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Phytotoxicity of metals significantly contributes to the major loss in agricultural
productivity. Among all the metals, copper (Cu) is one of essential metals, where
it exhibits toxicity only at its supra-optimal level. Elevated Cu levels affect plants
developmental processes from initiation of seed germination to the senescence,
photosynthetic functions, growth and productivity. The use of plant growth
regulators/phytohormones and other signaling molecules is one of major approaches
for reversing Cu-toxicity in plants. Nitric oxide (NO) is a versatile and bioactive gaseous
signaling molecule, involved in major physiological and molecular processes in plants.
NO modulates responses of plants grown under optimal conditions or to multiple
stress factors including elevated Cu levels. The available literature in this context is
centered mainly on the role of NO in combating Cu stress with partial discussion on
underlying mechanisms. Considering the recent reports, this paper: (a) overviews Cu
uptake and transport; (b) highlights the major aspects of Cu-toxicity on germination,
photosynthesis, growth, phenotypic changes and nutrient-use-efficiency; (c) updates
on NO as a major signaling molecule; and (d) critically appraises the Cu-significance
and mechanisms underlying NO-mediated alleviation of Cu-phytotoxicity. The outcome
of the discussion may provide important clues for future research on NO-mediated
mitigation of Cu-phytotoxicity.
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INTRODUCTION

The increasing industrialization, hasty urbanization together with excessive use of chemical
fertilizers and sewage sludge/water led to the severe contamination of soils with varied metals and
metalloids (Nagajyoti et al., 2010; Brunetto et al., 2016; Asgher et al., 2018a,b). Among metals,
copper (Cu) is an essential metal for plants, and promotes therein growth and development at
9.0 mg kg−1 (Havlin et al., 1999). The average content of Cu in plant tissues is 10 µg g−1 dry
weight; whereas, the precarious Cu concentration in nutrient media ranges between 10−14 and
10−16 M at which its deficiency has been noted (Baker and Senef, 1995). Cu is involved in the
photosynthetic electron transport and redox reactions and it also acts as a cofactor in Cu/Zn–
superoxide dismutase (Cu/Zn-SOD) (Bowler et al., 1994; Ouzounidou et al., 1995; Raven et al.,
1999; Adrees et al., 2015). However, elevated Cu concentration can induce oxidative stress mainly
through increased generation of reactive oxygen species (ROS) and thereby inhibit plant growth
and productivity (Piotrowska-Niczyporuk et al., 2012; Thounaojam et al., 2012; Adrees et al., 2015;
Chen et al., 2015).
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Plants adopt different strategies to overcome elevated Cu
concentration-caused toxicity. The list of these strategies
includes the increased nutrient assimilation, induction in the
antioxidant defense system, and the activation of biochemical
and physiological processes such as increased signaling through
associated plant growth regulators (PGRs). PGRs such as auxins
(AUXs), cytokinins (CKs), gibberellins (GAs), brassinosteroids
(BRs), ethylene (ET), jasmonic acids (JA), polyamines (PA),
salicylic acid (SA), nitric oxide (NO), and strigolactones
modulate physiological/biochemical and genetic processes and
improve plant tolerance to major abiotic stresses including
metals/metalloids (Maksymiec et al., 2007; Meng et al., 2009;
Khan et al., 2012, 2015, 2016; Masood et al., 2012, 2016; Per et al.,
2016, 2017a; Asgher et al., 2018a,b).

Earlier known as a vital signaling and effector molecule in
animals, NO is known to occur also in plants, and act therein
as a short-lived multifunctional gaseous signaling molecule
(Astier et al., 2017). NO controls overall plant growth and
the developmental processes starting from germination to
senescence (Hu et al., 2007; Corpas and Barroso, 2015b). In
particular, recent studies have shown that both production and
signaling of NO are involved in the stress-acclimation processes
in plants (Khan et al., 2012; Asgher et al., 2017; Kushwaha
et al., 2019; Santisree et al., 2019). However, literature available
in context with NO and plants is centered mainly on NO
synthesis and its multitasking signaling in plants (Domingos
et al., 2015; Astier et al., 2017). Additionally, literature in
this context also reflected the role of exogenously applied NO
in combating Cu stress with partial discussion on underlying
potential mechanisms (Khan et al., 2012).

Given above, this paper is aimed to: (i) overview the aspects
of the uptake, transport, and role of Cu in photosynthesis
and nutrient-use-efficiency; (ii) highlight major aspects of Cu-
phytotoxicity; (iii) discuss NO as a signaling molecule; and
(iv) critically appraise the Cu-significance and mechanisms
underlying NO-mediated alleviation Cu-toxicity in plants.
Important clues for future research in this direction with the
outcome of the facts are also discussed herein.

COPPER IN HIGHER PLANTS

Copper (Cu) is an essential trace element of most living
organisms on the earth including plants, where >30 types of
proteins are known to possess Cu as their structural constituent
(Cohu and Pilon, 2010; Anjum et al., 2015b). As an essential
micronutrient for plants, a minimum amount of Cu ensures
different cellular functions. However, an excess uptake of Cu
in plants may cause detrimental effects in metabolic functions
and even risk to their survival (Adrees et al., 2015; Ambrosini
et al., 2018; Marastoni et al., 2019b). In plants, Cu exists in
two common oxidation states namely, Cu2+ and Cu+ ions.
Cu2+ frequently prefers coordination with oxygen in aspartic
and glutamic acid and with nitrogen in histidine side chains.
On the other, Cu+ has a higher affinity with the sulfur in
methionine or cysteine. The list of major Cu-containing proteins
in plants includes plastocyanin, cytochrome-c oxidase (COX),

ethylene receptors, Cu/Zn–superoxide dismutase (Cu/Zn SOD),
tyrosinase, plantacyanin, phenol oxidase, laccase, ascorbate, and
amine oxidase (Table 1). Cu mainly contributes in the transport
of electrons in chloroplasts and mitochondria. Plastocyanin
is one of the most abundant Cu proteins in photosynthetic
tissues (Weigel et al., 2003). It is located in thylakoid lumen of
chloroplasts and is responsible for the transport of electrons from
cytochrome b6f complex to P700+. Though in some algae this
function can be served by a heme-containing cytochrome c6,
information is scanty on the ortholog that can mimic the same
function of plastocyanin in higher plants (Schubert et al., 2002;
Wise and Hoober, 2007). Cu also serves as a critical co-factor
in the mitochondria as a respiratory chain enzyme cytochrome
c oxidase (COX). Composed of 12-14 sub-units, plant COX is the
terminal enzymatic complex IV of the mitochondrial respiratory
chain (Millar et al., 2004). Another major Cu-binding protein
in plants is Cu/Zn-superoxide dismutase (Cu/Zn-SOD) that
occurs in cytosol, chloroplasts, and peroxisomes. Arabidopsis
possess three isoforms of CuZn-SOD, where CSD1 is located
in the cytoplasm; CSD2 in chloroplast stroma, and CSD3 is a
peroxisomal isoform having a minor activity (Kliebenstein et al.,
1998). Another Cu-protein plantacyanin belongs to phytocyanin
family of blue Cu containing proteins. Based on their magnetic
and spectroscopic properties, plantacyanins are classified as Type
I Cu proteins with size about 10–22 kDa (de Rienzo et al., 2000),
and are primarily present in the cell wall. They are believed to
act as transporters of electrons between a donor and acceptor.
Plantacyanins are expressed in plants exposed to stresses such
as high/low temperature, heavy metals, and high salinity, and
are involved in plant-tolerance to these stresses (Maunoury and
Vaucheret, 2011; Feng et al., 2013). Cu-dependent protein laccase
belongs to the large group of multi-copper oxidases (MCOs)
and is involved in polymerization (McCaig et al., 2005; Printz
et al., 2016). Cu-dependent amine oxidases (CuAO) are among
the amine oxidases and are associated with the cell wall, and
flavin-containing polyamine oxidases. In plants, CuAO catalyzes
the oxidation of putrescine that produces H2O2 involved in cell
wall maturation, lignification, and programmed cell death (Cona
et al., 2006). Polyphenol oxidase and ascorbate oxidases (AO)
also belong to Cu-containing MCOs. Localized in the apoplast,
AOs oxidize ascorbate into water and monodehydroascorbate,
and thereby regulate its redox state (Kaur and Nayyar, 2014).
AOs also modulate cell division and cell expansion via L-ascorbic
acid (L-AA) redox repair (Kerk and Feldman, 1995; Kato and
Esaka, 1999). Polyphenol oxidases are found in thylakoids, where
these are involved in the defense mechanisms against pests and
pathogens (Constabel and Barbehenn, 2008). In addition, Cu
also plays an important role in cell signaling as the part of
receptor proteins for ethylene sensing (Rodrıguez et al., 1999).
Cu-homeostasis is mainly regulated by the transcription factor
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7).
Through activating the transcription of plasma membrane
COPT transporter genes (COPT1, COPT2, and COPT6), SPL7
modulates the Cu-uptake and homeostasis under Cu-deficiency
(Yamasaki et al., 2009; Bernal et al., 2012). Thus, these
requirements make Cu an ideal metal for normal functioning,
growth and development in plants.
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TABLE 1 | Summary of copper-associated proteins and their functions in plants.1

Type Protein Function

Cell Surface/Secretory Compartment
Transporters and Receptors

P1B-Type ATPases Proteins concerned with export of Cu+

Ctr (copper transporter) Proteins involved in import of Cu+

Ethylene receptor Cu acts as a cofactor and activates ethylene signaling

Electron transfer/Blue Cu proteins

Cytochrome c oxidase Plays an important role in the last step of respiration

Plastocyanin Electron transfer during photosynthesis

Free Radical Scavenging

Cu/Zn SOD Scavenger of free radicals

Oxidase

Laccase Oxidative de-amination of polyamines

Ascorbate oxidase Regulates redox state of the cell

Amine oxidase Involved in cell wall maturation, lignification, Oxidizes diamines

Polyphenol oxidase Plays an important role in defensive mechanisms against pests
and pathogens

Transcriptional regulators

Spl7 Transcriptional activator which gets activated in response to
reduced Cu levels.

Chaperons/Storage

Atx1 (Antioxidant protein 1) A metal chaperone carrying Cu to P-Type ATPases

Ccs (Cu chaperone for superoxide dismutase) Transports Cu to Cu/Zn SOD1

1Based on the literature appraised in the paper.

On the contrary, the condition of both Cu-deficiency and
-elevation can bring severe consequences in plants (Yruela,
2005). Plants produced under Cu-deficiency showed alteration
in the photosynthetic transport chain and reduction in the non-
photochemical quenching, which is mainly due to inhibition in
the function of plastocyanin (Abdel-Ghany and Pilon, 2008).
On the otherside, Cu in excess causes significant toxicity and
even the arrest of cellular metabolism in plants. In particular,
photosynthetic electron transport is the main target under both
Cu-deficiency and as well as in excess Cu. Therefore, it is
essential to ensure adequate Cu-uptake and distribution in order
to minimize its deleterious phytotoxic effects that in turn would
regulate various homeostatic processes at cellular and whole
plant levels.

COPPER UPTAKE AND TRANSPORT

Higher plants mainly take Cu in the form of Cu2+ ions from
the rhizosphere, where the binding of Cu with various ligands
facilitates the process (Welch et al., 1993). The studies on Cu
uptake and transport into or within the cells are still in infancy.
However, the successful implementation of advanced tools helped
in uncovering transport process in yeast and other eukaryotic
organisms (Nelson, 1999; Nevitt et al., 2012). Maintenance
or correct regulation of Cu-homeostasis under Cu-regimes is
governed by a complex system of metal-trafficking pathways
available in higher plants. Plants possess a number of Cu-
transporters (COPT; COPT1-6) involved in the uptake of Cu and
secretion of metal ions (Puig et al., 2007; Andrés-Bordería et al.,
2017; Andrés-Colás et al., 2018).

Current understandings on COPTs came into light as a
result of having sequence homology with the eukaryotic Cu-
transporters (named Ctr) and functional complementation in
yeast (Puig and Thiele, 2002; Puig et al., 2007; Puig, 2014; Andrés-
Bordería et al., 2017). All the members of this family contain
three predicted transmembrane (TM) segments. The majority
of the COPTs exhibit N-terminus methionine and histidine-rich
putative metal-binding domains (Puig and Thiele, 2002; Klomp
et al., 2003). In Arabidopsis genome, there occurs six COPT genes
(COPT 1-6) encoding COPT transporters. COPT1, one of the
most characterized members of the Cu-transporter family has
been reported to permit the entry of Cu into the cells from
outside to the cytoplasm (Kampfenkel et al., 1995; Sancenón et al.,
2003). In addition, owing to its low Michaelis constant (KM)
value, COPT1 transporter has also been reported to exhibit its
high specificity for Cu2+ ion (Eisses and Kaplan, 2002; Sancenón
et al., 2003). High specificity toward Cu2+ ions has also been
reported for COPT2 and COPT 6 transporters (Jung et al., 2012;
Garcia-Molina et al., 2013; Perea-García et al., 2013; Aguirre and
Pilon, 2016). Potentially involved in the intracellular transport
of Cu, COPT3 and COPT5 transporters possess one each of
methionine and a histidine-rich box. Methionine residues and
motifs vital for Ctr1 mediated high-affinity Cu-transport do not
occur in COPT4 that has a non-direct role in Cu-transportation
(Sancenón et al., 2004).

In addition to other processes, the transport of Cu2+ across
the plasma membranes also involves P-type heavy metal ATPases
(Williams and Mills, 2005; Takahashi et al., 2012; Yan et al., 2016).
The transport of Cu into the cells may also be ascertained by the
newly found cytosolic, soluble and low molecular weight heavy
metal receptor proteins such as Cu chaperones (CCH), known

Frontiers in Plant Science | www.frontiersin.org 3 May 2020 | Volume 11 | Article 675

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00675 May 28, 2020 Time: 17:9 # 4

Rather et al. Copper Stress-Alleviation With NO

as metallo-chaperones (O’Halloran and Culotta, 2000; Huffman
and O’Halloran, 2001). Cu chaperones including COX17 (Cu
chaperone for COX), CCS (Cu chaperone for SOD), and two
homologs of the yeast ATX1 (antioxidant protein 1) and CCH
(ATX1-like Cu chaperone) were reported to be involved in the
intracellular Cu transport in Arabidopsis (Casareno et al., 1998;
Chu et al., 2005; Puig et al., 2007). The knowledge regarding
the transport of Cu into the xylem is still in its infancy. In a
recent study, compared to roots developed on different metal ions
the roots developed on media with 50 µM Cu exhibited a huge
decline in the levels of callose (O’Lexy et al., 2018). Additionally,
Cu was observed to move through plasmodesmata by influencing
plasmodesmata via regulating β-1,3-glucanases.

COPPER-INDUCED TOXICITY IN
PLANTS

A large volume of literature is available on the impact of elevated
Cu on major aspects in plants including germination and growth
(López-Bucio et al., 2003; Lin et al., 2005; Mench and Bes, 2009;
Potters et al., 2009; Bouazizi et al., 2010; Lequeux et al., 2010;
Verma et al., 2011; Feigl et al., 2013; Gang et al., 2013; Muccifora
and Bellani, 2013; Adrees et al., 2015; Marques et al., 2018),
photosynthesis and related variables (Chatterjee and Chatterjee,
2000; Quartacci et al., 2000; Yruela, 2005; Küpper et al., 2009;
Gonzalez-Mendoza et al., 2013; Mateos-Naranjo et al., 2013;
Adrees et al., 2015; Feigl et al., 2015; de Freitas et al., 2015;
Emamverdian et al., 2015; Sharma et al., 2017; Ambrosini et al.,
2018), phenotypic changes (Barbosa et al., 2013; Feigl et al., 2013;
Sánchez-Pardo et al., 2014; Adrees et al., 2015; Nair and Chung,
2015; Ali et al., 2016; Brunetto et al., 2016; Llagostera et al.,
2016; Mwamba et al., 2016; Ambrosini et al., 2018; Shiyab, 2018;
Marastoni et al., 2019b; Nazir et al., 2019; Shams et al., 2019), and
nutrient-use-efficiency of plants (Chatterjee and Chatterjee, 2000;
Ali et al., 2002; Keutgen and Pawelzik, 2008; Ivanova et al., 2010;
Feigl et al., 2013; Azeez et al., 2015; Bankaji et al., 2015; Marastoni
et al., 2019a). A brief discussion on the Cu-induced changes in
germination and growth, photosynthesis and related variables,
phenotypic changes, and nutrient-use-efficiency of plants are
presented hereunder.

Germination and Growth
The effect of Cu was seen at different growth and developmental
stages of plants from seed germination to the senescence.
Contingent to Cu level and the growth stage of the test plant,
excess Cu significantly affects Cu-sensitive plants. In germinating
seeds, increasing Cu concentrations reduced the germination
percentage of seeds in different plant species (Gang et al.,
2013; Muccifora and Bellani, 2013). Similarly, germination in
mungbean seeds was reported to decrease with increasing Cu
concentrations (Verma et al., 2011). During an early stage of
growth, elevated Cu concentrations inhibited leaf expansion but
increased pigment content (Maksymiec et al., 1994; Maksymiec
and Baszyński, 1996; Adrees et al., 2015). In addition to
inhibition in growth and biomass, Cu toxicity in plants also
includes bronzing/necrosis (Marschner, 1995; Mench and Bes,

2009; Marques et al., 2018). Increasing Cu-concentration reduces
uptake of Fe, Zn, Mn, and Co (Marschner, 1995; Bouazizi et al.,
2010; Feigl et al., 2013). Significant reductions in root and shoot
biomass were found in Arabidopsis exposed to 2.5 and 5 µM Cu
for 14 days (Lequeux et al., 2010). Elevated Cu can inhibit primary
root growth and simultaneously stimulate lateral root formation
and thereby remodel the root structure (López-Bucio et al., 2003;
Potters et al., 2009; Lequeux et al., 2010). Excess Cu also causes
overproduction of H2O2, which eventually weakens the cell wall-
extensibility (Lin et al., 2005). Root growth is more severely
affected by increased Cu than shoot growth that is obvious due to
the retention of the major proportion of Cu taken up by plants.

Photosynthesis and Related Variables
Impacts of Cu on photosynthesis are well documented. The
photosynthetic apparatus is susceptible to heavy metal toxicity,
which in turn directly or indirectly significantly impact
photosynthetic functions. Excess Cu has been reported to
decrease the level of photosynthetic pigments such as chlorophyll
(Küpper et al., 2009; Ambrosini et al., 2018). Cu concentrations
were reported to decrease chlorophyll content in a number
of plants including spinach (Ouzounidou et al., 1998), maize
(Mocquot et al., 1996), cauliflower (Chatterjee and Chatterjee,
2000), and rapeseed and Indian mustard plants (Feigl et al.,
2015). Cu excess can also impair chloroplast structure and
thylakoid membrane composition (de Freitas et al., 2015;
Sharma et al., 2017). Ciscato et al. (1997) found that the
reduction in chlorophyll biosynthesis was mainly due to Cu-
exposure mediated structural damages of chloroplast particularly
at the thylakoid level. Disturbed metabolic activities like loss
of chloroplast integrity, and change in plastid membrane
composition and inhibition of photosynthetic electron transport
have also been evidenced in plants exposed to elevated Cu levels
(Quartacci et al., 2000; Adrees et al., 2015). Cu was found to
inhibit both PS I and PS II, where PS II was found very sensitive
to elevated Cu (Yruela, 2005). In another study, excess of Cu
caused a reduction in photosynthesis mainly as a consequence of
the higher photoinhibition (Mateos-Naranjo et al., 2013; Adrees
et al., 2015). Cu in excess may also block the photosynthetic
electron transport, inhibit photophosphorylation, and decrease
membrane integrity (Maksymiec et al., 1994; Emamverdian et al.,
2015). Cu-excess blocked the flow of electrons from Tyr z to
P680+ (Yruela, 2005). In Avicennia germinans elevated Cu-
mediated 100% inhibition of net photosynthesis and reduction of
chlorophyll fluorescence with damaged photosynthetic apparatus
(Gonzalez-Mendoza et al., 2013). In a recent study on fibrous
jute (Corchorus capsularis) plants, Saleem et al. (2020) reported
heavy damage in the organelles of the leaves by exposure to soils
having Cu-contaminated soil mixed with natural soil by 1:4 ratio.
The authors also found a large number of chloroplast particles
accumulated inside the cell wall and also outside the chloroplast
in these plants.

Phenotypic Changes
Surplus level of Cu restricts plant growth and development
(Shams et al., 2019). The impact of Cu toxicity is primarily on
root growth and phenotype, which has a paramount significance
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to the whole plant. In general, Cu accumulates mainly in roots
rather than in shoots, although the different distribution and
translocation of Cu depends on its concentration in the root-
growing medium (Adrees et al., 2015). However, both shoots
and roots exhibit specific symptoms of Cu-toxicity. High Cu
concentrations in shoots induced pale green to white interveinal
chlorosis on mature leaves, altered membrane permeability,
enzyme activities and also reduced photosynthesis (Brunetto
et al., 2016). In roots, excess Cu reduces root length and leads
to darkening and thickening of root tips (Feigl et al., 2013).
Cu stress has also been reported to decrease the area and
expansions of leaves, and the size of stem in several plants
(Barbosa et al., 2013; Feigl et al., 2013). In addition to reductions
in shoot and root growth, elevated Cu-exposed plants exhibited
phenotypic changes as toxicity symptoms, where roots showed
intense dark color with increasing Cu concentration (Marastoni
et al., 2019b). In several studies, elevated acquisition of Cu was
culminated into chlorosis, leaf epinasty, decreased branching,
thickening, and dark coloration (Nair and Chung, 2015; Ali et al.,
2016) and also to the development of necrotic patches in leaf
tips and margins (Llagostera et al., 2016). Altered surface root
morphology, rolling of the leaf blade and reduced leaf area were
also reported in plants under elevated Cu-exposure (Sánchez-
Pardo et al., 2014; Nazir et al., 2019). Phytotoxic concentrations
of Cu also impede the leaf proliferation, cell elasticity, and cell
division and reduced the number and abundance of intercellular
spaces and densely developed dark colored areas of xylem
vessels (Ambrosini et al., 2018; Shiyab, 2018). Elevated Cu-
accrued reduction in the leaf area resulted in reduced dry
matter production (Mwamba et al., 2016). Therefore, phenotypic
attributes may function as an effective bioindicator of Cu toxicity
as well as for the characterization of the plants as resilient or
sensitive to excess Cu.

Nutrient-Use-Efficiency of Plants
The accumulation of ions such as Na+ and Cl− accumulated
in plant organs may compete with mineral nutrients and also
disturb their uptake, translocation, and assimilation (Keutgen
and Pawelzik, 2008). Higher concentrations of Cu reduced the
content of N, P, and K in both shoot and root of maize;
however, increased therein the concentration of Fe (Ali et al.,
2002; Azeez et al., 2015). In sand culture grown cauliflower, the
supply of 0.5 mM Cu for 30 days decreased Fe concentration
(Chatterjee and Chatterjee, 2000). In both leaves and roots of
Brassica juncea and B. napus, excess Cu impacted microelement
homeostasis and decreased the concentrations of Zn, Fe, Mn,
and Co (Feigl et al., 2013). Elevated Cu-mediated reduction in
Zn in rapeseed has also been reported (Ivanova et al., 2010).
In Suaeda fruticosa, Cu2+ increased K+ contents in the shoots;
however, Cu2+ showed no effect on the level of Mg2+ and
Na+ in the shoots (Bankaji et al., 2015). In a recent study on
Cu-exposed oat cultivars (Avena sativa L. cv. Fronteira and cv.
Perona), Marastoni et al. (2019a) reported a higher accumulation
of Cu in the apoplasm which was argued to strongly reduce
the available binding sites, leading eventually to a competitive
absorption with Ca, Mn, and Zn.

NO as a Major Plant Signaling Molecule
As a key signaling component, NO is involved in various
physiological and metabolic processes in plants including their
adaptation to various stresses (Asgher et al., 2017; Fancy et al.,
2017; Santisree et al., 2019). In plants, NO is synthesized
both by enzymatic and non-enzymatic systems (Arasimowicz
and Floryszak-Wieczorek, 2007; Hasanuzzaman et al., 2018)
(Figure 1). Contingent to its concentration and the site of
production NO shows both positive and negative effects. Further
NO was seen to affect major metabolic pathways in plants,
particularly of nutrient assimilation. Our recent research on NO
suggests that salt stress effects on the photosynthetic performance
are mitigated effectively when NO was applied along with the
split application of both N and S, and the photosynthetic activity
was stimulated through increased N and S assimilation and
antioxidant system conferring tolerance against salt stress (Jahan
et al., 2020). Similarly. NO was also shown to reverse glucose-
mediated photosynthetic inhibition in T. aestivum L. under salt
stress (Sehar et al., 2019). We have also shown that NO can
improve S-assimilation and GSH production under Cd stress
and prevent inhibitory photosynthesis in mustard (Fatma et al.,
2016a,b; Per et al., 2017b). Usually, NO transmits its bioactivity
by targeting proteins during post-translational modifications
via cysteine S-nitrosylation that leads to the formation of S-
nitrosothiols (SNOs). The reaction of NO with ROS such as
superoxide anions also leads to the protein tyrosine nitration
and yields nitrite (ONOO-). In fact, SNOs are the key signaling
molecules largely involved in response to several stresses in
plant biology (Begara-Morales et al., 2019). Generated as a result
of the reaction of NO with reduced GSH, S-nitrosoglutathione
(GSNO) is the most important among SNOs. This metabolite
is considered as a major reservoir of NO. As a NO-reservoir,
GSNO can be transported to other cells/tissues which confer NO
as a long distance mobile signaling molecule. GSNO can also be
converted into oxidized glutathione (GSSG) and NH3 by GSNO
reductase (GSNOR) (Fancy et al., 2017; Begara-Morales et al.,
2018). In addition, a direct donation of the NO group of GSNO to
other cellular thiols may occur via S-transnitrosylation reactions
(Corpas et al., 2013). NO-dependent modifications in plant lipids
such as nitro-fatty acids (NO2-FA) have shown the importance
of NO in cell signaling processes (Sánchez-Calvo et al., 2013;
Fazzari et al., 2014). NO2-FA such as linolenic acid has been
reported to alleviate various abiotic stresses (Mata-Pérez et al.,
2016). A NO-mediated pathway is also involved in the activation
of mitogen-activated protein kinase (MAPK) signaling events
(Pagnussat et al., 2004) and in the promotion of MPK6-mediated
caspase-3-like activation (Ye et al., 2013).

NO IN PLANT GROWTH AND
DEVELOPMENT

NO plays a vital role in regulating several processes related to
plant growth and development, and qualifies the definition of
plant growth regulators (Beligni and Lamattina, 2001; Xiong
et al., 2009; Takahashi and Morikawa, 2014). The role of NO
has been elucidated in growth and development of plants such
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FIGURE 1 | Schematic representation of the pathways (enzymatic and non-enzymatic) and their major components involved in the generation of nitric oxide (NO) in
plants. Enzymatic production of NO depends on NADPH dependent oxidation of L-Arg via NO synthase (NOS)-like activity and also nitrate reductase (NR) which
converts nitrate (NO3

−) to nitrite (NO2
−) and later (NO2

−) reduction into NO via NR itself or via electron transport chain in mitochondria. Specific plasma
membrane-bound nitrate and nitrite: nitric oxide reductase (PM-NR/Ni:NOR) activity utilizes NO2

− as a substrate to generate NO. Another possible route for NO
formation is carried out by xanthine oxidoreductase (XOR). Non-enzymatic sources also result in the reduction of (nitrogen dioxide) NO2 to NO by carotenoids. In
non-enzymatic pathway of NO generation that operates under sufficiently acidic medium and NO2

− gives rise NO and O2. NO generated in various pathways reacts
with reduced GSH to produce S-nitrosoglutathione (GSNO), a donor and major reservoir of NO. It is also clear that NO directly modifies target proteins through
reacting with reactive oxygen species (ROS) including superoxide, to generate peroxynitrite (ONOO-) which in turn causes nitrosative stress via protein tyrosine
nitration. On the other, NO can also directly control cellular thiols via S-transnitrosylation reaction.

as seed germination, senescence, root growth, leaf expansion,
photo-morphogenesis, floral regulation, photosynthesis, root
organogenesis, hypocotyl growth, and pathogen defense (Asgher
et al., 2017; Corpas and Palma, 2018; Santisree et al., 2019),
stomatal closure and the cytokinin signaling pathway (Tun et al.,
2001; Desikan et al., 2004; Shi et al., 2015). Contingent to
its concentration and the site of formation NO induces both
positive and negative effects on plant metabolic processes. At
lower concentrations, NO exhibited important positive effects
in plants where it modulated germination, leaf expansion,
and detoxification. On the other, several negative effects such
as inhibition of photosynthesis, nitrosative stress, chlorophyll
degradation were also noticed at much higher concentrations
of NO (Zottini et al., 2002; Antoniou et al., 2013). In
wheat seedlings, the rate of leaf expansion increased at lower
concentrations of NO; however, no beneficial effect was observed
at its higher concentrations (Tian and Lei, 2006). In maize,
low concentration of NO promoted root growth, and its higher
concentration inhibited the root growth (Lombardo et al., 2006).
In a similar work, low concentration of NO (100 µM) stimulated
growth of Medicago truncatula; whereas, a decreased growth was

observed with higher concentration of NO (2.5 mM) (Filippou
et al., 2013). The authors showed that 2.5 mM-mediated declines
in photosynthetic rate, stomatal response, intracellular proline
and putrescine accumulation and decreased M. truncatula
growth (Filippou et al., 2013). Different dose of NO donors can
differentially induce the elongation of root tips. To this end, an
inhibited growth of hypocotyls in Arabidopsis, lettuce, and potato
was observed with the treatment of 0.1 mM sodium nitroprusside
(SNP), a NO-donor (Beligni and Lamattina, 2000). SNP was also
reported to induce root development in Zea mays (Gouvea et al.,
1997; Corpas and Barroso, 2015a). However, methylene blue, a
NO-scavenger was reported to exhibit positive effects on the root
development (Gouvea et al., 1997). Compared to GA3, NO was
reported to exhibit its significant role in breaking the dormancy of
lettuce seeds (Beligni and Lamattina, 2000). NO can also control
growth and re-orientation of pollen tubes (Prado et al., 2004),
induce the lateral roots mediated by the plant growth- promoting
Rhizobacterium azospirillum (Creus et al., 2005).

The role of NO in photosynthesis has rarely been investigated.
However the NO-mediated moderate improvement in
photosynthetic performance of Solanum melongena seedlings
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was argued as a result of excessive quenching energy and
an increase in quantum yield of PSII (Wu et al., 2013). NO
with sulfur improved antioxidant defense system modulating
stomatal behavior and sulfur assimilation in Brassica juncea
(Fatma et al., 2016a). In cucumber seedlings, exogenous NO
showed increased chlorophyll content, improved photosynthetic
rate, transpiration rate and stomatal conductance (Fan et al.,
2007). However, in Phaseolus aureus, NO reduced the activity
of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco)
and increased the content of PSII oxygen-evolving complex
(Lum et al., 2005). In Kalanchoe pinnata, NO inhibited Rubisco
activity by S-nitrosylation in a dose-dependent manner and
also slowed down photosynthetic rate (Abat et al., 2008). In
Phaseolus vulgaris guard cells, NO showed decreased activity of
the H+-ATPase (Ördög et al., 2013). At cellular level, NO breaks
the chain reactions of oxidation and limits oxidative damage
(Bakakina et al., 2014). NO can also prevent the generation of
toxic hydroxyl radicals by binding with the superoxide radicals
produced in the chloroplast and mitochondria during the
process of electron transport chain (Arora et al., 2016). Due to its
signaling nature NO was reported to upregulate the expression
of certain genes to counteract oxidative damage (Jiao et al.,
2016). NO also triggers the upregulation of genes such as that
of chalcone synthase (CHS), glutathione-S-transferase (GST),
alternative oxidase (AOX1a) and glutathione peroxidase (GPX)
(Murgia et al., 2004). It has also been reported to deter gene
expression of thylakoid ascorbate peroxidase (tAPX) controlling
oxidative position of plant cell (Murgia et al., 2004).

NO-MEDIATED COPPER-TOLERANCE IN
PLANTS

Role of NO in minimization of heavy metal stress in plants
has been extensively studied (Laspina et al., 2005; Arasimowicz
and Floryszak-Wieczorek, 2007; Xiong et al., 2009; Jhanji et al.,
2012; Leterrier et al., 2012; Chmielowska-Bąk et al., 2014; Per
et al., 2017b; Rizwan et al., 2018; Ahmad et al., 2018; Li
et al., 2018) (Table 2). However, mechanisms underlying NO-
mediated control of plant responses to elevated Cu-impacts
are still elusive. There are two possible strategies that NO
might use to mitigate heavy metal stress in plants. As the
first approach, elevated Cu-exposed plants tend to upregulate
their antioxidant enzymes activity or express genes involved
in defense mechanism (Rizwan et al., 2018). Secondly, NO
maintains the equilibrium of cellular free metal concentration
either by excluding heavy metals through roots or by keeping
a check on their cellular accumulation to a toxic level (Oz
et al., 2015). The action mechanisms potentially involved in NO-
mediated plant Cu-tolerance have been illustrated in Figure 2.
The outcomes of the studies analyzing the role of NO-application
in Cu-stressed plants revealed that NO reduces Cu-induced
oxidative stress by increasing the activities of antioxidant
enzymes; maintaining cellular redox homeostasis by elimination
of ROS, and thereby promoting normal metabolic function
(Cui et al., 2009; Zhang et al., 2009). The supply of sodium
nitroprusside (SNP), a NO-donor to Cu-exposed Panax ginseng TA
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FIGURE 2 | Schematic representation of the potential mechanisms underlying protective roles of nitric oxide (NO) in plants. In summary: (a) NO is involved in cellular
homeostasis under Cu stress by inducing/modulating enzymes (CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase) and non-enzyme including
reduced glutathione (GSH) directly and/or indirectly involved the scavenging of reactive oxygen species (ROS); (b) NO can also be involved in the stimulation of the
key enzymes of proline synthesis and thereby in modulation of the cellular proline and also in inhibition of lipoxygenase activity which in turn leads to membrane lipid
peroxidation; and (c) once in cell, Cu ions make complex with phytochelatins (PCS) known to be induced by low molecular weight peptides (such as GSH) in the
cytosol. The Cu-PC complexes are high molecular weight and are subsequently transported to the vacuole and thereby protect ill consequences of elevated Cu ions.

modulated the activity of H2O2-metabolizing enzymes including
catalase (CAT), peroxidase, and ascorbate peroxidase (APX),
and thereby increased the detoxification of H2O2 in roots
(Tewari et al., 2008). Pre-treatment of Triticum aestivum with
NO was reported to reverse the inhibitory effect of Cu stress
by increasing the activity of superoxide dismutase (SOD) and
CAT, and reducing the lipoxygenase activity and membrane lipid
peroxidation (Hu et al., 2007). Besides inducing antioxidant
system, supplied NO was also reported to promote the activity
of H+-ATPase and H+-PPase in the plasma membrane or
tonoplast which might play important role in tolerance to
Cu stress by maintaining cytoplasmic pH (Cui et al., 2009;
Zhang et al., 2009). The supplied NO-mediated escalation
in the level of GSH has also been reported (Zhang et al.,
2019). GSH has central role in plants in maintaining cellular
redox potential (Anjum et al., 2014; Ahmad et al., 2020).
Recently, Mostofa et al. (2014) reported alleviation of Cu-
induced toxicity in Oryza sativa seedlings mainly as a result
of interaction between NO and GSH. The authors revealed
that the supply of SNP (200 µM) alone or in combination
with GSH (200 µM) minimized Cu-impacts by reducing Cu-
uptake and eased the Cu-induced oxidative damage by amending
GSH production. Not only GSH content was increased but
also increased the content of ascorbate (AsA), and the ratios

of GSH/GSSG and AsA/DHA, which in turn strengthened
antioxidant defense system improved Cu-tolerance. Moreover
the contribution of different metal-chelating ligands, such as
metallothioneins (MTs) and phytochelatins (PCs) are crucial
players and plays pivotal role in conferring resistance to heavy
metal tolerance in plants dealing with high concentrations
of various metal inclusion (Cobbett and Goldsbrough, 2002;
Anjum et al., 2015a; Chaudhary et al., 2018). Exogenous
NO can also regulate the oxidation-reduction status of GSH-
GSSG, control the GSH-PC metabolism, and also promote
the vascular compartmentalization of excessive Cu in Lemna
esculentum (Wang et al., 2018). In addition, MTs-responsive
genes were induced by NO in Solanum lycopersicum and this
NO-induced expression of MTs-related genes were reversed by
NO scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazo-
line-1-oxyl-3-oxide potassium salt (cPTIO)], NOS inhibitor [N-
nitro-l-arginine methyl ester (L-NAME)] and NR inhibitor
(tungstate), which confirmed the involvement of MTs in NO-
mediated tolerance to Cu toxicity (Wang et al., 2010).

Proline, a multifunctional amino acid have diverse roles
in response to stress conditions, such as in stabilization of
proteins, subcellular structures and membranes and protecting
cellular functions by scavenging ROS potentiate plant to survive
under stress (Anjum et al., 2014; Kaur and Asthir, 2015;
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Per et al., 2017b). The Cu-exposure accrued accumulation of
proline has been found as a common response reported in several
plant species (Zhang et al., 2008; Fidalgo et al., 2013; Mostofa
et al., 2014). Cu-exposure caused increase in the endogenous
NO production was found to modulate the cellular proline
through stimulating the activity of the key proline-synthesizing
enzymes such as pyrroline-5-carboxylate synthetase (Zhang et al.,
2008). However, the correlation between NO content and Cu-
induced proline accumulation in plants is not always apparent.
For example proline content increased upon Cu-exposure but
failed upon application of NO (Mostofa et al., 2014). Therefore,
it indicates that the regulation of antioxidant system by NO is
also dependent on the exposure conditions and the model plant.
Photosynthetic functions are typically affected either directly
or indirectly by elevated levels of Cu. In Cu-exposed grown
Chlorella, NO application takes down the inhibition levels of
O2 fixation, O2 evolution, and maximum quantum yield of PS
II and also ominously diminished the oxidative burst (Kumar
Singh et al., 2004). In another study, addition of 50, 100,
200 µM SNP protected Lolium perenne against Cu-toxicity as
a result of increased chlorophyll content and photosynthesis,
induced antioxidant enzyme activities, reduced Cu-induced
oxidative damages, maintained intracellular ion equilibrium, and
limited Cu translocation from roots to shoots (Dong et al.,
2014). NO was found to scavenge ROS and control NH4

+

accumulation in Cu-exposed O. sativa leaves (Yu et al., 2005). In
Cu (50 µM)-exposed Arabidopsis seedlings, NO escalated the Cu-
induced cotyledon expansion but alleviated cotyledon elongation
processes (Petó et al., 2011).

In naked barley (without hull), Cu-tolerance involved nitrate
reductase-mediated NO-production (Hu et al., 2015). Further
NO-mediated strengthening of antioxidant defense system and
the control of oxidative stress and cell death was also shown
(Hu, 2016). In Catharanthus roseus, SNP ameliorated Cu-toxicity
by decreasing the ROS-burst, promoting the contents of amino
acids and the total phenolic in the roots, regulating mineral
absorption and re-establishing ATPase activities (Liu et al., 2016).
Yuan et al. (2013) have reported that the Cu stress in Arabidopsis
affects root elongation by redistributing PIN1-mediated auxin
(AUX). These witnessed phenotypic changes in Cu-effected roots
are possibly due to AUX action, because in roots, the pattern
of AUX distribution is vital for healthy root development. In
addition to this Fernández-Marcos et al. (2011) showed that
mutant cue1/nox1 changes NO levels, and high level of NO
hampered the length of root apical meristem in Arabidopsis,
and reduced transport of AUX and its response by altering the

PIN1 levels. Therefore, the supply of optimal level of NO might
be a responsible for maintaining the AUX concentration and
its distribution when plants countered the heavy metal stress
(Figure 2). In Arabidopsis, prolonged exposure of Cu impacted
NO and AUX metabolism, and it was revealed that NO could
improve Cu-induced inhibition of both root and stem growth
by attenuating PIN1 induced AUX transport (Kolbert et al.,
2012). In another report, Kolbert et al. (2015) established the
relationship of the low Cu-sensitivity of nia1nia2noa1-2 mutant
with the availability therein of low NO level and suggested that
the contribution of the NR and NO associated 1-dependent
pathways to NO synthesis. Thus, the above results pointed out
that NO plays a vital role in response to Cu stress. However, there
is still limitations in understanding the exact mechanism of NO
action under Cu stress, and there is an utmost need to further
investigate focusing more into molecular insights of NO action
under Cu stress.

CONCLUSION AND PROSPECTS

This review appraised the literature available on Cu-induced
toxicity and its NO-mediated amelioration and underlying
mechanisms in plants. It is clear that NO is a diffusible gaseous
molecule and plays a key role in performing a number of
biological functions in plants. NO acts as a signaling molecule
in inducing the antioxidant system during oxidative stress. There
is a remarkable progress in our understanding on the biological
role of NO in plants particularly in case of salt stress. However,
least information is available on the response of NO on Cu stress.
Insights are required into the signaling pathways and the direct
targets of NO particularly in Cu-exposed plants. Examination of
the Cu-induced modulation of the NO biosynthetic pathways and
its involvement in the physiological roles of NO in plants would
be imperative in this regard. Some of the biosynthetic pathways
of NO in plants are well known but how these pathways are
interconnected and what is the mode of action in each tissue and
organ are required to be elucidated.
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