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Increasing food demand under climate change constraints may challenge and 
strain agricultural systems. The use of crop models to assess genotypes performance 
across diverse target environments and management practices, i.e., the 
genetic × environment × management interaction (GEMI), can help understand suitability 
of genotype and agronomic practices, and possibly accelerate turnaround in plant 
breeding programs. However, the readiness of models to support these tasks can 
be debated. In this article, we point out modeling and data limitations and argue the need 
for evaluation and improvement of relevant process algorithms as well as model 
convergence. Under conditions suitable for plant growth, without meteorological extremes 
or soil limitation to root exploration, models can simulate resource capture, growth, and 
yield with relative ease. As stresses accumulate, the plant species- and genotype-specific 
attributes and their interactions with the soil and atmospheric environment generate a 
large range of responses, including conditions where resources become so limiting as 
to make yields very low. The space in between high and low yields is where most rainfed 
production occurs, and where the current model and user skill at representing GEMI 
varies. We also review studies comparing the performance of a large number of crop 
models and the lessons learned. The overall message is that improvement of models 
appears as a necessary condition for progress, and perhaps relevancy. Model ensembles 
help mitigate data input, model, and user-driven uncertainty for some but not all 
applications, sometimes at a very high cost. Successful model-based assessment of 
GEMI not only requires better crop models and knowledgeable users, but also a realistic 
representation of the environmental conditions of the landscape where crops are grown, 
which is not trivial given the 3D nature of water and nutrient transport. Models remain 
the best quantitative repository of our knowledge on crop functioning; they contain a 
narrative of plant, soil, and atmospheric functioning in computer language and train the 
mind to couple processes. But in our quest to tame GEMI, will they lead the way or just 
ride along history?
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INTRODUCTION

Increasing demand for higher quality and quantity of food 
under a changing climate with more frequent and severe 
heat, drought, and flood events poses a significant challenge 
for agriculture. It is also expected that agriculture meets 
this increasing demand while polluting less. The use of 
crop models to assess genotypes performance across 
diverse target environments and management practices, i.e., 
the genetic × environment × management interaction (GEMI), 
can help understanding genotype suitability, best agronomic 
management, and possibly provide a valuable tool for fast-
turnaround in plant breeding programs. This paper is concerned 
with the role of crop models in assessing GEMI. Our perspective 
is from the viewpoint of crop model development and their 
adaptation for current and emerging applications. These 
applications can be  divided in different types, for example 
those attending breeding program needs and pertaining to 
field and landscape management. Ideally, there should be  no 
boundary between these applications, but research teams have 
had and still have different missions that make for diverging 
modeling strengths.

Process-based crop models integrate mathematical descriptions 
of the mechanisms leading to growth and yield of crops in 
response to environmental and management conditions. Through 
the twentieth century, the experimental and conceptual 
understanding of main processes allowing quantitative descriptions 
of crop growth advanced steadily. With the advent of personal 
computers in the early 1980s, these processes were integrated 
as concise algorithms in crop simulation models able to deal 
with some aspects of GEMI. These modeling systems keep 
evolving, integrating crop rotations, tillage, soil carbon, and 
other nutrients cycling. Advances in database management, spatial 
analysis tools, and cluster and cloud computing are creating 
new opportunities for model development and applications.

For decades, crop simulation models have been touted as 
tools with potential to evaluate crop genotype responses to 
changes in the environment and management (O’Toole and 
Stockle, 1991; Boote et  al., 2001; Rötter et  al., 2015). Boote 
et  al. (2001) discussed several ways to use crop models to aid 
in plant breeding and remarked on the need for the improvement 
of models to describe cultivar-specific tolerances for drought, 
cold, heat, diseases, and pests. Rötter et  al. (2015) reviewed 
the use of crop models in supporting ideotype breeding, 
providing several examples. Rincent et  al. (2017) proposed a 
criterion to optimize multi-environment trials that combines 
crop simulation models and genomic selection models, which 
would result in more efficient evaluation of GEMI. Cooper 
et  al. (2014) argued that future scaling of breeding programs 
would come from integration of germplasm knowledge, high-
throughput genotyping and phenotyping, and modeling and 
prediction methods. Data acquisition, analysis, and prediction 
of performance of new genetic materials in multiple target 
environments will require tools such as remote and near-ground 
sensing, Internet of Things, cloud networking, algorithms and 
models, artificial intelligence, and other emerging technologies 
to assist rapid plant selection.

There has been increasing interest in combining crop and 
genetic simulation models. It has been proposed that plant 
breeding can be  assisted by linking gene expression to traits 
that can be modeled, with the latter serving as input parameters 
of models to evaluate the performance of potential cultivars 
in multiple environments (e.g., Hammer et  al., 2002; White 
and Hoogenboom, 2003). Cooper et  al. (2014) reviewed the 
topic and present models as a component of the breeding 
strategy. Among several examples, Chapman et  al. (2003) 
illustrated the use of models to evaluate genotype performance 
across multiple environments based on 15 genes controlling 
four adaptive traits and a quantitative genetic model simulating 
near isogenic lines for different combinations of traits. Messina 
et  al. (2018) discussed the integration of crop models with 
whole genome prediction methodologies, which are applied 
in breeding to enable prediction of traits for new genotypes. 
These constitute the most advanced efforts in this area and 
provide a useful blueprint for modelers interested in integrating 
modeling with breeding. The integration of crop models with 
whole genome prediction is expected to open the potential 
for prediction of GEMI for breeding and product placement 
and for increasing the size of plant breeding programs without 
expanding expensive field testing (Technow et al., 2015; Messina 
et  al., 2018). From a different perspective, Araus et  al. (2018) 
reviewed strategies for improving and translating high-throughput 
phenotyping into genetic gain, including the use of crop models. 
To meet these expectations, the degree of detail and complexity 
of the processes represented in crop models and their performance 
require careful debate (Messina et  al., 2009).

The success at making crop models useful for the assessment 
of GEMI depends on the effectiveness of modelers, breeders, 
and agronomists working together. But in any case, it is 
important that modelers assess model capabilities and input 
data quality realistically.

PERFORMANCE OF CROP MODELS IN 
RECENT EVALUATIONS

In recent years, under the umbrella of Agricultural Model 
Inter-comparison and Improvement Project (AgMIP), crop 
modelers have engaged in studies to evaluate model performance 
and provide avenues for the improvement of models (Ruane 
et  al., 2017). Multi-model comparisons have been conducted 
for major staple crops, including wheat (Asseng et  al., 2013), 
maize (Bassu et  al., 2014), rice (Li et  al., 2015), and potato 
(Fleisher et  al., 2017). The standard approach has been to 
calibrate many models in selected world sites with increasing 
level of experimental observations made available to modelers. 
Even when complete calibration information is available to all 
modeling teams, important variation compared to observations 
and among models has been found. For example, Bassu et  al. 
(2014) compared 23 maize models in four locations representing 
a wide range of maize production conditions (Lusignan, France; 
Ames, USA; Rio Verde, Brazil; and Morogoro, Tanzania), with 
individual models differing considerably in yield simulation at 
the four sites (2–4  Mg/ha for the 25 and 75 percentile with 
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low level of information for calibration, and around 1  Mg/ha 
with high level of information). Similarly, Asseng et  al. (2013) 
compared 27 wheat models at four sites (the Netherlands, 
Argentina, Australia, and India), obtaining a large variation 
in simulated grain yields when limited information was provided 
for calibration. After full calibration, the variation among models 
was reduced, and many models (>50%) simulated yields with 
uncertainties within 14% of the mean coefficient of variation 
found in over 300 wheat field experiments, indicating that 
model calibration and the choice of models for use in particular 
applications are important factors. A comparison of 13 rice 
models with multi-year yields obtained experimentally at four 
locations (Los Baños, Philippines; Ludhiana, India; Nanjing, 
China; and Shizukuishi, Japan) resulted in yield predictions 
by individual models differing by as much as twofold when 
low levels of information were provided for calibration (Li 
et  al., 2015). When more complete calibration information 
was provided, the model variation was reduced, but no single 
model consistently provided reliable predictions of yield across 
sites and years.

Evaluations of model performance against experimental data 
[as by Basso et  al. (2016) and Gaydon et  al. (2017)] are steps 
in the right direction toward model improvement, as they 
may help uncover deficiencies. Based on the review of 215 
papers including data from 43 countries, Basso et  al. (2016) 
reported normalized RMSE of ~10, ~20, and ~10% for yield 
of maize, wheat, and rice, respectively, across all testing conditions. 
Better and worst performances were reported for individual 
cases, and for grain yield components and other variables. 
Gaydon et  al. (2017) evaluation included 12 countries and 
diverse environments, crops, and management practices. They 
reported RMSE of 1,084  kg/ha for the combined rice data 
sets compared with the standard deviation (SD) among the 
observed data and replicates of 2,038  kg/ha. Similarly, RMSE 
and SD of 845 and 1,794  kg/ha for wheat and 1,004 and 
2,408  kg/ha were reported. Gaydon et  al. (2017) argued that 
the performance of a model is adequate if it can simulate the 
observed behavior within the bounds of experimental uncertainty. 
They also pointed out that good model performance requires 
overcoming significant challenges in the estimation of input 
parameters that may indicate deficiencies and the need for 
model improvement. The problem with these assessments is 
that they coalesce individual evaluations into broad-scope 
statistics that obscure many details or less than stellar 
performance. For example, Figure  2  in Gaydon et  al. (2017) 
depicts a reasonable overall prediction trend including 326 
pairs of simulated and observed wheat yields across diverse 
environments. However, the large departure from the 1:1 line 
of many pairs of points should give us pause if we  consider 
the need for accurate assessment of the performance of genotypes 
in diverse environments.

The variation among model simulation results further increases 
when comparing projections in response to changing climate 
scenarios, including warming and elevated atmospheric CO2 
(Asseng et  al., 2013; Bassu et  al., 2014; Li et  al., 2015). In 
these comparisons, the variation among crop model outputs 
increases as temperature and CO2 move further from current 

conditions and represent a greater proportion of the uncertainty 
in climate change impact projections than variations among 
general circulation models (e.g., Asseng et  al., 2013). These 
results indicate the need to improve crop models and can 
be  interpreted as a warning call of their limitations for more 
demanding GEMI assessments. Understanding the underlying 
causes of such variations and identification of the best approaches 
to model individual processes, rather than just trusting the 
average, will speed up progress.

Multi-model comparisons have also demonstrated that the 
use of model ensembles based on the mean or median of all 
model outputs improves predictions. Bassu et al. (2014) reported 
close agreement between the mean of observed and the mean 
of simulated maize grain yields in the four locations used for 
evaluation, and this good agreement was obtained both with 
low and high levels of information available for calibration. 
The mean of an ensemble of rice models resulted in grain 
yield prediction uncertainty of about 5% of measurements 
across four locations, while no single model provided 
predictions with uncertainties of <10%. Asseng et  al. (2013) 
and Fleisher et  al. (2017) reported similar results.

Although for certain conditions, multi-model ensembles 
might be  better than relying on individual model simulations 
for projecting future crop yields, Carter (2013) pointed out 
that finding the minimum number of required models is not 
simple, and as indicated by Wallach et  al. (2018), multi-model 
ensembles are not a substitute to model improvement. Multi-
model ensembles, which paraphrasing Quételet (Eknoyan, 2008) 
put their faith in “l’modèle moyen,” might be  comforting as 
a means of reducing uncertainty in some applications, but 
their use is challenging or impractical for the routine application 
of crop models to evaluate GEMI. Just considering the scientist-
time invested in multi-model comparisons for relatively simple 
cases should make that point clear.

WHERE ARE MODEL IMPROVEMENTS 
REQUIRED?

We focus on the major components of crop development and 
growth within crop models: phenology, which determines which 
resources the crop will access and to which stresses it might 
be  exposed; solar radiation interception, which is determined 
by the green canopy development and its architecture and by 
the progression of senescence; water and nitrogen capture and 
use, which is determined by soil and root properties; net 
photosynthesis and biomass gain, which is determined by plant 
properties and limitations imposed by the environment; and 
biomass partitioning, which determines allocation of carbon 
and other elements to aboveground, belowground, and harvestable 
portions of the plant. Estimating the potential biomass production 
in a location is relatively simple when based on climate forcing. 
Once a suitable growing season length is defined, the available 
radiation, temperature, and dryness of the atmosphere bound 
the potential production of biomass. Most of the difficulties 
in modeling biomass production and yield with accuracy arise 
from defining the actual patterns of radiation interception, the 
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effective soil volume explored by the roots, the interactions 
among stresses, and the switches or threshold-like responses 
that determine pollination failures or abortion. In what follows, 
we  review the modeling components that determine potential 
growth and limitations based on resource capture, use efficiency 
as well as the definition of the sink size.

Phenology
Crop growth simulation requires prediction of the timing of 
significant growth stages. These predictions are mostly based 
on thermal time accumulation modulated by photoperiod and 
in some cases vernalization. Models represent phenology 
satisfactorily (e.g., Aslam et  al., 2017; Gaydon et  al., 2017) 
mostly when calibrations and use are local, but are far from 
accurate even for crops with a wealth of information like maize 
(Kumudini et  al., 2014) or winter wheat and after systematic 
careful calibration (Ceglar et  al., 2019).

The calibration procedure also matters. Wallach et  al. 
(2019) evaluated the prediction skill of the phenology 
components of 27 wheat models with special attention to 
the role of calibration. The data were from two check varieties 
in multi-year trials at multiple locations across France. The 
authors concluded that, overall, the models provided good 
predictions, with the median of mean absolute error of 
6.1 days. Calibration compensated to some extent for differences 
between modeling approaches, while different calibration 
approaches caused differences in prediction error between 
similar modeling approaches.

Success in predicting relatively coarse patterns of development 
but difficulties obtaining accurate predictions when outside 
the calibration domain should hardly be  a surprise. Slafer and 
Rawson (1994) stated in a thorough review that the controls 
of phenology in wheat are complex and subject to a degree 
of GxE that makes modeling and forecasting challenging. Our 
understanding of the controls of phenology has increased 
considerably. For example, Legris et  al. (2016) have shown 
that phytochrome B is not only related to photoperiod but 
also to temperature sensitivity. Baumont et  al. (2019) relate 
leaf appearance rate with carbohydrate availability and claim 
that the photoperiod effect of leaf appearance rate could be  a 
surrogate for carbohydrate availability. And one could think 
that as our knowledge of the gene network controlling phenology 
improves, models will improve as well; but will models accelerate 
the uncovering of these networks? Models can help identify 
ideal development patterns for a given location: e.g., flowering 
early enough to escape heat and water stress but late enough 
to escape a late frost (e.g., Hunt et  al., 2019), but it can 
be more difficult to assess GEMI beyond these broad brushstrokes.

Canopy Development
Correct modeling of the canopy leaf area and architecture is 
essential for modeling solar radiation interception, and therefore 
crop growth and water use as well as soil shading (affecting 
soil water evaporation). The canopy architecture, the prevailing 
angle of the leaves within the canopy, modulates radiation 
interception and the distribution of radiation among the canopy 
elements. Defining the canopy greenness throughout the growth 

cycle is critical to compute transpiring (green area) and 
non-transpiring fractions of the canopy. Leaf development is 
largely a function of temperature and carbohydrates availability 
(Baumont et  al., 2019), but leaf expansion is also controlled 
by water and nutrient stress.

Many models develop leaf area by simulating leaf appearance 
rate as a function of thermal time, and leaf expansion as a 
function of temperature and water and nitrogen status. In 
single stems of determinate crops such as wheat, leaf expansion 
ends near anthesis. Senescence of individual leaf segments 
may begin before anthesis and continues from anthesis to 
maturity. Thorough evaluations of canopy development 
simulations are scarce. Yoshida et  al. (2007) evaluated model 
parameterization approaches to simulate leaf area development 
of nine rice genotypes grown under diverse environments. 
The different approaches resulted in relative root mean square 
deviation (normalized between 0 and 1) from 0.16 to 0.21 
during calibration, and from 0.18 to 0.33 during evaluation 
with an independent data set. A comparison of 29 maize 
models resulted in large simulation departures from 
measurements of maximum leaf area index (LAI) in 8  years 
of measurements (Kimball et  al., 2019). Cammarano et  al. 
(2016) comparison of 16 wheat simulation models for four 
world locations shows large differences of simulated LAI between 
models and in comparisons with measurements (for example, 
maximum LAI twentieth and eightieth percentiles of 2-5  m2 
leaf m−2 ground in Australia).

The fraction of the assimilated carbon (usually treated as 
biomass) that is apportioned to leaves is calculated through 
different means, all of which are empiric and are based directly 
or indirectly on phenology. Villalobos et  al. (1996) followed 
a matrix partitioning approach for sunflower, where the fraction 
apportioned to leaves decreases in three steps from emergence 
to beginning of flowering, when it becomes zero. Jones and 
Kiniry (1986) and Hammer et al. (2009) calculated this fraction 
(biomass basis) in maize and sorghum, respectively, using the 
number of fully extended internodes as the basis for partitioning 
biomass to leaves (at 10 internodes, the fraction is ≈0.5), but 
there is significant dispersion in the regression (Figure  5  in 
Hammer et  al., 2009). This approach has some semblance to 
that of the functional-structural model of Drouet and Pagès 
(2003), and provides a continuous change in the partitioning 
coefficient compared with the phasic approach in sunflower. 
Stöckle et  al. (2003) followed an allometric approach, tying 
the partitioning of biomass to leaves to the biomass accrual 
per unit area. Fortunately, the largest impact of deviations in 
leaf area simulation occur when the leaf area index is lower 
than 3  m2 leaf m−2 ground, for beyond this threshold further 
increases in LAI cause proportionally smaller errors in radiation 
interception (unless the row structure is too sharp and “hedgerow” 
models are needed). Yet, connecting these parameters with 
the gene network controlling the processes defining leaf growth 
and development (Lastdrager et  al., 2014) is still a challenge. 
Coarse phenology-based or allometry-based approaches are far 
from this level of detail. Understanding and modeling biomass 
allocation is likely one the areas that requires the most research 
and a better theoretical framework.
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Large departures in canopy development can introduce 
uncertainties in other crop growth and resource capture 
processes and vice versa. While, the relatively simple models 
currently in use can provide a satisfactory stratum to test 
how changes in other processes affect the ultimate determination 
of yield, the network of genes that determine any process 
would at some point intersect the network of processes directing 
leaf development and expansion in greater detail. This is 
exemplified by the relationship between stem length and grain 
size (Miralles and Slafer, 1995); but how many of the less 
obvious linkages remain undetected? There is a risk in confusing 
a well-calibrated model with a model able to represent the 
level of detail in complex gene networks that are not even 
completely known, for example to model ABA-induced stomatal 
closure (Albert et  al., 2017).

Biomass Production
Mechanistic models of photosynthesis simulate gross 
photosynthesis and subtract growth and maintenance respiration 
to calculate net carbon assimilation. Carbon is partitioned into 
aerial (stems, leaves, and grains) and root portions, and expressed 
as biomass based on its carbon requirement and chemical 
composition, which are associated with growth and maintenance 
respiration (Penning de Vries et  al., 1983). An advantage of 
these models is that photosynthesis and transpiration are linked 
via stomatal conductance, the latter responding to environmental 
conditions such as light, CO2 concentration, and humidity (e.g., 
Kremer et al., 2008). These models provide excellent explanatory 
frameworks, but their usefulness may be  challenged by the 
large number of parameters, the correlation among parameters, 
uncertainties associated with their values, the need to integrate 
photosynthesis and transpiration throughout the crop canopy, 
and the growth-photosynthesis feedback.

Simulation of biomass production as a function of daily 
crop intercepted solar radiation multiplied by a conversion 
factor to biomass (e  =  radiation-use efficiency, g MJ−1) as 
defined by Monteith (1995) simplifies the prediction of crop 
biomass gain. This framework has been adopted by many 
modeling teams. The value of e can be  determined in field 
experiments (Sinclair and Muchow, 1999; Stöckle and Kemanian, 
2009) and while there is a general consensus on the maximum 
attainable e, for example for C3 and C4 cereals, there are studies 
often reporting e that can be 20% or more higher than somewhat 
accepted high values. Kukal and Irmak (2020) have reported 
maize e of 4.8 and 5.1  g/MJ of intercepted PAR, while the 
review by Stöckle and Kemanian (2009) reported a maximum 
e of 4  g/MJ (converting solar- to PAR-based e). Without 
unwarranted dogmatism, it is hard to operate when supposedly 
conservative scalars are assumed or accepted to vary to 
such extent.

The large differences in e for different locations and environments 
in which the soils would not suggest water stress as a limiting 
factor have been mainly associated to difference in the vapor 
pressure deficit of the air (D, kPa). Stöckle and Kiniry (1990) 
summarized e data for maize across diverse world locations, 
and found that e fluctuating from 2.9 to 4.4  g/MJ PAR was 
negatively correlated to D. This relationship was further supported 

by Kiniry et  al. (1998), who pooled additional data for maize 
and sorghum, by Manrique et  al. (1991) in potatoes, and by 
Kemanian et  al. (2004) in wheat and barley. The main reason 
for such a response is that, as D increases and transpiration 
increases, stomata close (Monteith, 1995). It is difficult to 
separate diffuse radiation from D effects (Stöckle and Kemanian, 
2009). Most of the sources of e variations are known (the 
same ones that affect photosynthesis), including environmental 
factors such as temperature, radiation and its distribution in 
the canopy, and air humidity, or by plant factors such as 
nutritional and water status, ontogeny, and source-sink regulation 
(e.g., Stöckle and Kemanian, 2009). However, the game of 
responses is seldom incorporated in crop models. There are 
conceptual similarities but important differences in a bottom 
up model that regulates stomatal conductance based on relative 
humidity (e.g., Collatz et  al., 1991), lumped models that rely 
on D to define a maximum e (Williams, 1990), and models 
that use other controls over e (Villalobos et  al., 1996).

Another approach to simulate biomass gain is based on 
the concept of transpiration-use efficiency (w), which is used 
in a limited number of models (e.g., Stöckle et al., 2003; Steduto 
et  al., 2009). Good relationships between biomass gain (B) 
and transpiration (Tr) have often been reported, which improve 
by normalizing transpiration using climatic evaporative demand 
(e.g., de Wit, 1958) or D (e.g., Bierhuizen and Slatyer, 1965). 
Tanner (1981) and Tanner and Sinclair (1983) formalized this 
relationship deriving an expression accounting for the common 
stomatal pathway for carbon assimilation and water loss from 
crop canopies stating that w = k/D, where k is a crop/genotype 
parameter. This parameter was assumed constant for a given 
genotype, in large part because the ratio of internal (leaf) to 
external (air) CO2 concentration was assumed to be  constant. 
Therefore, B  =  w  ×  Tr. The value of k can be  determined 
experimentally if Tr can be  measured. However, the stomatal 
optimization hypothesis of Cowan and Farquhar (1977) states 
the marginal water use efficiency leans toward a constant; based 
on this assumption, it can be  shown that w is proportional 
to the square root of D (w  =  k/Dβ with β  =  0.5) and that 
the ratio of internal (leaf) to external (air) CO2 concentration 
decreases as stomata close. Kemanian et  al. (2005) showed 
that this relation seems to hold true for many species and 
estimated that β  =  0.59 for barley and wheat; Kremer et  al. 
(2008) estimated that β = 0.44 for maize. Although the apparent 
alignment of theory and data is pleasing, there is substantial 
dispersion in any k estimation and variation among genotypes 
is hard to quantify and requires a refined understanding of 
the environmental interactions (Condon et  al., 1993).

A shortcoming of the e approach is the decoupling between 
biomass production, the canopy energy balance, and the crop 
water use. The consequences of this decoupling can 
be  exacerbated by deviations in simulation of crop water use 
discussed below. This occurs because biomass gain calculations 
based on e depend on intercepted PAR radiation, but do not 
consider the canopy energy balance, the soil-plant-atmosphere 
continuum, and ensuing changes in stomatal conductance. The 
consequences of this decoupling are significant (e.g., Basso 
and Ritchie, 2018). In the model CropSyst (Stöckle et al., 2003), 
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this is resolved, at least for the growth estimation, by using 
the minimum of the growth estimated derived from radiation 
or transpiration.

Both e and k are, to some extent, negatively correlated. 
High e under low D would reflect a high stomatal conductance 
and high k may reflect lower stomatal conductance and therefore 
high w. These parameters, if used in combination, can be helpful 
to discern if aggressive water use (high e and high Tr) should 
be favored over a conservative use of water (high k and low Tr). 
Once again, these macro approaches can be  robust enough 
(if well used) to simulate growth and can help define stress 
environments, and with expert use can suffice to explore the 
biological boundaries to growth. Beyond this relatively simple 
step, the task of evaluating the potential to genetically 
manipulating the expression of these traits belongs to more 
detailed photosynthesis models (e.g., Kannan et  al., 2019; Wu 
et  al., 2019). In our opinion, the expert user of a detailed 
simulation models must have a profound understanding of 
simplified approaches that retain core explanatory power and 
shed peripheral processes.

Crop Water Use
Comparative studies have uncovered a large variation in model 
simulation of crop water use (Cammarano et al., 2016; Kimball 
et  al., 2019), which stems from the combination of several 
factors. For example, models use a variety of approaches to 
determine atmospheric evaporative demand, to be  referred to 
as crop potential evapotranspiration (CPET). This accounts for 
the energy available to evaporate water, and the conductance 
for water vapor between the exchange surface and the atmosphere 
per unit of land area, driving crop transpiration (mostly through 
plant stomata), soil water evaporation, evaporation of water 
intercepted by crop canopy and residues, and snow sublimation. 
The most biophysically complete approach to calculate CPET 
is the Penman-Monteith evapotranspiration (P-M ET) equation 
(Allen et al., 1998), which has been shown to outperform several 
other approaches when compared with lysimetric observations 
(e.g., Allen, 1986; López-Urrea et  al., 2006; Benli et  al., 2010). 
The Penman-Monteith ET equation is based on the combination 
of the energy balance and vapor and heat transfer equations 
to estimate water fluxes of crop canopies modeled as a “big 
leaf ”. The P-M ET equation is not a perfect approach to model 
the complexity of water and heat fluxes from cropped surfaces, 
particularly the assignment of resistances to canopy and soil 
surface contributions before canopy closure. Limitations of the 
application of the P-M ET equation to real canopies have been 
addressed with engineering approaches using empirical 
adjustments, mostly based on lysimetric data (Allen et al., 1998).

Other methods to approximate CPET fluxes have been developed 
based on increasing simplifications of the P-M ET equation to 
accommodate the use of weather data with less variables than 
required. However, each simplification deviates from the physical 
transparency of the P-M ET approach and forces incorporating 
empirical coefficients whose values are not easy to assess without 
careful calibration and still produce CPET estimates that depart 
from PM-ET. Kimball et al. (2019) highlight this problem. These 
authors compared potential ET from 29 maize models, reporting 

huge differences among them (Figure 10 in Kimball et al., 2019), 
which obviously propagated to the simulation of actual 
evapotranspiration, crop transpiration, and beyond.

There are also many models to simulate crop water uptake 
(normally equated to Tr), including a wide range of complexity 
(e.g., van den Berg et al., 2002; Wang and Smith, 2004; Camargo 
and Kemanian, 2016). Evaluation of the performance of these 
models or sub-models decoupled from complete crop models 
often reveals important differences that can be  obscured when 
comparing aggregated variables like yield. Camargo and Kemanian 
(2016) compared the water uptake methods implemented in 
six crop models, ranging from simple empirical to more 
mechanistic approaches, in scenarios with different evaporative 
demand, soil texture, and water distribution with depth. They 
found that each method responded differently to these scenarios, 
affecting the onset of water stress, the cumulative water uptake, 
the shape of the soil drying front, and the response to high 
transpiration demand. If root depth progression and water 
uptake were genotype-agnostic, then crop models could 
be calibrated and used for GEMI analysis of other traits without 
much concern for the roots. But we  know that is not the 
case, and the interaction of the type of model used for modeling 
root colonization of the soil profile and algorithms to simulate 
water uptake are of critical importance in any analysis, and 
more so for GEMI assessment which demands a fine slicing 
of differences among genotypes.

Uncertainty in the calculation of potential Tr and realized 
crop water uptake is compounded by two-way feedbacks 
with canopy and root growth, affecting biomass growth and 
yield projections. Cammarano et  al. (2016) quantified 
variations among 16 wheat models in the simulation of 
actual evapotranspiration, water use efficiency, transpiration 
efficiency, crop transpiration, soil water evaporation, and 
grain yield at increased temperature and elevated atmospheric 
CO2 concentration. The uncertainties in the simulation of 
evapotranspiration and Tr were greater with high temperatures 
and in combination with elevated CO2. They concluded that 
the simulation of crop water use should be  improved and 
evaluated with field measurements before models can be  used 
to project future crop water demand (Cammarano et al., 2016). 
The logical follow up question is what to do next. Is it really 
the case that models need to be  improved to simulate water 
use? Perhaps soil input information needs to improve, and 
the consideration of plant-soil interactions needs to improve, 
but modeling approaches should converge to those with a 
defensible theoretical and empirical basis.

Crop Nitrogen Use
The N content in plants is typically modeled in two steps: 
(a) crop N demand and (b) soil/root N supply, with the 
minimum of the two reflecting crop N uptake (Stöckle et  al., 
1994, 2003). Above ground N demand is often calculated based 
on three standard N concentration curves evolving daily as a 
function of aboveground biomass (Greenwood et  al., 1990; 
Stöckle and Debaeke, 1997): maximum (upper limit), critical 
(below which growth begin to be  affected), and minimum 
(growth stops). The daily crop N concentration and biomass 
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growth reduction, if any, is defined by soil N supply. These 
standard concentration curves are determined from experiments 
including different levels of fertilization (Stöckle and Debaeke, 
1997). A model by Jamieson and Semenov (2000) simulates 
N demand separately for structural N (low N concentration), 
green area N (high N concentration), and storage (luxury N 
consumption), not requiring the standard curves. In either 
case, the amount of N apportioned to roots must be calculated. 
The N supply is simulated based on the N mass, root density, 
and soil water content of all soil layers explored by roots. The 
supply of N is reduced as soil N mass and water content 
decrease from optimum values, eventually not meeting N 
demand and affecting leaf area expansion and radiation-use 
efficiency. Both demand and supply processes in crop models 
are empirical and potentially subject to large uncertainties.

In the case of wheat and other grain cereals, N accumulation 
in grains and projection of protein content are important. Most 
models are limited to the prediction of N concentration, which 
is converted to a protein content, although models that simulate 
the content of storage proteins are also available (Martre et  al., 
2006). A robust allometric relationship between grain N 
concentration, harvest index, and N concentration in aboveground 
biomass at harvest was shown by Kemanian et  al. (2007a) for 
maize, sorghum, wheat, and barley, which indicates that the 
timing of N uptake and biomass accretion has lesser influence 
on the correlation between final C and N partitioning to grain.

Implementing different approaches to represent crop N use 
results in substantial diversity when outputs from different 
models are compared. A comparison of three spring wheat 
models in Canada showed that all models provided good 
predictions for average plant N when precipitation was near 
normal and recommended N rates were applied, but performance 
decreased when N was applied at lower rates or in the presence 
of mild precipitation deficit or excess early in the season 
(Sansoulet et  al., 2014). A comprehensive study evaluated 11 
crop models for spring barley in Jokioinen, Finland, under 
different N fertilization rates (Salo et  al., 2016). The models 
differed widely in process description. Although detailed data 
were provided for calibration, the authors showed that model 
performance decreased for N-limited conditions and when 
environmental conditions deviated strongly from the 
calibration conditions.

Models provide opportunities to evaluate hypotheses of plant 
N dynamics (e.g., Sinclair and Amir, 1992; Jamieson and 
Semenov 2000), but the use of models for GEMI evaluation 
faces challenges. Multi-model comparisons indicate large 
variations in model responses, indicative that some models 
may have inadequate representation of processes or/and 
unsatisfactory selection of input parameters by users. The 
problem gets compounded by hydrologic and soil processes 
affecting the movement of nitrate in the soil, and other processes 
affecting the soil C and N dynamics responsible for N 
mineralization and immobilization as well as N transformations.

Yield
Grain yield is often modeled using yield components, which 
are affected by environmental factors. However, the ability of 

crop models to simulate grain number, grain weight, and 
translocation of stem reserves is often inadequate (e.g., Moreno-
Sotomayor and Weiss, 2004; Dettori et al., 2011; Gaydon et al., 
2017). Dettori et al. (2011) reported simulated grain yield with 
an average normalized root mean square error (nRMSE) of 
27–20% compared with observed yields for three wheat cultivars 
and at two sites under Mediterranean conditions in Italy. 
Evaluation of a rice model simulations of grain yield based 
on 11 studies resulted in an average normalized RMSE of 
23%, with two studies reporting a value of 3%, five in the 
range ~21–18%, and four in the range of 32–23% (Timsina 
and Humphreys, 2006). The same study reported eight studies 
for wheat, with normalized RMSE of simulated grain yields 
of 13%, and a range of 17–2%.

The prediction of grain yield is the result of numerous 
processes occurring during the growth cycle. Jamieson et  al. 
(1998) concluded that for yield prediction the accurate simulation 
of phenological development and LAI is much more important 
than the components of the yield. Sinclair and Jamieson (2006) 
argued that the correlation between growth rate at a time 
before anthesis and grain numbers, and between the latter 
and grain yields led to models with unnecessary complexity. 
Under no N limitation, a mechanistic model of biomass 
accumulation and a harvest index for partitioning to grain 
accounted for most of the variability in wheat grain yield over 
a 10-year period (Amir and Sinclair, 1991). A similar argument 
underpins the Kemanian et  al. (2007b) model to calculate the 
harvest index in determinate crops; the model has a logical 
foundation, a minimum number of parameters, but requires 
that phenology and growth be  modeled accurately.

While it is tempting to argue that simple models are likely 
more robust than yield-component based models to predict 
yield, it is easy to see that these models can be  of limited 
use when the interest is understanding the controls of the 
grain number and size and GEMI. Bustos et  al. (2013) showed 
experimentally that high grain number can be  combined with 
high grain weight in wheat, showing impressive yield gains 
in a high yielding environment. Interestingly, the high yields 
were associated with extremely high e compared with check 
wheat cultivars or any C3 crop and suggests a strong sink 
control over photosynthesis. To our knowledge, most models 
simulate first the photosynthesis rate (or the lumped surrogates 
e  ×  St or w  ×  T) or how much biomass will be  available for 
the growth of each organ, and do not include a feedback 
from growth potential to photosynthesis, a feedback that in 
any case is challenging to model.

Another factor introducing uncertainty in grain yield 
prediction is the effect of drought and cold and heat stress 
on grain set and growth. We  are specifically referencing to 
effects that are independent or in addition to the impact of 
these stresses on photosynthesis. Prasad et  al. (2017) reviewed 
the effect of short episodes of heat stress on 20 field crops, 
showing reduction of grain set and harvest index with 
temperatures above crop-specific thresholds, ≈32°C in the case 
of wheat. The ability of crop models to simulate grain yield 
under conditions of heat stress appears constrained, which can 
be a significant limitation considering global warming scenarios. 
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Liu et  al. (2016) compared four wheat models with 4  years 
of environment-controlled phytotron data with two cultivars 
under heat stress, concluding that all models needed 
improvements in simulating heat stress during anthesis. 
Schlenker and Roberts (2009) and Hoffman et  al. (2020) 
analyses of large panel of county level yields reveal threshold-
like responses to temperature for maize, sorghum, soybean, 
and cotton. Furthermore, maize and soybean seem to have 
broad plateaus in which temperature has a moderate effect 
on yield, while sorghum has a more sensitive response with 
almost no plateau that is more sensitive in the cold end but 
slightly more adapted in the hot end of the data domain 
(Hoffman et al., 2020). It is not clear if current models represent 
these nuances with fidelity.

Roots and Soils
The root-soil complex is likely one of the most understudied 
components and one that is represented with simplicity in 
simulation models. Much like foliage development, the root 
exploration of the soil volume depends on intrinsic properties 
of a given genotype that define the 3D structure of the root 
system, i.e., the progression of the rooting front and proliferation 
of roots in the explored volume, and the feedback response 
to soil properties that may limit or promote root growth. 
Roots need to intercept water or nutrients that can move 
through the medium or need to reach water or nutrients that 
are moving slowly through the soil. Lynch and collaborators 
(e.g., Lynch, 2011) have performed some of the most fundamental 
work on root architecture and its relationship with phosphorous 
(P) and N capture. This body of work shows that significant 
differences among genotypes within a species exist in root 
architecture and nutrient acquisition. Structural-functional 
models of root systems have been incorporated in models 
that, however, do not simulate full crop cycles (Schneider 
and Lynch, 2018), are not integrated in comprehensive crop 
models, and like any model carry the risk of conflating 
model assumptions with emergent properties. These models 
are far from representing the uneven exploration of soil layers 
by roots and the impact of compacted soil layers on actual 
water use patterns (Breslauer et  al., 2020). New efforts at 
mechanistically modeling water uptake in soil layers with 
clusters of roots (uneven root distribution) are fortunately 
emerging in the literature (Graefe et  al., 2019).

Most importantly, these models have little feedback from 
soil properties that may limit root growth. Ernst et al. (2016), 
working with wheat, and Stefani-Fae et  al. (2020), working 
with soybean, have shown that crop yield responds strongly 
to soil physical properties that are best related to field measured 
soil hydraulic conductivity. Field measured saturated hydraulic 
conductivity can exceed that obtained from pedotransfer 
functions usually used in models by a factor of 10–20 
(Stefani-Fae et  al., 2020). To our knowledge, no model can 
yet represent this response mechanistically or derive these 
responses just by looking at a soil description. In the assessments 
of GEMI in conditions in which the yield variation is dominated 
by soil factors other than depth to bedrock, there are plenty 
of opportunities for uncertainties in root-soil processes to 

override genotypic variation as represented in crop models. 
These concerns are of lesser importance in irrigated and 
well-fertilized crops but become more important as soil 
limitations become more relevant. It is plausible that using 
remote sensing and machine learning algorithms (Azzari 
et  al., 2017) to support earlier efforts at model inversion 
(Paz et  al., 1998) can mitigate some of the soil-derived 
uncertainty, but clearly there is a long distance to travel to 
make models useful for GEMI assessments while at the same 
time assuaging concerns about uncertainty derived from 
soil variation.

THE LARGER CONTEXT FOR 
IMPROVING AND APPLYING MODELS 
FOR GEMI ASSESSMENTS

Crop models can potentially be  useful for GEMI assessment, 
although uncertainty in output results will always exist depending 
on the specific model and growth conditions, and as reviewed 
above, with many possible interacting factors. Therefore, it is 
important for users (and developers) to carefully evaluate the 
context in which the models are applied as well as to be mindful 
of areas of model limitations. The context for improving and 
applying models includes the nature of the models themselves 
and appropriate knowledge of the environmental and 
management conditions under which crop model simulations 
are conducted.

The Nature of Crop Models and Their Use
Crop models are often not well balanced in the treatment of 
the large number of processes and interactions that are needed. 
This usually reflects the modeling team composition, which 
leans toward more emphasis on quality and details of the 
mathematical formulation of processes in their areas of expertise, 
while other components are (much) less developed. Cooperation 
between modeling teams would be highly desirable for progress 
toward better models, including sharing of code and concepts 
and continued testing of models. Studying what has been done 
before embarking in large modeling undertakings seems to 
be  of critical importance to accelerate innovation. Increased 
cooperation has been fostered by communities of crop modelers 
such as AgMIP (Ruane et  al., 2017), MACSUR (Ma et  al., 
2014), and others. Activities in these communities have mostly 
focused on model comparison, with the shortcoming that 
emphasis has been placed on the performance of complete 
crop (“branded”) models, and much less on processes. The 
large diversity of model outputs in these comparisons (reviewed 
above) and underlying causes are difficult to identify, with 
multiple interactions and error propagation among different 
components defying quantification. The lack of experiments 
purposely designed to produce data for process comparisons 
is a barrier. Nevertheless, even comparison of individual processes 
using prescribed weather/soil scenarios and state variables 
affecting the target process would be  extremely useful. This 
would require the selection of different approaches used in 
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crop models, and coding them into a common platform for 
comparison (Jara and Stöckle, 1999; Camargo and Kemanian, 2016).

Another factor affecting the performance of crop models, 
often ignored, is the proficiency of model users. Choosing 
model parameters requires an understanding of the crops and 
environments involved, and knowledge of the model structure, 
processes, mathematical formulations, and sensitivity of model 
responses to changes in parameter values. Confalonieri et  al. 
(2016) argued that one should not speak of evaluation of a 
model but rather of a model-user combination, where a major 
role of the user is in determining the method of calibration 
and the selection of crop input parameter values. This was 
explicitly shown in model simulations of crop evapotranspiration 
(Kimball et  al., 2019), with very different results obtained by 
the same models operated by different users.

One barrier for judicious evaluation of potential model 
limitations is that model descriptions are often incomplete or 
lacking sufficient detail. Furthermore, model developers are 
continuously adding new capabilities and expanding their 
portfolio of projects in response to ever-growing demand for 
new applications from multiple users. However, if attention 
to the basic issues discussed in this article do not receive 
sufficient priority, crop models run the risk of losing credibility 
and relevancy.

The Model Application Landscape
Successful model-based assessment of GEMI not only require 
the use of the better crop models, but an adequate representation 
of the environmental conditions on the landscape where crops 
are grown, and good knowledge of the management practices 
used. For regional or basin-scale assessments, the information 
on management practices is normally insufficient, starting with 
such simple facts as the temporal and spatial variation of 
planting dates. Similarly, weather and soil data are often 
inadequate, incomplete, or available at too large scales. Under 
these conditions, thorough crop model calibration is not always 
possible, and in fact the contrary is normally true. How do 
we  calibrate models with imperfect information? Part of the 
answer is in the use of robust crop models whose state variables 
do not jump outside reasonable limits of variation under extreme 
or new conditions, as well as greater emphasis on crop input 
parameters that are observable.

Landscape topography, local and basin surface and sub-surface 
hydrology, presence of shallow water tables, field flooding, 
soils with physical or chemical challenges for roots colonization 
or crop growth, variations of carbon and nitrogen cycling, 
the effect of crop rotations, cover crops and residue management, 
and other factors are part of the landscape context where 
models must be  applied for GEMI assessment. These are not 
trivial barriers that could be  partially mitigated by hydrologic 
models, linking crop models with spatial models of water and 
nutrient transport, carbon and nitrogen cycling models, remote 
sensing data, and other tools. But these also have their own 
uncertainties and require expertise outside the interest of 
crop model users. An example, which is perhaps extreme, is 
the yield variation in the loess deposits of the Palouse region 
in Washington, Oregon and Idaho (Huggins et  al., 2014). 

Because of the interaction of topography and landscapes, the 
soils represent almost contrasting climates. All these variations 
reflect not only in yield but also in nutrient dynamics and 
grain N concentration of the wheat and barley typically grown 
in this region. In this physical context, 1D models can be useful 
to represent trends but are relatively hopeless at capturing 
granular, topographically driven variation.

There is also an agronomic and biological context to 
consider. Not many models can simulate crop rotations, cover 
crops, and residue management. Crop models do not consider 
the large number of organisms and the continuously changing 
pressure from weeds, pests, and diseases; and if they do, 
properly capturing the biological variation and known responses 
to the environment of these bio-stressors is an additional 
challenge. Nonetheless, recent work with large data panels 
and machine learning (Schlenker and Roberts, 2009; Hoffman 
et  al., 2020) indicate that a substantial fraction of the yield 
variation can be  captured with relatively simple models. This 
indicates that some putatively complex interactions are 
not always relevant or that aggregation at certain scales 
(e.g., counties) dampens the expression of these interactions 
in the data.

FINAL REMARKS

This article represents a view from a crop modeler perspective 
looking into the progress needed to further model applications 
addressing GEMI. Depending on the type of application, some 
but not all models may perform reasonably well under well-
constrained conditions. Both model and user performance often 
deteriorate when the simulated conditions depart from the 
calibration domain or typical testing scenarios. This challenge 
has been addressed for some applications using model ensembles. 
While model ensembles provide cover against model and 
sometimes input uncertainty, further progress needs to break 
free from ensembles to assess models’ weaknesses and knowledge 
gaps critically.

Modeling teams may focus on the following: (1) There must 
be  convergence on how to model biophysical processes for 
which the basic understanding has been in place for decades. 
(2) While model development always demands sagacity to 
integrate principles and empirical knowledge, the space requiring 
the most work is likely the root-soil interaction to determine 
root exploration and water uptake as well as nutrient acquisition. 
Sometimes maximum rooting depth or root distributions are 
imposed without empirical support or calibrated with substantial 
supervision. Yet being able to predict rather than impose how 
roots explore the soil (or how much water is accessible) is of 
critical importance for practical applications. (3) Sewing trait 
expression and modeling to gene transcriptional and 
posttranscriptional controls will require a tight bottom-up and 
top-down coordination of models, and that requires teams 
with balanced expertise. This is difficult to accomplish. (4) 
Most crop models are 1-D, while many landscape processes 
depend on the interaction of topography and soil properties. 
This is one of the areas with the potential to truly exploit 
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GEMI for a more refined management of the landscape. 
(5) Models cannot become even more difficult to use; setup, 
calibration, and application should be  seamlessly integrated, 
otherwise the user may have more influence on the output 
than the model. (6) Data assimilation strategies that allow 
ingesting data at runtime and updating state variables while 
conserving mass and energy will be critical to integrate models 
to a flexible data-model. In this context, it is conceivable that 
the integration of sensors, artificial intelligence, and other 
technologies will be  helpful to reduce uncertainty, but 
improvement remains a sine-qua-non condition for crop models 
success as research and applied tools.

The question “Can crop models identify critical gaps in 
genetics, environment, and management interactions?” has many 
angles, requiring careful work by multidisciplinary teams to 
overcome the limitations discussed in this article. The context 
for crop model applications is complex, requiring ingenuity, 
dedication, and good judgment to advance GEMI assessments 
and other applications.
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