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Because bacterial blight (BB) disease seriously affects the yield and quality of rice,
breeding BB resistant rice is an important priority for plant breeders but the process is
time-consuming. The feasibility of using terahertz imaging technology and near-infrared
hyperspectral imaging technology to identify BB resistant seeds has therefore been
studied. The two-dimensional (2D) spectral images and one-dimensional (1D) spectra
provided by both imaging methods were used to build discriminant models based
on a deep learning method, the convolutional neural network (CNN), and traditional
machine learning methods, support vector machine (SVM), random forest (RF), and
partial least squares discriminant analysis (PLS-DA). The highest classification accuracy
was achieved by the discriminate model based on CNN using the terahertz absorption
spectra. Confusion matrixes were pictured to show the identification details. The
t-distributed stochastic neighbor embedding (t-SNE) method was used to visualize the
process of CNN data processing. Terahertz imaging technology combined with CNN
has great potential to quickly identify BB resistant rice seeds and is more accurate than
using near-infrared hyperspectral imaging.

Keywords: terahertz imaging technology, near-infrared hyperspectral imaging technology, rice bacterial blight,
convolutional neural network, seed identification

Abbreviations: BB, bacterial blight; CNN, convolutional neural network; ELM, extreme learning machine; LDA, linear
discriminant analysis; PLS-DA, partial least squares discriminant analysis; RBFNN, radial basis function neural network;
RF, random forest; SVM, support vector machine; t-SNE, t-distributed stochastic neighbor embedding.
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INTRODUCTION

Rice is one of the most important food crops: more than half
the world’s population and 60% of the Chinese population
relies on it for food (Yuan, 2014). Good and stable yields
of rice are therefore needed for survival and to avoid the
problems of food shortage. According to some research, the
world population will reach 10 billion by 2050 requiring food
production to increase by 60–100% (Jaganathan et al., 2018).
However, a number of rice diseases seriously affect rice yield
and quality over large areas (Shasmita et al., 2019). Rice BB,
caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of
the most destructive diseases in all the major rice growing
countries, typically reducing yields by 20–30%, but by as
much as 50% in years when the disease is prevalent (Han
et al., 2014). Chemical control of the disease is temporarily
effective but often leads to long-term environmental pollution.
It is generally recognized that the most environmental-friendly,
safest and effective strategy for disease control is to breed and
deploy resistant cultivars, and this depends on the identification
and functional study of resistance genes. Chromosome single
Segment Substitution Lines (CSSLs) can be constructed by
introducing the quantitative trait loci (QTLs) for disease
resistance into rice under the assistance of molecular makers.
Nevertheless, even when QTLs for rice disease resistance have
been identified, it still takes a lot of time and labor to select
suitable rice seeds for further breeding. It would therefore be a
great help if plant breeders had an easy and reliable method to
quickly identify those rice seeds that contain the desired QTLs
for disease resistance.

Terahertz spectroscopy uses terahertz radiation,
electromagnetic waves with a frequency between 0.1 and
10 Thz (30 µm–3 mm), to do qualitative and quantitative
analysis (Liu, 2017). Due to the special position of the terahertz
band in the electromagnetic spectrum, the terahertz waves are
transient and have high penetration, broadband, coherence,
and low energy (Demidova et al., 2016). The terahertz band
with a radiant energy level of approximately 1–10 meV
corresponds to the low-energy rotational modes or vibration
modes of molecules and so provides a means for detecting
most biomolecules such as DNA, protein etc (Hu et al., 2017).
Terahertz spectroscopy is now widely used in biology (Mueller-
Holtz et al., 2014), security (Shen et al., 2005), communication
technology (Nagatsuma et al., 2016), and food safety (Qin
et al., 2013). Nakajima et al. (2019) investigated the potential
of terahertz spectroscopy to monitor and quantify starch
in plants and identified a peak in the terahertz spectrum
that was attributed to starch. Transgenic rice seeds could be
identified with an excellent rate of 96.67% reliability using
terahertz spectroscopy imaging technology and without taking
much time or using any complicated preprocessing steps (Liu
W. et al., 2016). It has also been shown that changes to the
concentration of individual rice proteins can be accurately
identified (Xu et al., 2015). Near infrared (NIR; 750–2500 nm)
spectroscopy has also been used to obtain unique spectral
signatures from samples (Feng et al., 2017). The absorption

region of relative overtones and combinations of hydrogen-
containing functional groups such as C-H, O-H, and N-H
is consistent with the absorption region of the NIR spectra
(Feng et al., 2017). This makes NIR hyperspectral imaging a
powerful tool which is able to simultaneously obtain spatial and
spectral information to do qualitative or quantitative analysis.
Especially, NIR hyperspectral imaging technology has been
used for fast non-destructive testing in various applications,
including seed identification, plant and food quality detection
(Gutierrez et al., 2018; Femenias et al., 2020; Qin et al., 2020).
NIR spectroscopy combined with chemometric analysis to
separate CRISPR/Cas9-induced rice mutants from normal rice
and found that SVM with a successive projections algorithm
(SPA) achieved the best classification performance (Feng
et al., 2017). Orrillo et al. (2019) used NIR spectroscopy to
identify authentic black pepper in samples adulterated with
papaya seeds with the help of partial least squares regression
(PLSR). Cui et al. (2019) showed that a method using NIR
spectroscopy and PLSR could be used reliably for maize haploid
seed screening. And also deoxynivalenol (DON) contaminated
wheat kernels were successfully non-destructively classified
and quantified with the help of NIR imaging technology using
PLSR and LDA (Femenias et al., 2020). Apart from that, fish
filet substitution and mislabeling were detected by multiple
hyperspectral technologies and the combination of classifiers and
spectral dataset had made a great help to choose the best model
(Qin et al., 2020).

Different spectroscopy techniques acquire sample information
from different levels, leading to complex spectral data. The
hidden information in these data can be fully utilized in
combination with efficient modeling algorithms. The deep
learning algorithm is a rapidly developing method that can
extract the characteristics of information autonomously
and effectively classify and characterize it. With the rapid
development of deep learning algorithm, more and more
studies turn the focus on its implement in object detection,
image classification and other computer vision field (Guo
et al., 2016). Nie et al. (2019) classified hybrid okra and
loofah seeds using NIR spectroscopy combined with the
deep convolutional neural network (DCNN) and the
classification accuracy of different varieties was all above
95%. Liu P. et al. (2016) proposed a classification algorithm
based on active learning of deep networks for hyperspectral
images. Mou et al. (2017) also proposed a novel recurrent
neural network (RNN) model for hyperspectral image
classification, the first time that a model had considered
the intrinsic sequential data structure of a hyperspectral
pixel. Therefore, the deep learning algorithm has great
potential to process spectral information, both in theory
and in practical applications.

The specific objectives of this study were as follows: (1) to
explore the possibility of using spectral techniques to classify
rice seeds that had different QTLs for BB resistance; (2) to
introduce the deep learning algorithm into a protocol to identify
BB resistant rice seeds with different data processing methods
and to visualize the classification results; (3) to select the best
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discrimination models by comparing different machine learning
approaches and with different spectral information as input.

MATERIALS AND METHODS

Sample Preparation
Three major QTLs for BB resistance had previously been
identified using a segregating F2 population by the State Key
Laboratory Breeding Base for Zhejiang Sustainable Pest and
Disease Control, Hangzhou, China (Han et al., 2014). The three
QTLs were mapped on chromosomes 1, 3, and 5 and were named,
respectively as qR1, qR3, and qR5. All of these QTLs had a strong
effect on resistance explaining about 21.5%, 12.3%, and 39.2% of
the resistance variance, respectively (Han et al., 2014). Two of
those QTLs (qR3 and qR5) had been used to create the varieties
of rice seed used in this study.

Oryza sativa ssp. indica (cv. IR24) is an elite rice cultivar
developed by the International Rice Research Institute but which
is highly susceptible to BB. CSSLs had been constructed by
introducing the QTLs for BB resistance into IR24 under the
assistance of molecular makers. Thus, line 3A26 contains qR5 and
line 4A37 contains qR3 but their genetic base is the same as IR24
except for the Chromosome Single Segment containing the QTL
for BB resistance. The results of a resistance test are shown in
Figures 1A,B.

A total of 1980 rice seeds of the three different types (IR24,
3A26, and 4A37) were collected with the help of the State
Key Laboratory Breeding Base for Zhejiang Sustainable Pest
and Disease Control, Hangzhou, China. In order to eliminate
moisture interference in the terahertz spectral acquisition
experiment, all the samples were placed in a 40◦C drying oven
for 6 h before the experiment. No other additional processing was
performed on those rice seeds. There were almost no differences
in their shape and size.

Terahertz Imaging System and NIR
Hyperspectral Imaging System
A THz time-domain imaging system (CCT-1800; Huaxun
Ark Technology Corp., Shenzhen, China) was used in this
experiment. The system has four main parts: the optical part,
the hardware part, the structural part and the software part.
The detail of the terahertz optical system structure is shown
in Figure 1C. The CCT-1800 spectrometer used a 780 nm
femtosecond laser to excite semiconductor devices to generate
and receive terahertz signals. The spectrometer used a voice coil
motor to obtain a real-time sampled signal and a slow sweep
motor to compensate for differences in optical path difference.
The terahertz spectra in the range of 0.06–4 Thz could be detected
and recorded by the system. The terahertz absorption spectral
image of a maximum scanning area of 50× 50 mm was obtained
by using the transmission imaging module. The step size of the
data acquisition was set to 0.2 mm resulting in a point-to-point
scan time of 90 min per absorption spectral image. Samples were
fixed on the metal frame of the carrier using Scotch tapes, and
the reference signal was the terahertz absorption spectral image
of the blank tape.

The structure of the NIR hyperspectral imaging system is
shown in Figure 1D. The imaging spectrograph (ImSpector
N17E; Spectral Imaging Ltd., Oulu, Finland) and high-
performance CCD camera (C8484-05; Hamamatsu, Hamamatsu
City, Japan) coupled with a camera lens (OLES22; Specim,
Spectral Imaging Ltd., Oulu, Finland) were the key parts of the
system. The other equipment is described in detail in Feng’s study
(Feng et al., 2017). Samples were placed on the sample stage,
which was a black plate on the conveyer belt. In order to obtain
a clear hyperspectral image (320 × 320 × 256) with a resolution
of 5 nm, the distance from the lens to the sample stage was set
to 26 cm, and the exposure time of the camera was set to 3 ms.
The conveyer motor controlled the speed of the conveyer belt at
23 mm/s for stable images. After acquisition by the computer,
the hyperspectral images were corrected to calculate the effects
of the white and black reference using the equation described by
Nie et al. (2019).

Spectral Data Collection and
Pretreatment
Both the terahertz and the NIR hyperspectral imaging systems
provided spectral data in the form of a data cube. This made
it possible to process the data in two ways: one dimensional
(1D) spectral data contained all the spectral information of
each sample, while the two dimensional (2D) spectral image
contained both spectral and spatial information. Of the terahertz
absorption spectral data, only that in the range of 0.3–2 Thz was
reliable because of the device restriction. Similarly, NIRS data
outside the range of 975.01–1645.82 nm was discarded before
processing to avoid the influence of the external environment and
camera performance.

Regions of interests (ROI) corresponding to the shape of each
rice seed sample were chosen as the extraction target before later
data processing to reduce the interference of background signals.
In order to obtain 1D spectral data, all the data of pixels in the
ROI were averaged. The ROI used to extract the 2D spectral
image was the smallest rectangular area that could contain the
rice seed samples. To process the 1D terahertz absorption spectral
data for baseline correction and noise cancelation, the adaptive
iteratively reweighted Penalized Least Squares (airPLS) method
was used with parameter λ set to 100 and the moving average
(MA) window set to 3 (Zhang et al., 2010). The 1D NIRS data
was also freed from noise suppression by using MA with the
parameter setting of 3.

Data Analysis Methods
Traditional machine learning algorithms including SVM, PLS-
DA, and RF algorithm and deep learning algorithms like the CNN
were used to classify the different varieties of rice seeds and to
identify those resistant to BB.

Convolutional Neural Network
The CNN algorithm essentially implements the input-to-output
mapping by extracting features and reducing dimensions of
the data (Gu et al., 2015; Voulodimos et al., 2018). Parameter
sharing and sparse links of layers help it better handle image
information, which also helps in the classification of the terahertz
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FIGURE 1 | The resistance to rice bacterial blast of IR24, 3A26, and 4A37 and a schematic diagram of the optical system. Rice was inoculated by the leaf-clipping
method and at least 16 leaves from four plants were inoculated. Lesion length was measured 3 weeks after inoculation. (A) Lesion length after mock inoculation with
H2O (control) and Xoo inoculation. Bars indicate the standard error; (B) The resistance phenotypes of the leaves of IR24, 3A26, and 4A37. 1: IR24, 2: 3A26, and 3:
4A37; (C) Schematic diagram of the terahertz optical system; (D) Diagram showing the structure of the hyperspectral imaging system.
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and NIRS images. Four different structures of CNN were built
to process both the 1D and 2D data from the two types of
imaging system. Before feeding spectral data into the structure,
normalization was performed to accelerated the convergence.
The parameters chosen as giving the best performance after
preliminary experiments The parameters and the structure which
were chosen at the best performance after experiments could be
found in Table 1 and Figure 2. There were two convolutional
layers, one average pooling layer and two fully connected layers
in all four CNN structures. Rectified linear units (ReLUs) were
applied between those layers to avoid gradient disappearance
and to make the whole discriminant model more flexible to deal
with non-linear data. The equation for the ReLUs can be found
in Nie’s study (Nie et al., 2019). For multiple classification, the
softmax function was chosen to convert the output of the whole
model into a class probability (Hinton et al., 2012). Thus the cost
function, which is the cross entropy function C in equation (1),
was able to measure the discrepancy between the targets d and
outputs p for each sample j.

C = −
∑
j

dj log pj

Instead of using all the samples at once to train the CNN models,
the mini-batch training method was applied to improve the speed
and performance. After randomly dividing the samples into a
70% training set and a 30% validation set, only 256 random
samples from the training set were sent to the model during
each training. Both 1D NIR hyperspectral spectra and 2D NIR
hyperspectral images were standardized for pretreatment. The
adaptive moment estimation gradient descent algorithm with a
learning rate of 0.001 was used to update the trainable parameters
to minimize the cost function. The input sizes of 2D terahertz
absorption images and 2D NIR hyperspectral images were set to
39× 9 and 13× 4, respectively.

TABLE 1 | The parameters of CNN structures.

Structures 1D terahertz
absorption
spectrums

1D
near-infrared
hyperspectral

spectrums

2D terahertz
absorption

image

2D
near-infrared
hyperspectral

image

F 128 128 64 128

F2 64 64 32 64

R1 0.01 0.01 0.05 0.05

R2 0.01 0.01 0.05 0.05

KS1 2 × 1 2 × 1 2 × 2 2 × 2

KS2 2 × 1 2 × 1 2 × 2 2 × 2

AP 2 × 1 2 × 1 2 × 2 2 × 2

D1 256 256 512 64

D2 3 3 3 3

T 200 200 120 120

F1 and F2 mean the number of filters in the first and second convolutional layer;
R1 and R2 mean the L2 regularization number of the first and second convolutional
later; KS1 and KS2 mean the size of filters in the first and second convolutional
layer; AP means the size of filter in the average pooling layer; D1 and D2 mean
the number of neurons in the first and second fully connected layer; T means the
number of training epoch.

Traditional Machine Learning Methods
As a linear classification method, PLS-DA is based on the
principle of PLSR which uses projection of variables to maximize
the covariance (Paul et al., 2019). In this study, only the average
spectra of samples were considered as the X variables, and the
Y variables were determined by a code rule such that IR24 was
code 1, 3A26 was code 2 and 4A37 was code 3. After dividing
the samples into training and testing sets with a ratio of 7:3,
pretreatment like standardization was only performed on the
NIR hyperspectral spectra. Cross-validation was used to get a
relatively high and stable accuracy rate.

Support vector machine based on the margin maximization
principle has been applied as a particular linear classifier
(Kumar and Gopal, 2009). For the multiple classification
tasks in this study, several SVMs were built to separate
one class from the rest by constructing a hyperplane in a
higher dimension. Radial basis function (RBF) was chosen
to be the kernel function for its excellent ability to deal
with non-linearity classification and the values of the
hyperparameter (C, σ) were determined by the grid search
method to be (1e6, 0.01) in the terahertz absorption spectrum
classification and (1e5, 0.0001) for the NIR hyperspectral
spectrum classification. The 10-fold cross-validation was
performed after dividing the training set and testing set in a
ratio of 7:3.

An ensemble of decision tree classifiers which are generated
using the random vectors sampled independently from the
input vectors constitute the RF classifier (Pal, 2005). Each tree
classifier is supposed to count as an independent unit for the
most popular class, and the classification results are aggregated
and averaged to provide the output of the RF (Svetnik et al.,
2003). In this study, the number of sub-data sets which were
generated by sampling using the replacement method with the
original data set was set to 10. By using 10-fold cross-validation,
the maximum number of features when building the optical
decision tree was set to 14. NIRS spectra were standardized before
feeding into the model.

Data Visualization
In order to visualize the progress of classification of the
1D spectral data processed by the deep learning algorithm
and intuitively understand the effectiveness of the deep
learning algorithm in extracting features, we used t-SNE to
perform non-linear dimensionality reduction on the feature
data. Every datapoint of the high-dimensional feature map
was given a location in a two-dimensional map. It has been
shown that t-SNE is a powerful tool to create a single map
that can reveal structure at many different scales (Laurens
and Hinton, 2008). The perplexity of the t-SNE algorithm
was set to 30 and the maximum number of iterations
was set to 500 before reducing the dimensions of features
into two dimensions.

Software Tools
All data were processed on a computer with a Win10 64-
bit operating system, with Inter(R) Core(TM) i5-7500 CPU,
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FIGURE 2 | The diagram of the established CNN structure.

FIGURE 3 | The average spectra of samples. (A) the original terahertz absorption spectra; (B) the extracted and preprocessed terahertz absorption spectra; (C) the
original near-infrared hyperspectral spectra; (D) the extracted and preprocessed near-infrared hyperspectral spectra.

3.40 GHz and 8 GB RAM. A deep learning framework Keras1

was used to construct the CNN and we found that both the
spectral data and spectral images could be processed quickly.
Average spectra were extracted with the help of MATLAB
R2013b. Traditional machine learning algorithms and t-SNE

1https://keras.io/zh/

were implemented using the program language Python 3.62

on the Jupyter Notebook web-based application for interactive
computing3. Graphical work was done using Pro 9.0 (Origin Lab
Corporation, Northampton, MA, United States).

2https://www.python.org/
3https://jupyter.org/
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FIGURE 4 | The classification results using 2D spectral images of rice seeds. (A) Histograms showing the overall accuracy of classification; (B) Confusion matrixes
exploring the classification results in detail.

RESULTS

Spectroscopic Results
The average terahertz absorption spectra of the seeds of the
three different lines were extracted from the original absorption
spectra in the frequency range of 0.3–2 THz (Figures 3A,B).
After preprocessing, it was clear that, although the absorption
curves were generally similar in shape as might be expected, there
were some differences between the samples at frequencies around
0.9 THz, 1.1 THz, and 1.3 THz. Similar results were observed in

transgenic sugar beet (Liu et al., 2015). The spectral information
in the range of 975.01–1645.82 nm (Figures 3C,D) show that
the seeds of the BB resistant lines 4A37 and 3A26 had very
similar curves but showed some clear differences to the that of
the original cultivar IR24.

Classification Results
The first objective was to explore the effectiveness of using
2D spectral images for reliable identification. The reliability of
classification in this study using terahertz absorption spectral
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TABLE 2 | Classification accuracy using 1D spectra and different discriminant models.

Discriminant model Data resource The accuracy of training set The accuracy of testing set

CNN Terahertz absorption spectrum 97.50% 94.95%

SVM Terahertz absorption spectrum 95.60% 91.02%

RF Terahertz absorption spectrum 83.28% 81.03%

PLS-DA Terahertz absorption spectrum 58.62% 54.99%

CNN Near-infrared hyperspectral spectrum 88.57% 82.60%

SVM Near-infrared hyperspectral spectrum 86.30% 81.59%

RF Near-infrared hyperspectral spectrum 62.58% 60.72%

PLS-DA Near-infrared hyperspectral spectrum 48.28% 42.70%

images and NIR hyperspectral images together with CNN is
shown in Figure 4A. The classification of rice seeds using
terahertz absorption spectral images had an accuracy of 86.31%,
about 10% higher than when using NIR hyperspectral images.
In studies using larger samples Qiu et al. (2018) found that
the classification of seeds of four rice varieties was only 87%
accurate using the NIR spectrum extracted from hyperspectral
imaging in the special spectral range combined with CNN.
Examination of the confusion matrixes (Figure 4B) suggests
that the poor classification obtained using NIR occurred because
the CNN model did not clearly distinguish 4A37 from IR24,
whereas this problem was much less in analyses of the terahertz
spectral images.

The 1D spectra of the rice seeds, which concentrate the
spectral information of each pixel of each sample and remove
the interference of background noise, were next used as inputs
for different discriminant models including CNN, SVM, PLS-DA,
and RF. As shown in Table 2, discriminant models based on CNN
and SVM had similar accuracy on both training and testing sets.
CNN provided about 10% more accurate classification using the
1D spectra (Table 2) than the 2D spectral images (Figure 4A).
The impact of training set size on the classification accuracy based
CNN and SVM using 1D spectra had been studied (Figure 5).
It was evident that with the increase of the training size, the
identification performance of CNN and SVM established by
using both terahertz spectrum and near-infrared hyperspectral
spectrum was improved a lot. The same results as in Table 2 could
be obtained that models based on terahertz spectrum outperform
the models based on NIR hyperspectral spectrum. And there were
distinct crossing points on the curves of CNN and SVM models,
before which the accuracies of SVM models were higher than the
accuracies of the CNN models.

Table 2 also showed that there was no severe model overfitting.
The use of RF to classify terahertz spectra was less accurate (about
81.03%) than CNN or SVM but better than the results from PLS-
DA. The detailed analysis presented in Figure 6 shows, that as
in Figure 4, seeds of 3A26 had the highest correct recognition
rate in almost all the confusion matrices, while the probabilities
of misclassifying 4A37 and IR24 were relatively high. And also
based on the results of those classification indicators in Table 3,
apparently the specificity, sensitivity and F-score of each variety
were relatively higher while spectral images were applied. When
it came to seeds of 3A26, better performance than the other
two varieties were achieved in these classification measures using

CNN, SVM and RF with all lower results acquired from the PLS-
DA models.

Visualization Results
The visualization of processed data which has a wide range
of dimensional changes has become an important issue in
many fields (Laurens and Hinton, 2008). Visualization allows
us to clearly understand the process of data processing and
partly resolves the black box mystery of modeling algorithms
like deep learning.

Figure 7A presents the changes in the feature maps which
are the first and second convolutional layers of the CNN
in the classification of 2D terahertz absorption images. As
the size of the feature map and the number of image
channels (which represent different frequencies) decreased,
the discriminant model was still able to focus on the main
part of the seed. Also, before it was stretched and sent to
the fully connected layer, the last visualization map still had
the approximate shape of rice seeds, showing that the main
spectral information had been retained. By contrast, the NIR
hyperspectral images of the rice seeds had lost their original shape
after standardization (Figure 7C). However, pre-experiments
had shown that standardization of NIR hyperspectral images
improved the accuracy of classification so it possible that the
shape of rice seeds was not the key factor for their classification.
In Figure 7C, the hyperspectral image was finally sent to
the full connected layer with only 5 spectral pixels which
was much fewer than those in Figure 7A. Apart from the
differences of spectral technology, the differences in the number
of pixels that contain spectral information might be another
decisive factor determining the accuracy of classification of
these 2D images.

A non-linear dimensionality reduction method, t-SNE, that
simultaneously preserves the local and global structure of
data was used to visualize the processes of data processing
of 1D spectra based on CNN using both terahertz and NIR
hyperspectral imaging technology. In Figure 7B, the data points
of the rice seeds represented by different colors were processed by
the CNN model using terahertz absorption spectra. As a result,
those data points gradually changed from overlapping to clearly
separable. Similarly, in the visualization of the CNN output
of NIR hyperspectral spectra, all three class of rice seeds were
distinguished by distinct boundaries in the last feature map in
Figure 7D. Moreover, the overlap caused by the misclassification
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FIGURE 5 | The impact of the training size on the testing accuracy of 1D spectra based on CNN and SVM.

of the data points on the last feature map was more serious than
that of Figure 7B.

DISCUSSION

In the present study, spectral technologies established with
different characteristics were applied to determine the class of BB
resistance rice seeds. As a non-destructive method for qualitative
and quantitate analysis, both terahertz spectral technology and
hyperspectral technology play an important role. When the basic
evidence for the effectiveness of spectral technology is considered,
the relationship between the sample composition and spectra is
the most fundamental. It is known that the stretching vibration
of several hydrogen-containing functional groups that chemical
bond organic molecules (e.g., C-H, O-H, N-H) are related to the
absorption band of NIR hyperspectral spectra (Serranti et al.,
2013). Ultimately, phenotypic changes are the best indicator
of genotypic structural changes (Munck et al., 2004) but those
changes will inevitably involve molecular changes. Therefore, the
different distances between the average curves in Figure 3 may
suggest that the combined effects of the stretching vibration of the
hydrogen-containing functional groups in the different spectral
bands was changeable which probably affected the accuracy of
classification using different modeling algorithms. It is worth

mentioning that most biomolecules such as DNA and protein can
be detected in the terahertz absorption spectrum.

Plenty of studies provide a solid foundation for the
effectiveness of applying spectroscopy, but only a few of
them investigate the performance of spectral images instead of
spectrums in the field of plant and food detection. These 2D
images make full use of the spectral and spatial information
with more channels than a normal photographic image which
has only three channels. It has already been shown that deep
learning methods like CNN have advantages in utilizing the
features of spectral images (Wang et al., 2017; Wu and Prasad,
2017). As shown in Figure 4, those classification results indicated
the performance of NIR hyperspectral imaging technology for
obtaining internal information from rice seeds varies on different
testing samples. The use of 2D spectral images of rice seeds
combined with deep learning algorithms shows great potential
for classifying rice seeds which are genetically very similar but
with Chromosome Single Segment Substitutions. The results
(Table 2) showed that for each algorithm, much more accurate
classification was obtained using the terahertz absorption spectra
than the NIR ones, perhaps because the terahertz spectra can
detect biomolecules (Kistner et al., 2007; Hu et al., 2017).
The variation in the output of each layer on the visualization
map (Figure 7) showed the effectiveness of the deep learning
algorithm for identifying the terahertz absorption spectra of the
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FIGURE 6 | The confusion matrixes of the classification results of 1D spectra based on different discriminant models.
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TABLE 3 | The comparison of classification results from different studies.

Study object Discriminant model Data resource Classification accuracy Source

Bacterial blight resistant rice seed CNN Terahertz absorption spectrum 94.95%

Transgenic rice seed RF Terahertz reflection spectrum 95% Hu et al., 2017

Transgenic rice seed SVM Terahertz absorption spectrum 92.08% Lian et al., 2017

Rice false smut seed RF-ELM Near-infrared hyperspectral spectrum 91.07% Wu et al., 2020

DON contaminated wheat LDA Near-infrared hyperspectral spectrum 62.7% Femenias et al., 2020

Maize seeds RBFNN Near-infrared hyperspectral spectrum 91.00% Zhao et al., 2018

BB resistant rice seeds. Compared with feature maps of NIR
spectral data, the feature maps of terahertz spectra were much
more districted and the terahertz absorption spectra provided
the better input for establishing a discriminant model based
on the deep learning algorithm. From the comparison of the
results from relevant studies in Table 3, it could be found that
different spectral techniques coupled with different models can
lead to various identification performance. Lian et al. (2017)
also used SVM to identify transgenic ingredients in maize using
terahertz spectra and reported relatively high (>90%) accuracy.
Chen et al. (2017) reported similar accuracy of classification
when comparing deep learning and SVM models used with
spatially dominated hyperspectral data. The SVM model builds
its decision boundary based on the data points that are difficult
to classify while CNN also has a powerful ability to utilize
the deep features of the spectra (Wakholi et al., 2018). In
addition, SVM algorithm has a strong ability to process small
amounts of data while the deep learning algorithm requires
a large amount of data (Kumar and Gopal, 2009) but in our
study they were trained using the same amount of data which
might be the cause of the similar classification results on the
1D spectra. From the results in Figure 5 it could be observed
that with the increase of training set size, the performance of
CNN models continued to improve while the SVM models
kept a relative stable state. This curvilinear trend is exact the
essence of the advantage of deep learning algorism that the
more data the model can get and the higher accuracy the
model can perform. However, when it comes to hyperspectral
data classification, smaller training size is also available in the
tensor-based learning (Makantasis et al., 2018). Makantasis et al.
(2018) proposed a tensor-based non-linear model that was
applied to classify hyperspectral images to achieve high accuracy
with some amount of samples. And it can be an appropriate
method to avoid the problem of lacking enough spectral data of
training samples.

A multi-level features extraction method to track the target
in remote sensing images was published by Zhou et al. (2020)
for improving the monitoring performance. Compared to the
studies of multi-level features extraction method, one of the
distinctive advantage of deep learning algorithm like CNN
is that the structure is able to extract and keep the critical
features which can benefit the model most automatically without
complex feature extraction procedures. However, taking into
account the limitations of experimental equipment the CNN
classification results using 1D spectral data (Table 2) were
better than those using 2D images (Figure 4), because the

cropping of the original spectral images resulted in the loss
of the spatial information and the low resolution of the input
spectral images (Figures 7A,B) and the background noise
affected the performance of the discriminant model. With enough
information of spectral pixels, even 100% accuracy could be
obtained in the study of fish filet identification using different
classifiers (Qin et al., 2020). Furthermore, irregular topographies
of the seeds spectral images which leads to the reflectance changes
at different image position is also a vital factor causing bad
performance of the models. Considering the situation, averaging
spectral images became a method of avoiding the changes and
integrating information. And certainly there are other methods
to make better use of the abundant information contained in
spectral images. Yuan et al. (2020) had studied a new method
which provided another path to improve the classification of
spectral images apart from averaging the images to correct the
spectral reflectance.

As for the other traditional machine learning algorithms, RF is
an efficient classifier that can operate on large datasets and in this
study there may not have been enough spectra for RF to reach
its full potential (Rodriguez-Galiano et al., 2012). The method of
selecting hyperparameters also affected the performance of RF in
the classification of these rice seeds. PLS-DA is a linear classifier
and has already proved inadequate to deal with spectral data that
has many features to be considered in the classification (Nie et al.,
2019). Similarly, only 62.7% recognition rate was obtained in
the classification of deoxynivalenol (DON) contaminated wheat
kernels using linear classifier based on hyperspectral imaging
technology, which showed the unqualified identification ability
of the linear classifier (Femenias et al., 2020). Moreover the
PLS-DA model always tends to establish decision boundaries
based on easily classified data points, resulting in misclassification
of outliers (Wakholi et al., 2018). The samples used in this
study were genetically very closely related, being based on the
same rice variety but with different QTLs selected. As shown
in Table 4, classification measures varied widely for different
varieties. However, the seeds of 3A26 had kept a relatively high
value in the specificity, sensitivity and F-score which indicated
that those discriminant models were able to accurately identify
the 3A26. The performance of different discriminant models
established by using distinct algorithms were also reflected in
the classification measures verifying the classification results in a
more detailed perspective. It seems likely that the biomolecules
which are expressed by the genes of 4A37 and IR24 are more
similar to one another than they are to those of 3A26. Qin
et al. (2020) also found that there was misclassification in the
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FIGURE 7 | The feature maps of different models and visualization maps based on t-SNE of the model output. (A) The feature maps of the first and second
convolutional layers of 2D terahertz absorption images based on CNN; (B) The visualization maps of CNN output of each layer using terahertz absorption spectra;
(C) The feature maps of the first and second convolutional layers of 2D near-infrared hyperspectral images based on CNN; (D) The visualization maps of CNN output
of each layer using near-infrared hyperspectral spectra.
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TABLE 4 | The related classification indicators of each discriminant model.

Data resource Discriminant model Variety Specificity Sensitivity F-score

Terahertz absorption image CNN 4A37 0.895 0.800 0.796

3A26 0.980 0.920 0.939

IR24 0.920 0.870 0.857

Near-infrared hyperspectral image CNN 4A37 0.874 0.670 0.698

3A26 0.935 0.960 0.919

IR24 0.835 0.650 0.657

Terahertz absorption spectrum CNN 4A37 0.985 0.930 0.949

3A26 0.970 1.000 0.971

IR24 0.970 0.920 0.930

Near-infrared hyperspectral spectrum CNN 4A37 0.865 0.800 0.773

3A26 0.985 0.940 0.954

IR24 0.890 0.740 0.755

Terahertz absorption spectrum SVM 4A37 0.945 0.900 0.896

3A26 0.985 0.960 0.965

IR24 0.935 0.870 1.000

Near-infrared hyperspectral spectrum SVM 4A37 0.860 0.790 0.763

3A26 0.985 0.920 0.944

IR24 0.880 0.740 0.747

Terahertz absorption spectrum PLS-DA 4A37 0.960 0.450 0.588

3A26 0.400 0.850 0.557

IR24 0.965 0.350 0.528

Near-infrared hyperspectral spectrum PLS-DA 4A37 0.955 0.150 0.242

3A26 0.205 0.870 0.503

IR24 0.980 0.260 0.400

Terahertz absorption spectrum RF 4A37 0.880 0.860 0.819

3A26 0.900 0.850 0.829

IR24 0.935 0.720 0.778

Near-infrared hyperspectral spectrum RF 4A37 0.710 0.560 0.523

3A26 0.880 0.790 0.778

IR24 0.820 0.470 0.514

classification of fish freshness and they believed that might
be related to the condition of the fish samples which had a
progressive change in the tissue. This gives some direction for
further studies of the essential differences between these rice seeds
related to BB resistance.

All in all, this study used both terahertz and NIR hyperspectral
imaging to obtain spectral information from rice seeds that
were genetically very similar apart from specific QTLs for BB
resistance. A deep learning method (CNN) and traditional
machine learning methods (SVM, PLS-DA, and RF) were applied
to build discriminant models based on either the 2D spectral
images or the 1D spectra. In all tests, using the terahertz
absorption spectra provided better discriminant models than
were obtained with NIR hyperspectral spectra. The CNN and
SVM models outperformed the other models in accuracy of
classification accuracy, reaching around 91% with 1D spectra.
The steps in extracting CNN features of 2D spectral images were
visualized and the results indicate that the size of the image, which
also represents the quantity of the spectral pixels, may affect
the classification. The t-SNE visualization provided a particularly
vivid way to observe the process of CNN processing of the
spectra. Therefore, terahertz imaging technology combined with

CNN in this study can provide a powerful method for plant
breeders to quickly identify BB resistant samples. In the future,
rice samples with different labeled chromosomes could be studied
to build a classification database based on CNN or other deep
learning algorithms.
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