with an 8-h
light period and 4◦C day/night. After 8 weeks of vernalization,
turf trays were placed in a greenhouse with 15-h light and
16◦/12◦C during the day/night for 3 days to acclimate the
plants to higher temperatures. The plants were then repotted
from the trays to 2-l-volume pots and were grown in the
same greenhouse for another 7 days before they were placed
on the imaging system, a LemnaTec 3D Scanalyzer (LemnaTec

GmbH, Aachen, Germany). They were imaged and watered daily,
with watering by target weight option corresponding to 89%
of the plant-available water content in the soil (Dhanagond
et al., 2019). Temperatures in the greenhouse of the imaging
system were raised over the time course of the experiment
from 16◦/12◦C in four steps to 30◦/20◦C to simulate a German
spring/summer growing period, including 10 days of heat stress.
In total, plants lasted 50 days on the imaging system before
they were transferred to a normal greenhouse at 130 days after
sowing (DAS) to grow to maturity and to evaluate the yield
components. During the imaging period, the tiller number per
plant was counted manually at the end of the heat period
(at 125 DAS).

Images were taken from three side view angles (0◦, 45◦, and
90◦) and one top view using RGB cameras. The top view camera
(a Manta G-504) had a resolution of 2,452 × 2,056 pixels with a
pixel size of 3.45 × 3.45 µm, while the side view camera had a
resolution of 6,576 × 4,384 pixels and a pixel size of 5.5 × 5.5
µm. Plant images were later visually inspected to determine the
time point of heading when the ear was half out of the flag leaf

Frontiers in Plant Science | www.frontiersin.org 3 June 2020 | Volume 11 | Article 666

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Narisetti et al. Spike Detection

FIGURE 3 | Methodology of the proposed spike detection algorithm with example images. (A) Wheat plant with ID 1817KN373 at 150 days after sowing. (B) Green

color indices-based segmented image. (C) DWT + Laws textural features-based NN segmented image. (D) Image Frangi enhanced at multiple scales and orientations.

(E) Final binary segmentation: one leaf-crossing artifact is suppressed with the Frangi-enhanced image. (F) Spikes detected after morphological reconstruction.

(BBCH55). Here, top view images turned out not to be suitable
as, from the top, an emerging ear has a very low visible area and
might be easily hidden under a bending leaf. Moreover, it is hard
to define how much of the ear is above the flag leaves. Therefore,
this determination was done on inspecting the three side view
images. In this case, only the pots were rotated; the camera is
stable. Out of all 520 plants, 369 reached BBCH55 during the
imaging period belonging to 202 different cultivars. These 369
plants from 202 genotypes were available for testing our spike
detection algorithm. These plants exhibit strong differences in
plant architecture and are challenging for this kind of analysis,
for example, spikes with or without awns, short and tall plants
(plant height range at harvest time from 34 to 119 cm), and
especially low and high tillering genotypes ranging from 1 to 38
tillers per plant counted at 125 DAS during the imaging period.
Further, the data set exhibits differences in BBCH55 timing
of 29 days.

2.2. Methodology
The workflow for spike detection following image acquisition
is shown in Figure 2. This algorithm was developed in the
MATLAB environment (MATLAB 2019a). The methodology
involved in the proposed algorithm is as follows:

In the initial step, the original image (Figure 3A) is converted
to a grayscale image using MATLAB’s rgb2gray routine. To
enhance the separability between the plant and background
pixels, discrete wavelet transform (DWT) is applied in the
preprocessing step using the Haar basis function (Stanković
and Falkowski, 2003). The DWT is a single level 2-D wavelet
decomposition that produces a featured image called an
approximation coefficients image (A). This image is half the size
of the original image and is useful for characterizing unique
textures. Then, a neural network-based Laws texture energy
method is applied to image A, as proposed in Bi et al. (2010)
and Qiongyan et al. (2017), to segment the spike pixels from
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the plant pixels. Here, the segmentation of plant pixels from
the background is called color index-based segmentation (CIS).
Example images of the CIS and the neural network segmentation
are shown in Figures 3B,C, respectively. However, the Laws
texture energy is sensitive to the high-energy noisy edges (or
pixels on leaves and leaf crossings) in the plant. To eliminate
those noisy edges, a combination of a multi-scale Frangi-filtered
image (Frangi et al., 1998) and the neural network segmented
image is considered. Because the Frangi filter delivers a strength
estimate of edges in the image, noisy edges can be suppressed
by smoothing the image over multiple scales and orientations
(Frangi et al., 1998). Therefore, this combination suppresses the
tiny leaf edges and leaf crossings in the segmented image. Here,
the Frangi filter is applied to an L component of the L*a*b color
space image because the intensity values in the L component
are closely matched with the human perception and contrast
between the plant and non-plant pixels is high compared to in
the a and b channels.

The Frangi-filtered image is considered one of the post-
processing steps, because as a pre-processing step, it might
lead to false representation of textures in the image. In other
words, there might be a possibility of suppressing the spike
pixels, hence modifying the unique textural characteristics of
the spikes and leaves. Examples of a Frangi-filtered image and a
segmented image are shown in Figures 3D,E, respectively. The
complete spike is then recovered by applying morphological
binary operations to the Frangi segmented image, as shown in
Figure 3F.

2.2.1. Wavelet Decomposition
The wavelet-based texture classification is important because
(1) it decorrelates the data (Fan, 2003) by stretching the color
differences between plant and non-plant pixels in the image,
and (2) it provides a non-redundant compressed image, which
reduces the computation complexity significantly compared to
the original grayscale image. Typically, wavelets are defined for
1-D signals, so extension to 2-D signals is usually performed by
using a product of 1-D filters. The practical implementation of
the wavelet transforms using different filters is as follows.

A = [Lx ∗ [Ly ∗ I]↓2,1]↓1,2
H = [Lx ∗ [Gy ∗ I]↓2,1]↓1,2
V = [Gx ∗ [Ly ∗ I]↓2,1]↓1,2
D = [Gx ∗ [Gy ∗ I]↓2,1]↓1,2

(1)

where ∗ denotes the convolution operator, and (↓ 2, 1) and
(↓ 1, 2) represent the downscaling along rows and columns,
respectively. L and G are the low- and high-pass filters, and I is
the original image. The DWT decomposes an image into four
sub-bands called approximation coefficients (A), horizontal (H),
vertical (V), and diagonal (D), as shown in Figure 4. Sub-band
A is obtained by the low-pass filtering and is accordingly called
the low-resolution image, the size of which is dependent on the
level of decomposition and input image size. In contrast, H, V,
and D are obtained by bandpass filtering in a specific direction.
Therefore, they provide detailed directional information for the
image. Among these sub-bands, A is an essential feature image

FIGURE 4 | DWT Decomposition: The coefficient image (A) is again

decomposed in multilevel DWT decomposition.

(or coefficients image) bearing the textural information relevant
to image segmentation. Consequently, the A wavelet coefficient
image is used here for texture characterization.

2.2.2. Laws Textural Features-Based Image

Segmentation Using Neural Networks
Laws’ texture energy method (Laws, 1980) is a classical pixel-
wise textural analysis approach and it has been used in many
applications (Chang and Kuo, 1993; Jiang and Chen, 1998;
Christodoulou et al., 2003; Mougiakakou et al., 2007). This
approach uses 1-D local masks to detect various types of micro-
structural textural features. The typical 1-D local masks are
level detection, edge detection, and spot detection, as shown
in Equation (2). However, the image is two-dimensional and
requires 2-D masks for textural analysis.

L3 = [1 2 1] - Level detection
E3 = [-1 0 1] - Edge Detection
S3 = [-1 2 -1] - Spot Detection

(2)

The 2-D masks are generated from the 1-D masks by convolving
the vertical 1-Dmask with the horizontal 1-Dmask. For example,
mask S3L3 is calculated by convolving vertical mask S3 with
horizontal mask L3 and is a zero-sum mask. In contrast, mask
L3L3 is a non-zero-sum mask, which is not considered for the
textural analysis. The list of 2-D masks used for the textural
analysis is as follows:

L3E3 = L3T ∗ E3; E3S3 = E3T ∗ E3;

L3S3 = L3T ∗ S3; S3L3 = S3T ∗ L3;

E3L3 = E3T ∗ L3; S3E3 = S3T ∗ E3;

E3E3 = E3T ∗ E3; S3S3 = S3T ∗ S3;

(3)

The textural features are calculated in two steps (Chang and
Kuo, 1993) using 2-D masks. In the first step, the input image is
convolved with all of the above 2-D masks. Then, each individual
resulting image is normalized with a unit standard deviation
and average mean over the window size of 25. Consequently,
eight textural feature images are generated for every input image.
However, these feature images have both plant and background
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TABLE 1 | Statistical performance of the neural network in the training stage.

Training Testing Validation Total

Spike pixels 152793 32773 32716 218282

Non-spike pixels 511743 109627 109684 731054

TP rate (%) 96.2 96.4 96.0 96.2

TN rate (%) 99.3 99.3 99.3 99.3

Accuracy (%) 98.5 98.6 98.5 98.6

pixels, which increases the computational complexity of the
neural network for spike detection.

To overcome the computational complexity of the image
segmentation, the plant pixels (PP) are segmented from the
background pixels using the CIS method (Bi et al., 2010)
as follows.

PP = 2g − r − b (4)

This method decorrelates the dominating green plant pixels from
the background. A binary plant image is then generated using
the binarization technique (pixel value > 0), see Figure 3B. As
a result, the number of pixels for the neural network-based
segmentation is reduced significantly.

The neural network is used to perform the classification
of spike and non-spike pixels in the study. In practice, the
neural network is trained with a large quantity of spike and
non-spike pixels from the different wheat plants. The trained
neural network parameters are then adapted to perform the spike
detection in an automated manner. Here, a total of 218282 spike
and 731054 non-spike pixels were extracted from 150 manually
segmented images and subsequently used for training, testing,
and validation of a network model in the sample proportion
70:15:15. The performance of the network model, with eight
input nodes, one hidden layer with 10 hidden nodes, and 2 output
nodes, was assessed using the conventional confusion matrix [TP
FP; FN TN], components of which indicate the total number of
correctly and incorrectly classified spike and non-spike pixels,
respectively. The true positive (TP) and true negative (TN) rates,
as well as the overall accuracy (TP+TN)/(TP+FP+FN+TN), are
summarized in Table 1.

2.2.3. Frangi Filter Enhancement
The Frangi filter is a multi-scale second-order vessel
enhancement method developed by Frangi et al. (1998)
that is frequently used in biomedical applications (Vazquez et al.,
2001; Budai et al., 2013; Shahid and Taj, 2018). The Frangi filter is
used for enhancement of high-contrast vessel structures or edges
along with the suppression of the non-vessel structures and thin
vessel edges. Since wheat shoots have multiple leaf crossings, they
exhibit vessel-like thin structures producing high-energy signals
similar to spikes. In turn, this can lead to false spike detection at
leaf crossings by the network model, as shown in Figure 1. The
Frangi filter is applied to suppress edges resulting from such leaf
crossings in the neural network segmented images.

Frangi-based vessel enhancement is achieved based on
Hessian and eigenvalues. The Hessian matrix of image I is

TABLE 2 | Possible structural patterns in 2D images depending on eigenvalues λ1

and λ2.

λ1 λ2 Structure pattern

N N Noisy, no preferred direction

L H− Vessel structure (bright)

L H+ Vessel structure (dark)

H− H− Blob like structure (bright)

H+ H+ Blob like structure (dark)

H = high, L = low, +/− indicates the sign of the eigenvalue (Frangi et al., 1998).

computed as follows:

H =

[

h11 h12
h21 h22

]

= σ





∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2



 (5)

where h11, h12, h21, h22 are the second-order partial derivatives of
the image and σ denotes a variable scaling factor.

To extract information on structural patterns from the
Hessian matrix, the eigenvalues λ1 and λ2 are calculated, while
σ is used for the enhancement of structures at different scales,
see Table 2. Since we are interested in detecting and suppressing
the bright vessel-like structures in the plant leaves, the image
enhancement is performed under the assumption that a pixel
belonging to a vessel region should have a very low value of λ1
and a very high magnitude of λ2; see Equation (6). Furthermore,
the bright vessel-like structures emerge with negative λ2, and
the filter response of the corresponding pixel with λ2 > 0 is
considered to be zero in the enhanced image.

| λ1 |≤| λ2 | (6)

The enhanced image is defined as follows:

IE =

{

if λ2 > 0 : 0,

otherwise : exp(
−R2B
2β2 )(1− exp(−S2

2c2
))

(7)

where RB = λ1
λ2
, S =

√

λ21 + λ22, and c, β are constants

that control the sensitivity of the filter. The enhanced image
IE is obtained at various scales, i.e., σ = 1, 3, 5, 7, 9. Since the
maximum scale approximately matches the size of the vessel to
detect, the final enhanced image IFE can be obtained according
to Frangi et al. (1998) by taking a maximum among all scales as
defined in Equation (8).

IFE = maxσ IE (8)

An example of edge suppression (leaf crossings) using the Frangi
filter is shown in Figure 5.

Consequently, the result of the neural network segmentation
is subsequently filtered under consideration of leaf-crossing
regions detected by the Frangi filter (Figure 3D). This is done by
eliminating the regions corresponding to leaf edges in the binary
segmentation mask; see Figure 3E.
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FIGURE 5 | Example of suppression of leaf crossings using the Frangi Filter. From left to right: (A) original image of a wheat shoot, (B) Frangi filter-enhanced image,

(C) examples of Frangi-enhanced regions, (D) examples of leaf crossings detected in the original image.

2.2.4. Spike Reconstruction Using Morphological

Filters
As shown in Figure 3E, only some parts of the spikes were
detected using the proposed algorithm compared to the CIS
image in Figure 3B. To recover the complete spikes, the
logical “and” operation of the CIS image and the Frangi
segmented image were performed. Then the morphological
binary operations (erosion and dilation) were sequentially
applied to recover the final spike area in the CIS image; see
Figure 3F.

3. RESULTS AND DISCUSSION

The above-described algorithmwas applied to calculate the yield-
related features at the transition from the tillering to flowering
growth stages of wheat plants with an age of more than 90 DAS.
Accordingly, the results of this study are presented in two sections
dedicated to (i) detection of the time point of spike emergence
and (ii) spike growth analysis from RGB images acquired using
visible light cameras during an experiment with diverse winter
wheat varieties. In the first section, the spike emergence was
tested on 369 wheat plants from 202 different genotypes. Here,
the HTP was defined as the first time in the imaging time course
when the detected spike satisfied the minimum area constraint
of 500 pixels. The spike area was then measured in a time series
from the HTP to perform real-time growth analysis for a few
selected plants.

Image analysis was performed on an Intel Xeon CPUE5-2640-
based workstation running under the Linux OS. The algorithms
were implemented under MATLAB 2019a (MathWorks Inc.).
Training of a neural network on 949336 manually segmented
spike and non-spike pixels using ten 2.40GHz CPUs with a total
of 20 cores in parallel mode took approximately 80 s. The spike

detection algorithm takes approximately 2.5 s to process an 8-
megapixel test image. However, the processing time might vary
depending on the test image size.

The root mean square error (RMSE) is used for quantification
of the deviations of predictions from our model and Qiongyan
et al.’s model from ground truth data,:

RMSE =

√

√

√

√

n
∑

i=1

(yi − ŷi)2 (9)

where y is the ground truth value and ŷ is the model-predicted
value. For consistent comparison of performance, the Qiongyan
et al. model was retrained with the European cultivars.

3.1. Spike Emergence
The time-series images of a single plant described in Section 2
have three orientations. Accordingly, two factors are considered
to estimate the HTP from multiple orientations: the spike should
(1) appear in at least two orientations and (2) remain present in
all days of the experiment. This means the spike or spikes should
be continuously detected until the last day to avoid false emerging
time points.

Figure 6 shows HTP detection in the wheat plant side-
view images. These nine different wheat plants from the early-
flowering genotypes possessing a single spike (1817KN397,
1817KN422) and multiple spikes (remaining seven plants) were
considered for the training a model because we were aware
that the later-flowering genotypes, which produce more biomass,
will present much greater difficulties with spike visibility due
to a higher probability that the spike will be covered by leaves.
Figure 6 indicates that HTP values obtained by the proposed
method have a significant correlation with the ground-truth
HTPs, with an RMSE of 1.94, whereas the Qiongyan et al. method
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FIGURE 6 | HTP detection using the method of Qiongyan et al. (2017) and our proposed method in comparison to the ground truth.

FIGURE 7 | Limitations of the proposed method. (A) The early-stage spike texture failed to be detected in plant ID 1817KN373. (B) The detected spike texture in

plant ID 1817KN373. (C) Example spike geometry less than the BBCH55 scale in plant ID 1817KN412. (D) Spike geometry according to the BBCH scale in plant ID

1817KN412.

underperforms, with an RMSE of 7.8. This indicates that the
Qiongyan et al. method is highly sensitive to the leaf artifacts
whose energy is similar to that of the spike pixels but that those
leaf artifacts were suppressed by the proposed method, as shown
in Figure 5.

On the other hand, the proposedmethod resulted in highHTP
error rates of 4 days more and 3 days less for plant ID 1817KN373
and 1817KN412, respectively. For plant ID 1817KN373, this was
because the spikes were narrow and the pixel-wise textural energy
was similar to that of the leaves, as shown in Figure 7A compared
to the other spikes in Figure 7B. Therefore, the HTPwas detected
4 days later. In the case of plant ID 1817KN412, it turned out that
the visually scored time point was determined too late, most likely
by not carefully inspecting all side view angles (in the first, at 0◦,
the later time point looks correct, but at the 45◦ and 90◦ angles,

it is visible that the earlier one is correct). Example spike images
for the early HTP detection are shown in Figures 7C,D.

The advantages and significance of the results with the
proposed method showed that it is feasible for high-throughput
analysis of HTP detection. Consequently, we applied the method
to all 369 diverse plants in our data set that reached heading
within the imaging period. As expected, 104 plants corresponding
to the supposedly earlier-heading genotypes obtained a good and
reliable estimation of the true heading time point. Figure 8 shows
the results for the high-throughput analysis of 104 plants. It is
observed that the proposed method outperforms the Qiongyan
et al. method, with an R2 value of 0.776 compared to the
R2 value (0.193) of the Qiongyan et al. method. Since the
European elite cultivars possess more leaves, overlay artifacts
result in too early HTP detection using the Qiongyan et al.
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FIGURE 8 | Comparison of HTP detection using our method and that of Qiongyan et al. vs. ground truth in 104 wheat plants.

TABLE 3 | Gene classification and comparison of architectural features of 369

plants.

Phenotypic traits Phenotypic trait mean values

2 out of 2 plants 1 plant of 2 0 out of 2 plants

successful successful successful

Ground truth BBCH55

(DAS)

115.5 (107–120) 118.1 (101–127) 125.5 (120–130)

Days to maturity (DAS) 175.4 (159–203) 185.2 (160–222) 193.8 (166–283)

Presence of awns

(1=no, 2=yes)

1.3 1.2 1.0

Final plant height (cm) 57.1 (34–101) 64.0 (37–96) 60.9 (38–119)

Tiller number at DAS

125

7.5 (3–19) 8.4 (1–17) 11.4 (4–38)

Spike number at

harvest

7.5 (3–16) 7.8 (1–14) 9.8 (4–22)

Total plant biomass at

harvest

15.2 (5.7–26.8) 17.5 (4.5–28.1) 21.4 (8.1–48.0)

(grains + straw) (g)

Total plant straw

weight at harvest (g)

9.9 (3.5–15.6) 12.8 (5.7–20.0) 15.7 (5.8–38.2)

method on 90% of our data. In the remaining 265 plants,
the spike emerged in the final days according to the ground
truth data, and they have early-stage spike textural features
that are similar to the leaves. This resulted in the proposed
algorithm failing to detect the spikes in the final days with
a day number 0 in the output. This leads to a low value
of the correlation coefficient R2 0.0586 for the remaining
265 plants.

We compared the general plant architecture features of all
369 plants tested and classified them into three categories: (i)
both plants of the genotype were classified correctly by our
algorithm (94 plants from 47 genotypes, (ii) only one out
the two plants of a genotype were classified correctly by our
algorithm (20 plants from 10 genotypes), and (iii) none of
the two plants of a genotype were classified correctly by our
algorithm (Table 3; Supplementary Material) . It turned out that
the method performed better for earlier-flowering plants with an
accordingly lower number of tillers and less biomass. Moreover,
in 26 out of all 39 plants with awned spikes, heading time could
be reliably estimated by our algorithm. This might arise from
two factors: first, awned genotypes are more abundant in the
earlier-flowering group and possess less biomass, and therefore
spikes are less often hidden by leaves, and second, the model
was trained based on nine early-flowering plant IDs with a bias
toward awned types. Further, it might very well be that the fine
awn structures, in general, help in the differentiation of the spike
from the leaf background.

Table 3 shows mean phenotypic trait values, with minimum
and maximum in brackets, of plants successfully and non-
successfully classified regarding their time point of heading.

3.2. Spike Area
Spike area is one of the key yield measures in wheat plants, so we
have examined the total spike growth of a single wheat plant in
three orientations from the spike emergence day for all images. In
section 3.1, nine wheat plants were considered for HTP detection.
Among those, only three plants (1817KN374, 1817KN409, and
1817KN422) with a single spike and two with multiple spikes are
considered for the spike growth analysis. Here, the spike area of a
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FIGURE 9 | Spike growth analysis: Day number 1 represents the first day of

ear emergence in the wheat plants. (A) Plant ID 1817KN374 with multiple

spikes. (B) Plant ID 1817KN409 with multiple spikes. (C) Plant ID 1817KN422

with a single spike.

plant per day is calculated by taking the maximum area among
the three orientations. The measured area of both algorithms
is validated by the RMSE and R2. The RMSE quantifies the
difference between the ground truth area and the predicted area
for all days from the ear-emergence day. The R2 value compares

FIGURE 10 | The detected leaf artifacts in (A) result in a high spike area

compared to (B) for the spike growth analysis. The segmented objects are

represented with blue curves and red rectangular boxes; (A) the Qiongyan et

al. method and (B) the proposed method.

the goodness of our proposed models and of the Qiongyan et al.
model compared to the ground truth data.

Figure 9 shows the results of spike growth analysis with
the Qiongyan et al. method and with our proposed method
compared to the ground truth data. Here, the ground truth data
are prepared manually by segmenting the spikes using GIMP
image processing software (https://www.gimp.org). The number
of non-zero pixels in the segmented image represents the actual
spike area or the ground-truth spike area of the image. This figure
shows that the proposed method outperforms the Qiongyan et
al. method overall, with a low RMSE and a high value of R2.
Moreover, the RMSE is profoundly improved by more than
50% and the R2 value is significantly improved for plant ID
1817KN373 (Figure 9A) and plant ID 1817KN422 (Figure 9C).
Nevertheless, plant ID 1817KN409 (Figure 9B) exhibits a high
RMSE compared to the other plants in the spike growth analysis.

The high RMSE value for the Qiongyan et al. method is caused
by the classification of leaf artifacts as spikes, which leads to an
increase in the total spike area. In ourmethod, these artifacts were
eliminated using DWT and the Frangi filter. Example images of
the improved spike detection are shown in Figure 10. On the
other hand, the high error rate observed for plant ID 1817KN409
is due to the morphological reconstruction at the final step. This
leads to the fusion of neighboring spikes with the connected
stems and leaves, as shown in Figure 11.

4. CONCLUSION

Here, we present an improved method for wheat spike detection
in a test data set with 369 plants from 202 diverse winter
wheat varieties corresponding to mainly high-yielding Central
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FIGURE 11 | Morphological reconstruction of the spikes: (A) Frangi-based spike segmentation. (B) CIS image. (C) Morphologically reconstructed image using (A,B).

(D) Spikes detected in the original image represented with blue lines and a red rectangular box.

European varieties (Voss-Fels et al., 2019). Our work relies
on the algorithm proposed by Qiongyan et al. (2017), which
was originally tailored to four Australian wheat varieties. By
application to European elite cultivars, that earlier algorithm
turned out to be too sensitive to the leaf crossing or overlay
artifacts and aged leaves. This resulted in a high rate of
false detection of spikes and, consequently, incorrect (too
early) detection of heading time points. To overcome these
limitations, we developed and evaluated an algorithmic pipeline
extended by DWT and the Frangi filter that enable detection
and suppression of high-energy regions caused by a high
density of leaves. The proposed method has significantly
improved the accuracy of the detection of spikes and the
time point of heading, resulting in a reduction of the error
rate (RMSE) by 75% compared to the Qiongyan et al. model.
Similar improvement was also achieved in the analysis of
spike growth, where the error rate of model predictions
vs. ground truth data was reduced by 50% compared to
Qiongyan et al. With these algorithmic improvements, detection
of the heading time and analysis of spike growth can be
performed in a high-throughput manner with sufficiently
high accuracy.

In contrast to the majority of previous method studies, our
approach was tested on a diverse set of genotypes with strong
morphological differences regarding spike architecture (with
or without awns), height, tiller number, biomass, and heading
time. Such a data set is very challenging as it is easier to
find an algorithm for identifying the plant organs in a small
genotype set with much more uniform morphology. However,
the biological truth is that many studies employ non-invasive
phenotyping to screen genotype collections that exhibit a high
phenotypic diversity (Honsdorf et al., 2014; Dhanagond et al.,
2019). This requires algorithms with high performance across

a highly heterogeneous background. Our proposed method
represents a good starting point, as it correctly determined
the heading date in 47 genotypes for both biological replicates
and for at least one of the two biological replicates in a
further 10 genotypes. These were mainly plants from lower
biomass and tillering range and, therefore, on-average earlier
heading. The method is thus expected to perform well in
germplasm with relatively low biomass and tillering, as would
be the case for collections from hot or dry environments.
However, it also clearly showed limitations in genotypes with
high biomass and high tillering (mostly later-heading types),
where the spike emerges within a green “bush.” The fine-
tuning or extension of the developed method for reliable
spike detection in such high-biomass, high-tillering genotypes
will be conducted in the near future. Further, we aim at
application to other existing data sets of spring barley and
spring wheat collections, where ground truth data still have
to be generated. It is likely that in collections with many or
exclusively awned genotypes, the method would already be
applicable and yield meaningful results. It is also conceivable
that the presented method will work well in bi-parental mapping
populations if both parents come from the lower-biomass and
tiller-number spectrum.

In conclusion, the proposed approach has the potential to
predict the spike yield in other cereal plants such as barley, rice,
and rye over time.

In the future, we shall explore the possibility of advancing
spike detection methods in an automated manner using deep
learning technologies. We also plan to perform a time series
analysis of spike growth over a large experimental population
(> 500 plants) to further improve the algorithm and to deliver
more sophisticated solutions for plant breeders and cereal
crop researchers.
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