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Autophagy is a highly conserved system for degrading and recycling cytoplasmic 
components. The identification of autophagy-related (ATG) genes, required for 
autophagosome formation, has led to numerous studies using atg mutants. These studies 
have revealed the physiological significance of autophagy in various functions of diverse 
organisms. In land plants, autophagy is required for higher-order functions such as stress 
responses and development. Although defective autophagy does not result in any marked 
defect in the reproductive processes of Arabidopsis thaliana under laboratory conditions, 
several studies have shown that autophagy plays a pivotal role in male reproduction in 
several land plants. In this review, we aim to summarize information on the role of autophagy 
in male reproductive processes in land plants.
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INTRODUCTION

Autophagy is a highly conserved system for degrading and recycling cytoplasmic components, 
including organelles, in the vacuole or lysosome. Among the various modes of autophagy 
reported thus far, macroautophagy, hereafter referred to as autophagy, has been the most 
intensively studied. This type of autophagy begins with the formation of a membrane sac 
called the isolation membrane (also known as the phagophore), which extends, engulfing 
cytoplasmic components, to form a double membrane-bound autophagosome. The outer 
membrane of this autophagosome fuses with the vacuolar membrane, releasing the inner 
membrane-bound autophagic body into the vacuolar lumen, to be  degraded by vacuolar 
hydrolases (Figure  1A; Takeshige et  al., 1992; Baba et  al., 1994). In the 1990s, a gene set 
required for autophagosome formation, hereafter referred to as core autophagy-related (ATG) 
genes, was identified by forward genetics in Saccharomyces cerevisiae (Tsukada and Ohsumi, 
1993; Thumm et  al., 1994; Harding et  al., 1995; Klionsky et  al., 2003). The core ATG genes 
encode a group of Atg proteins that form several functional units: the Atg1 complex, the 
phosphatidylinositol 3-kinase (PI3K) complex, Atg9, the Atg2-Atg18 complex, and two 
ubiquitin-like conjugation system complexes (Nakatogawa et al., 2009; Mizushima et al., 2011). 
One of the core Atg proteins, Atg8, is conjugated to phosphatidylethanolamine by the 
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ubiquitin-like conjugation systems (Figure  1B; Mizushima 
et  al., 1998, 1999; Kirisako et  al., 1999, 2000; Shintani et  al., 
1999; Ichimura et al., 2000; Hanada et al., 2007). Since lipidated 
Atg8 localizes to the isolation membrane from the beginning 
until after completion of autophagosome formation, it is 
commonly used as an autophagosome marker in various 
organisms (Kirisako et al., 1999; Kabeya et al., 2000; Yoshimoto 
et  al., 2004). Reverse genetic approaches have unraveled the 
physiological roles of autophagy in a wide range of biological 
functions, including metabolic adaptation, intracellular quality 
control, and development (Mizushima and Komatsu, 2011; 
Mizushima, 2018).

In land plants (embryophytes), core ATG genes are highly 
conserved, and their functions are shown to be  similar to 
homologs in yeast and mammals (Avin-Wittenberg et al., 2012; 
Yoshimoto, 2012; Norizuki et  al., 2019). Studies of Arabidopsis 
thaliana atg mutants have demonstrated that autophagy is 
involved in responses to abiotic and biotic stressors such as 
nutrient starvation and pathogen attacks (Marshall and Vierstra, 
2018). Furthermore, recent studies have shown that autophagy 
plays a critical role in male reproduction in various species 
including Oryza sativa, Nicotiana tabacum, Marchantia 
polymorpha, and Physcomitrella patens (Kurusu et  al., 2014; 
Minamino et al., 2017; Sanchez-Vera et al., 2017; Zhao et al., 2020). 

In this review, we  will briefly outline male reproduction in 
angiosperms and bryophytes, then summarize the physiological 
roles of autophagy in these processes.

MALE REPRODUCTION IN LAND 
PLANTS

Various organisms reproduce through a sexual process in which 
haploid male and female gametes fuse with each other to 
generate diploid zygotes. Male gametes in land plants are 
roughly classified into two types based on the presence or 
absence of flagella. In angiosperms and the majority of 
gymnosperms, male gametes lack a flagellum and are therefore 
immotile, requiring transportation to egg cells via pollen tubes 
to accomplish fertilization. Conversely, bryophytes, lycophytes, 
monilophytes, and some gymnosperms such as ginkgoes and 
cycads utilize motile male gametes called spermatozoids, which 
are equipped with two or more flagella, for sexual reproduction 
(Southworth and Cresti, 1997; Renzaglia and Garbary, 2001). 
In both cases, drastic reorganization of cellular components 
occurs during male gamete development (Hackenberg and 
Twell, 2019). In the angiosperm, A. thaliana, four haploid 
microspores are produced by meiosis of a diploid pollen mother 

A
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FIGURE 1 | Scheme of macroautophagy. (A) Macroautophagy starts with the formation of the isolation membrane (phagophore) in the cytosol. This engulfs 
cytoplasmic components and forms the double membrane-bound autophagosome. The outer membrane of the autophagosome fuses with the vacuolar membrane 
to release a single membrane-bound autophagic body into the vacuole. (B) Two ubiquitin-like conjugation systems are involved in the lipidation of ATG8. First, 
ATG12 is conjugated to ATG5 by ATG7 (E1-like) and ATG10 (E2-like), and ATG12-ATG5 forms a complex with ATG16. ATG8 is cleaved by ATG4, resulting in the 
exposure of glycine at its carboxyl terminus. This processed ATG8 is conjugated to phosphatidylethanolamine by ATG7 (E1-like), ATG3 (E2-like), and the dimeric 
ATG12-ATG5-ATG16 complex (E3-like). Lipidated ATG8 can be localized to the autophagosomal membrane.
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cell. Each microspore divides asymmetrically to form vegetative 
and generative cells, and each generative cell undergoes 
symmetrical division to form two sperm cells (Figure  2A; 
Southworth and Russell, 2001; Berger and Twell, 2011). Once 
pollen grains are attached to the surface of stigmas, they 
germinate to produce pollen tubes, which are precisely guided 
to female gametes to deliver sperm cells (Figure 2A; Higashiyama 
and Takeuchi, 2015; Zheng et  al., 2018). Pollen grains are 
covered by an outer cell wall called the exine, which provides 
chemical and physical protection against stressors. The tapetum 
surrounding pollen grains plays a pivotal role in the synthesis 
of the exine by supplying nutrients and metabolites to pollen 
grains (Ariizumi and Toriyama, 2011).

In contrast to angiosperms, in which the sporophytic 
generation is dominant in the life cycle, the gametophytic 
generation is dominant in bryophytes, and spermatozoids are 
generated without meiosis. In the liverwort, M. polymorpha, 
spermatids are produced by the diagonal division of spermatid 
mother cells. Spermatids then differentiate into motile 
spermatozoids through a dynamic morphological conversion 
called spermiogenesis. This process includes de novo synthesis 

of the locomotory apparatus, chromatin condensation, nuclear 
elongation, a decrease in the number of mitochondria, and 
exclusion of a major part of the cytoplasm (Figure  2B). 
Spermatozoids move toward female gametes in water to 
accomplish fertilization (Shimamura, 2016). Although the 
molecular mechanisms of male reproduction in angiosperms 
are well-documented, molecular mechanisms of spermatozoid 
formation in basal land plants remain mostly ambiguous 
(Hackenberg and Twell, 2019).

ROLE OF AUTOPHAGY IN MALE 
REPRODUCTIVE DEVELOPMENT IN 
ANGIOSPERMS

Studies of A. thaliana atg mutants have not detected a marked 
effect of atg mutations on sexual reproduction under normal 
experimental conditions, whereas these mutations affect vegetative 
growth in this species (Doelling et  al., 2002; Hanaoka et  al., 
2002; Marshall and Vierstra, 2018). Mutation in ATG6 is the 
only exception; the atg6 mutant exhibits a defect in pollen 

A
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FIGURE 2 | Male gametogenesis in Arabidopsis thaliana, Marchantia polymorpha, and mammals. (A) In A. thaliana, microspores generated from meiosis of pollen 
mother cells undergo asymmetrical cell division to form vegetative and generative cells. Each generative cell divides symmetrically to yield two immotile sperm cells. 
Once pollen grains are attached to the surface of stigmas, they germinate to produce pollen tubes, which transport male gametes to female gametes. This figure is 
illustrated based on figures in Berger and Twell (2011) and Hackenberg and Twell (2019). (B) In M. polymorpha, spermatids are formed by the diagonal cell division of 
spermatid mother cells. Spermatids undergo a dynamic morphogenetic transformation called spermiogenesis to form spermatozoids. This figure was illustrated based 
on a figure in Shimamura (2016). (C) Dynamic cellular reorganization also takes place during mammalian spermiogenesis. Just before the release of spermatozoa, 
unnecessary cytoplasmic components are excluded from their cell bodies as the residual body, which is phagocytosed and degraded by the neiboring Sertoli cell.
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germination (Fujiki et  al., 2007; Qin et  al., 2007; Harrison-Lowe 
and Olsen, 2008). However, this defect might not be  a result of 
defective autophagy. In yeast, Atg6 is also known as Vps30 and 
forms a complex with Vps34 and Vps15 to produce 
phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol 
(Kihara et  al., 2001). Because the A. thaliana vps15 mutant also 
exhibits a defect in pollen germination and PI3P is also required 
for various cellular reactions beyond autophagy, defective pollen 
germination in the atg6 mutant could result from a deficiency 
independent of autophagy (Fujiki et  al., 2007; Qin et  al., 2007; 
Harrison-Lowe and Olsen, 2008; Xu et  al., 2011; Wang et  al., 
2012). Thus, ATG-dependent autophagy should be  dispensable 
for male reproduction in A. thaliana. In addition, Zea mays 
atg mutants are fertile under normal experimental conditions 
(Li et  al., 2015). However, autophagy is indispensable for male 
reproduction in O. sativa (Kurusu et  al., 2014). In this species, 
autophagy is highly activated in the tapetum during microspore 
development (Kurusu et  al., 2014; Hanamata et  al., 2019). The 
tapetum undergoes programmed cell death to supply metabolites 
and nutrients to developing microspores, which is essential  
for pollen maturation and pollen tube elongation (Ku et  al., 
2003; Kawanabe et  al., 2006; Li et  al., 2006; Zhang et  al., 
2008). The atg7 mutant exhibits limited anther dehiscence, 
and its pollen maturation and germination are severely 
compromised, resulting in markedly reduced male fertility 
(Kurusu et al., 2014; Sera et al., 2019). This could be explained 
by the fact that the atg7 mutant exhibits defective programmed 
cell death of the tapetum, which could result in an insufficient 
supply of metabolites and nutrients to developing microspores 
(Kurusu et al., 2014). Given that autophagy executes programmed 
cell death during tracheary element differentiation in A. thaliana 
and embryogenesis in Picea abies (Kwon et  al., 2010; Minina 
et  al., 2013), autophagy could directly induce programmed cell 
death in the tapetum of O. sativa. Alternatively, autophagy might 
indirectly affect programmed cell death by regulating the metabolism 
of phytohormones. The phytohormone gibberellin plays an essential 
role in the development of tapeta and pollen in O. sativa (Chhun 
et al., 2007; Aya et al., 2009). Gibberellin accumulation is reduced 
in the anther of the atg7 mutant, and treatment with active 
gibberellin (GA4) fully and partially repairs the defect in pollen 
maturation and germination, respectively. This suggests that 
autophagy regulates the development of male reproductive tissues 
via the metabolism of gibberellin to some extent (Kurusu et  al., 
2017). The different effects of defective autophagy on male fertility 
between O. sativa and A. thaliana might result from differences 
in the structure of the tapetum, lipidic components of pollen 
grains, or both (Hanamata et  al., 2014). Further study will 
be needed to clarify why autophagy is particularly required during 
male reproductive processes in O. sativa.

Cellular and molecular reorganization during pollen 
germination and pollen tube elongation also involve autophagy. 
In addition to the essential role of autophagy in O. sativa pollen 
germination described above (Kurusu et  al., 2014), a similar 
process in N. tabacum also requires autophagy (Zhao et  al., 
2020). In this species, autophagy is highly activated during the 
initial stage of pollen germination, and autophagosomes accumulate 
around the germination aperture. ATG2, ATG5, and ATG7 RNAi 

N. tabacum lines exhibit reduced rates of pollen germination, 
and in these lines, unlike in wild-type plants, a convex layer 
of the cytoplasm containing mitochondria remains at the 
germination aperture. Furthermore, a mitochondrial marker and 
the autophagosome marker ATG8 partially colocalize, and 
cardiolipin, a mitochondria-specific phospholipid, accumulates 
in the ATG RNAi lines. This information suggests that 
mitochondria are a target of autophagy in N. tabacum pollen 
grains (Zhao et al., 2020). In contrast, atg mutants of A. thaliana 
exhibit no detectable abnormality in pollen germination (Zhao 
et  al., 2020). Vacuolar degradation systems other than ATG-
dependent autophagy might contribute to reorganization of 
intracellular components during pollen germination in A. thaliana; 
this should be  verified in future studies.

ROLE OF AUTOPHAGY DURING 
BRYOPHYTE SPERMIOGENESIS

The spermatozoids of most bryophytes consist of two flagella 
and a cell body, which comprises an elongated spiral nucleus, 
one plastid, two mitochondria, and trace amounts of cytosol 
(Figure 2B; Renzaglia and Garbary, 2001; Shimamura, 2016). 
Although reorganization of intracellular structures during 
bryophyte spermiogenesis has been intensively observed by 
transmission electron microscopy (TEM; Renzaglia and 
Garbary, 2001), the dynamics of intracellular reorganization 
remain unclear. The moss, P. patens, and the liverwort, M. 
polymorpha, are model plants associated with genetic studies 
(Rensing et  al., 2008; Strotbek et  al., 2013; Ishizaki et  al., 
2016; Bowman et  al., 2017). Taking advantage of various 
organelle markers established in M. polymorpha (Kanazawa 
et  al., 2016; Minamino et  al., 2018), Minamino et  al. (2017) 
observed the dynamics of organelles during spermiogenesis 
by confocal microscopy. They found that the size of the 
vacuole increases during spermiogenesis, and proteins in 
various organelles, including the plasma membrane, Golgi 
apparatus, and multivesicular endosomes, are transported to 
the luminal space of the vacuole during spermiogenesis. 
These findings indicate that the vacuole plays a major role 
in the removal and degradation of cellular components, 
including organelles, during M. polymorpha spermiogenesis 
(Minamino et  al., 2017). Multivesicular endosomes and 
autophagosomes, which are involved in endocytic degradation 
of membrane proteins and degradation of cytoplasmic 
components, respectively, are frequently observed in spermatids 
undergoing spermiogenesis. The number of autophagosomes 
increases during spermiogenesis, and autophagic body-like 
structures are observed inside the vacuole, suggesting that 
autophagy is activated during spermiogenesis. These findings 
suggest that both autophagy and endocytic degradation play 
important roles during M. polymorpha spermiogenesis.

A critical role of autophagy in spermiogenesis has been 
identified in P. patens (Sanchez-Vera et al., 2017). Autolysosome-
like structures are frequently observed in spermatids undergoing 
spermiogenesis; these may be  formed by fusion between 
autophagosomes and the vacuole. An elevated expression level 
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of GFP-PpATG8e has also been detected in P. patens 
spermiogenesis, suggesting upregulated autophagy during this 
process. Furthermore, spermatozoids of the autophagy-defective 
atg5 mutant are sterile and possess a wide spectrum of 
morphological abnormalities such as a larger amount of cytoplasm 
and an abnormally shaped nucleus. TEM observation has also 
revealed that the atg5 mutation impairs decreasing the number 
of mitochondria and plastids, and flagellar formation during 
spermiogenesis (Sanchez-Vera et  al., 2017). Thus, autophagy 
plays an important role in male gametogenesis in bryophytes, 
whose molecular regulatory mechanisms would be  interesting 
targets to study.

MALE REPRODUCTION AND 
AUTOPHAGY IN THE MAMMALIAN 
SYSTEM

Mammalian sexual reproduction also utilizes motile male 
gametes with a flagellum (spermatozoa; Figure  2C), whose 
composition of intracellular structures is different from that 
of bryophytes. A mammalian spermatozoon possesses a 
nucleus at its head and a flagellum at the tail, and a 
mitochondrial helical sheath surrounds the axoneme at the 
midpiece (Figure  2C; Toure et  al., 2020). Although the 
exclusion of the cytoplasm takes place during spermiogenesis 
in both mammals and bryophytes, their molecular mechanisms 
must be  not the same. Although the residual body released 
from mammalian spermatids, which contain unnecessary 
cytoplasmic components, is removed by the phagocytic 
activity of the neighboring Sertoli cell during mammalian 
spermiogenesis (O’Donnell et  al., 2011), phagocytosis by 
neighboring cells cannot take place in bryophytes due to 
the surrounding rigid cell wall (Figure  2C). Nevertheless, 
autophagy also plays indispensable roles during mammalian 
spermiogenesis. The germ cell-specific ATG7 knockout in 
mice results in male sterility, exhibiting multiple defects in 
spermiogenesis, such as defective biogenesis of the acrosome 
(Wang et  al., 2014). The acrosome, which is not present 
in the male gametes of plants, is a lysosome-related organelle 
required for fertilization (Figure  2C; Moreno and Alvarado, 
2006; Ikawa et  al., 2010; Khawar et  al., 2019). LC3, which 
is homologous to yeast Atg8, is localized on the proacrosomal 
vesicles in an ATG7-dependent manner. These proacrosomal 
vesicles accumulate near the nucleus without fusing with 
each other in the atg7 mutant, suggesting that autophagy 
is required for the biogenesis of the acrosome (Wang et  al., 
2014). Another marked defect in the mouse atg7 mutant 
is the abnormal reorganization of microtubules during 
spermiogenesis. Irregular cytoskeletal structures are observed 
in autophagy-defective mouse embryonic fibroblasts (MEFs). 
PDLIM1, a regulator of cytoskeletons, accumulates in atg7 
MEFs and spermatids, and knockdown of PDLIM1 partially 
suppresses cytoskeletal defects in atg7 MEFs. These results 
suggest that autophagy regulates cytoskeletal organization 
by degrading PDLIM1 (Shang et  al., 2016). The P. patens 
atg5 mutant also exhibits defective microtubule organization 

during flagella formation, which may reflect a similar 
mechanism of cytoskeletal regulation by autophagy during 
spermiogenesis. Further investigation to identify targets of 
autophagy during spermiogenesis would be  needed to 
understand the precise functions of autophagy during 
plant spermiogenesis.

HOW IS AUTOPHAGY INVOLVED IN 
PLANT MALE REPRODUCTION?

As described above, autophagy is involved in distinct male 
reproductive processes in land plants. However, the regulatory 
networks and precise targets of autophagy remain almost 
unknown. The first step to address this would be to determine 
whether autophagic degradation during male reproduction 
in each plant species is devoted to bulk degradation of the 
cytoplasm or selective degradation of certain targets. Recent 
studies have revealed that a wide range of targets, including 
organelles and proteins, are selectively degraded by autophagy 
in various organisms, including A. thaliana (Marshall and 
Vierstra, 2018; Johansen and Lamark, 2020). Selective 
autophagy appears to operate during spermiogenesis in plants 
because organelles unnecessary for spermatozoids seem to 
be  removed through autophagic degradation (Minamino 
et  al., 2017; Sanchez-Vera et  al., 2017). Bryophyte 
spermatozoids only retain two mitochondria and a plastid 
in the cell body, potentially resulting from selective removal 
of unneeded organelles by autophagy. Furthermore, in 
germinating pollen of N. tabacum, mitochondrial markers 
are colocalized with an autophagosome marker, implying 
selective autophagic degradation of mitochondria (mitophagy) 
(Zhao et  al., 2020). However, the existence of mitophagy 
is not firmly demonstrated in plants thus far (Broda et  al., 
2018) and detailed electron microscopic or super-resolution 
microscopic observation of phagophores and autophagosomes 
is needed to be  conclusive. Genetic or pharmacological 
inhibition of autophagic body degradation in the vacuole 
would also be effective in investigating the targets of autophagic 
degradation during male reproduction. Another promising 
approach is to identify proteins that interact with ATG8, 
since ATG8 is involved in cargo recognition in selective 
autophagy as well as in the formation and transport of 
autophagosomes in various organisms (Nakamura and 
Yoshimori, 2017; Marshall and Vierstra, 2018; Mizushima, 
2019; Stephani and Dagdas, 2019; Johansen and Lamark, 
2020). Since many land plants possess multiple ATG8 genes, 
each of which could play a specialized function (Kellner 
et al., 2017), it would be also informative to examine whether 
any of ATG8 genes are highly and/or specifically expressed 
during male reproductive development.

Another enigma is how autophagy is regulated during 
male reproduction in plants. As described above, autophagic 
activity is highly activated in certain male reproductive 
processes. Autophagic activity can be  regulated at several 
distinct levels, for example, at the transcriptional and post-
transcriptional levels, as reported in S. cerevisiae and mammals 
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(Fullgrabe et al., 2016; Corona Velazquez and Jackson, 2018). 
In A. thaliana, the expression of core ATG genes is 
spatiotemporally regulated, and the transcription factor TGA9 
has been shown to positively regulate ATG8 expression and 
autophagic activity (Slavikova et  al., 2005; Rose et  al., 2006; 
Wang et  al., 2019). Post-transcriptional regulation has also 
been reported in A. thaliana, which is exemplified by that 
the TOR and SnRK1 complexes catalyze phosphorylation of 
and SINAT proteins mediate ubiquitylation of the ATG1 
complex responding to the nutrient status (Chen et al., 2017; 
Huang et  al., 2019; Van Leene et  al., 2019; Qi et  al., 2020). 
It would be  useful to explore whether these regulations have 
a role in male reproduction in plants. Transcription factors 
responsible for the differentiation of male gametes have been 
identified in various organisms, including M. polymorpha 
(Hackenberg and Twell, 2019; Hisanaga et al., 2019). It would 
be  worthwhile to study whether these transcription factors 

also regulate autophagic activities in order to understand 
the genetic regulation of autophagy during male reproduction.
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