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Combining Crop Growth Modeling
With Trait-Assisted Prediction
Improved the Prediction of Genotype
by Environment Interactions
Pauline Robert, Jacques Le Gouis, The BreedWheat Consortium and Renaud Rincent*

INRAE, UCA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France

Plant breeders evaluate their selection candidates in multi-environment trials to estimate
their performance in contrasted environments. The number of genotype/environment
combinations that can be evaluated is strongly constrained by phenotyping costs and
by the necessity to limit the evaluation to a few years. Genomic prediction models taking
the genotype by environment interactions (GEI) into account can help breeders identify
combination of (possibly unphenotyped) genotypes and target environments optimizing
the traits under selection. We propose a new prediction approach in which a secondary
trait available on both the calibration and the test sets is introduced as an environment
specific covariate in the prediction model (trait-assisted prediction, TAP). The originality
of this approach is that the phenotyping of the test set for the secondary trait is replaced
by crop-growth model (CGM) predictions. So there is no need to sow and phenotype
the test set in each environment which is a clear advantage over the classical trait-
assisted prediction models. The interest of this approach, called CGM-TAP, is highest
if the secondary trait is easy to predict with CGM and strongly related to the target
trait in each environment (and thus capturing GEI). We tested CGM-TAP on bread
wheat with heading date as secondary trait and grain yield as target trait. Simple CGM-
TAP model with a linear effect of heading date resulted in high predictive abilities in
three prediction scenarios (sparse testing, or prediction of new genotypes or of new
environments). It increased predictive abilities of all reference GEI models, even those
involving sophisticated environmental covariates.

Keywords: crop growth model, gene-based modeling, genomic selection, genotype × environment interaction,
multi-environment trials, wheat

INTRODUCTION

The objective of plant breeders is to develop varieties well adapted to target environments. For this
purpose, they evaluate each year candidate varieties in multi-environment trials (MET). Given that
the speed of the process is a key element of genetic progress and since phenotyping is expensive,
most varieties are evaluated in a small number of environments, considered as a combination of
year × site × condition. Consequently, the environments in which the varieties are evaluated can
be quite different from the target environments, because of the significant variation between years.
In addition, only a limited number of varieties are evaluated each year to control the phenotyping
costs. All these constraints are reducing the chance of success as they limit the number of lines that
can be evaluated in the target environments.
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One way to raise this strong constraint is to predict the
performance of candidate varieties using molecular information
with genomic selection (GS) models (Whittaker et al., 2000;
Meuwissen et al., 2001). In GS, a phenotyped and genotyped
calibration set is used to estimate DNA marker effects. Once the
model is calibrated, new candidate varieties can be predicted,
as long as their genotypic information is available. Specific GS
models were proposed to predict the performance of varieties
in different environments, taking the genotype by environment
interaction (GEI) into account. It was first proposed to adapt
the reference GS models to the GEI context by attributing
environment specific effects to the markers (Schulz-Streeck et al.,
2013; Crossa et al., 2016), or by modeling genetic covariances
between environments (Burgueño et al., 2012). In other studies,
environmental covariates (EC) were introduced in the GS model
(Heslot et al., 2014; Jarquín et al., 2014; Malosetti et al., 2016;
Ly et al., 2018), which allows predicting the performance of
varieties in new environments. Crop growth models (CGM) were
sometimes used to adjust the EC estimates to phenological stages,
or to derive EC estimating the stress experienced by the plants
(Ly et al., 2017; Rincent et al., 2019), instead of directly using
pedoclimatic data.

One efficient way to improve the prediction accuracy of GEI is
to introduce secondary traits measured in each environment on
both the calibration set and the test set in multi-trait GS models.
It was indeed shown that if the secondary trait is sufficiently
heritable and correlated to the target trait, the approach called
“trait-assisted prediction” (TAP) or “phenotype imputation”,
can be very efficient (Henderson and Quaas, 1976; Calus and
Veerkamp, 2011; Jia and Jannink, 2012; Pszczola et al., 2013;
Fernandes et al., 2018; Bustos-Korts et al., 2019). It resulted
in successful applications in wheat (Rutkoski et al., 2016; Sun
et al., 2017, 2019; Crain et al., 2018; Lado et al., 2018; Michel
et al., 2018; Schulthess et al., 2018). In particular Rutkoski et al.
(2016) showed that secondary physiological traits measured in
each environment on both predicted and test sets resulted in
increased predictive ability for grain yield using a TAP model.
TAP is particularly useful when the secondary trait is easy to
obtain, highly heritable and strongly correlated to the target trait.
In MET, the secondary trait measured in each environment can
capture GEI and serves as a proxy of the target trait in each
environment (Bustos-Korts et al., 2019). But the applicability
of this approach in the GEI context is considerably constrained
by the necessity to phenotype all varieties (calibration and
test sets) in all environments for the secondary trait, which
means that the test set has to be sown and phenotyped in
each environment. The interest of this approach would be
considerably stronger if the secondary trait would be accessible
without phenotyping the test set.

Crop Growth Models (CGM) are also powerful tools to
predict GEI. They model plant development using mechanistic
relationships with genetic characteristics (genetic parameters)
and environmental variables as input. These genetic parameters
characterize the varieties (e.g., sensitivity to photoperiod)
independently from the environment, and so are supposed to be
constant from one environment to another for a given variety
(Reymond et al., 2003, 2004). A method combining CGM and GS,

called gene-based modeling (GBM), can be used to predict GEI
for unobserved varieties. If the genetic parameters of varieties of
the calibration set are known, a GS model can be calibrated and
used to predict the genetic parameters of the test varieties. These
predictions can then be used as input for the CGM together with
environmental variables to predict the performance of the test set
in various environments.

This strategy has proven to be effective on simple traits such as
leaf elongation rate in maize (Reymond et al., 2003; Chenu et al.,
2008), fruit quality (Quilot et al., 2005; Prudent et al., 2011), and
phenology of various species (White and Hoogenboom, 1996;
Nakagawa et al., 2005; Yin, 2005; Messina et al., 2006; White
et al., 2008; Uptmoor et al., 2011; Zheng et al., 2013; Onogi
et al., 2016) including wheat (Bogard et al., 2014; Rincent et al.,
2017). The major limit of this approach is that it remains difficult
to efficiently predict complex traits such as yield, although
promising results have been obtained (Technow et al., 2015;
Cooper et al., 2016; Messina et al., 2018). In any case, GBM can
be very efficient to predict secondary traits, for example related
to phenology. If we were able to use CGM (or GBM for new
varieties) to accurately predict a secondary trait correlated to the
final target trait in each environment, then we would be able
to combine CGM and trait assisted prediction to overcome the
limits of both approaches. The idea here is to use a TAP approach
in which the secondary trait is not phenotyped for the test set
(so there is no need to sow the test set in any experiment) but
predicted in each environment of interest thanks to CGM.

We propose to test this new approach (CGM-TAP) on winter
wheat with grain yield (GY) as target trait (the trait the breeder
is interested in), and heading date (HD) as secondary trait. HD
is very highly correlated to flowering time, which is indeed an
important adaptive trait with an optimal date depending on
the environment. Phenology is a major trait for the plants to
benefit from the most possible resources while avoiding stressing
conditions at key stages (Richards, 1991; Lopes et al., 2014;
Semenov et al., 2014; Flohr et al., 2017). In addition, it was
shown that GBM was efficient to predict HD in winter wheat
(Bogard et al., 2014; Rincent et al., 2017). Therefore, this trait
seems to be a particularly good candidate to test the CGM-TAP
approach with GY as target trait. For this purpose, we used a MET
composed of 220 varieties and 42 managed environments, that
was used to compare the accuracy of CGM-TAP to reference GEI
models in different prediction scenarios: the prediction of new
varieties, of new environments, or of the missing phenotypes of
an incomplete design (sparse testing).

MATERIALS AND METHODS

Genetic Material, Genotyping, and
Estimation of a Genetic Covariance
Matrix (Kinship)
The plant material has been previously described in Rincent
et al. (2018, 2019) and Touzy et al. (2019). The genetic panel
is composed of 220 European elite varieties of winter wheat. It
was genotyped with the TaBW280K high-throughput genotyping
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array described in Rimbert et al. (2018). This array was designed
to cover both genic and intergenic regions of the three bread
wheat subgenomes. Markers with a minor allele frequency (MAF)
below 5%, or with heterozygosity or missing data rate above 5%
were removed. Markers in strong Linkage Disequilibrium (LD)
were filtered out using the pruning function of Plink (Purcell
et al., 2007) with a window of size 100 SNPs, a step of 5 SNPs
and a LD threshold of 0.8, as proposed in Charmet et al. (2020).
Eventually, we obtained 26,116 polymorphic high resolution
SNPs, with an average missing data rate of 1.0%. Missing values
were imputed as the marker observed frequency.

Genotype of individual i at marker l (Mi,l) was coded as
1, 0.5, or 0 for homozygote for an arbitrarily chosen allele,
heterozygote, and the other homozygote, respectively. Genomic
relatedness (kinship) between individuals was estimated
following (VanRaden, 2008):

Ki,j =
L∑
l=1

(Mi,l−pl)
(
Mj,l−pl

)
b , with b =

L∑
l=1

pl ×
(
1− pl

)
, pl being

the allelic frequency of the reference allele in the corresponding
diversity panel, L the number of markers. The matrix of genomic
relatedness coefficients will be denoted K in the manuscript.

Phenotypic Data Measured in the
Multi-Environment Trial
The same phenotypes as in Rincent et al. (2019) were used.
Briefly, the panel was phenotyped for grain yield (GY) and
heading date (HD) in a multi-environment trial composed of 42
managed environments located in France between 2012 and 2016
(Supplementary Table S1). These 42 managed environments
correspond to 26 combinations of years and locations, with two
treatments for 16 of them. Among these 16 combinations of
years and locations, three had an irrigated (WW) and a rainfed
(WD) treatment, one had a well-watered (WW) and a rainout
shelter (RO) treatments, and 12 had a high (HN) and a low
(LN) nitrogen fertilizer treatments. These 42 combinations of
location, year and management will be called environments in
the rest of the document. Experimental designs, estimation of
adjusted means and heritabilities were presented in Rincent et al.
(2019). Briefly summarized, in each environment the varieties
were grouped in six to eight blocks according to their earliness.
The designs were two-replicate designs or augmented designs.
Adjusted means and heritabilities were estimated with SpATS
(Rodríguez-Álvarez et al., 2018) for the two-replicate designs to
take spatial trends into account and with block effect only for
the augmented designs. On this dataset, the use of weights in the
second step of the analysis to take into account the difference
of precision of the adjusted means (Damesa et al., 2017) did
not improve the results, and so a basic analysis without weights
was applied here.

Environmental Characterization and
Estimation of an Environmental
Covariance Matrix
Each environment was characterized by 139 environmental
covariates (EC) in Rincent et al., 2019. Seventy-two of these
covariates were estimated using climatic data (temperature,

radiation), and 67 were estimated with SiriusQuality CGM
(Martre et al., 2006) as dry matter stress index. These 139
covariates were estimated in each environment, transformed to
standard normal distributions, and compiled in a matrix � of
dimension (42× 139).

� was then used to estimate a covariance matrix between
environments (W). We applied the approach of Jarquín et al.
(2014) in which all the ECs were used to estimate the covariance
matrix. Environments with similar stresses are assumed to have
similar GxE patterns. To compute W, we proceeded in two
steps: first we computed the Euclidean distance matrix between
environments (D�) with the matrix of environmental covariates
(�), and then the covariance matrix W was computed as: W =
1E − D�

max(D�) .W does not take into account the targeted response
variable, but the EC are supposed to be helpful to give an estimate
of the true unknown environmental covariance matrix, as they
reflect the conditions experienced by the plants. W was used in
the downstream analysis as an estimate of the environmental
covariance matrix.

Selection of a Subset of Representative
Environments
Because of the redundancy in the dataset due to strong
similarities between the environments (Rincent et al., 2019), and
to limit computational burden, a subset of sixteen environments
was selected. The selection was applied in such a way that
the different kinds of HD/GY relationship were explored. The
16 environments were composed of four environments with a
low linear correlation between HD and GY (absolute value of
the correlation <0.3), four environments with an intermediate
HD/GY correlation (absolute value of the correlation between
0.3 and 0.6), four environments with a strong HD/GY
correlation (absolute value of the correlation above 0.6), and
four environments for which a quadratic relationship explained
more than a linear relationship (Table 1). These four groups
of environments were named “low,” “medium,” “high,” and
“quadratic” according to the kind of relationship between HD
and GY. The 16 environments were randomly sampled among
the 42 environments of Rincent et al. (2019) with the constraint
that each of the four groups of environments were represented
by four environments. The prediction scenarios presented below
were applied to these sixteen environments.

Prediction Objectives and the
Corresponding Cross-Validation
Schemes
Three prediction objectives were considered: the prediction
of observed varieties in observed environments (oGoE) or
in new environments (oGnE), and the prediction of new
varieties in observed environments (nGoE). oGoE consists of
predicting missing values in a MET (sparse testing), which
typically corresponds to the situation faced by breeders when
some observations are missing in their trial networks. oGnE
and nGoE are more ambitious because predictions are made
in an environment or for a variety without any phenotypic
information on it.
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TABLE 1 | Description of the 16 environments selected for the analysis.

Environment Groupa Correlation HD/GY α̂b α̂c β̂d

Rea13WW Low −0.06 −0.34 −0.33 −0.32

Cle13LN Low 0.19 0.14 0.10 −0.20

Sau13HN Low 0.25 0.17 0.17 0.01

Gre12WW Low −0.28 −0.64 −0.64 −0.39

Mon12LN Medium 0.50 0.81 0.83 −0.27

Cap12LN Medium 0.51 0.59 0.68 −1.03

Gre13WD Medium −0.54 −0.82 −0.82 0.01

Mon13LN Medium 0.59 1.03 1.03 −0.19

Vra13LN High 0.61 0.73 0.74 0.06

Gre14WD High −0.64 −0.81 −0.82 −0.90

Gre12WD High −0.68 −0.99 −0.98 −0.39

Rec13LN High 0.76 1.91 1.95 0.64

Cap12HN Quadratic 0.38 0.18 0.36 −1.56

Coi12WW Quadratic 0.34 0.50 0.18 −1.58

Lou12LN Quadratic 0.35 0.82 0.39 −1.91

All14LN Quadratic 0.19 0.20 0.19 −2.20

aThe sixteen environments were grouped in four classes according to the kind
of relationship between HD and GY: “low,” “medium,” or “high” correlation, or
“quadratic” relationship. bα estimates in the 16 environments using model EG_HD.
cα and dβ estimates in the 16 environments using model EG_HD2. α and β

correspond to the coefficients for the linear and quadratic regressions of GY on
HD in each environment. The estimates of α and β presented here were obtained
with the full dataset.

To evaluate the performance of the prediction models in these
three situations, three cross-validation schemes were defined:
CVrandom, CVnewG, and CVnewE.

Observed varieties in observed environments was addressed
by the CVrandom scheme, that is a 6-folds cross-validation,
in which the folds were randomly sampled from the dataset.
oGnE was addressed by the CVnewE scheme, which is a leave-
one environment-out scheme, in which a new environment is
predicted. nGoE was addressed by the CVnewG scheme, with
a division in six folds consisting in five randomly selected
groups of varieties.

Predictive abilities were computed for each fold and each
environment as the correlation between adjusted means and
predictions in the test set. For each cross-validation scheme
except CVnewE (leave-one-out scheme), the total procedure was
repeated 10 times to get robust estimates of predictive abilities.

Reference Prediction Models
Three reference models with various levels of complexity were
used to predict GY in the MET. In the first kind of models, the
kinship matrix allowed sharing information between varieties,
but there was no sharing of information between environments:

EG : Yij = µj + Gi+ ∈ij, with Gi ∼ N(0,Kσ2
g1) (1)

EG_GxE : Yij = µj + Gi + GEij+ ∈ij,

with GEij ∼ N(0,K ⊗ INEσ
2
g2) (2)

INE is an identity matrix of size the number of environments
and ⊗ is the Kronecker product. µj is a fixed environmental
effect, Gi is a random polygenic effect for variety i, and GEij is
a random effect corresponding to the interaction between variety
i and environment j. In all models, ∈ij∼ N(0, Iσ2

e ), is the residual
effect. In model EG the prediction of a variety is the same for
any environment (main effect model). In model EG_GxE, GEI
are taken into account, but there is no sharing of information
between environments. Consequently, this second model is only
applicable to scenarios CVrandom and CVnewG.

In the third model, information between environments
is shared thanks to an environmental covariance matrix
estimated with the environmental covariates as proposed by
Jarquín et al. (2014):

EG_GxW : Yij = µj + Gi + GEij+ ∈ij,

with GEij ∼ N(0,K ⊗Wσ2
g3) (3)

W was estimated as described above.

The Crop-Growth Modeling – Trait
Assisted Prediction Model (CGM-TAP)
Crop-growth modeling – trait assisted prediction is a trait assisted
prediction model in which the secondary trait is observed for the
calibration set but predicted for the test set using crop growth
modelling (CGM) or gene-based crop-growth modelling (GBM)
(Figure 1). The idea is to combine CGM and TAP to overcome
the limit of GBM (not applicable yet to complex traits such as
yield) and TAP (requires the phenotyping of the test set for the
secondary trait in each environment). First (step 1), the CGM or
GBM approach is applied to predict the secondary trait (HD) for

FIGURE 1 | Schematic representation of CGM-TAP. CGM-TAP is a trait-assisted prediction approach in which the secondary trait is predicted using crop-growth
modeling instead of being phenotyped.
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the test set in each environment. Then (step 2), a trait-assisted
prediction model is applied to the full dataset with the secondary
trait as covariate (observed for the calibration set, predicted with
CGM or GBM for the test set) with an environment specific effect
to predict the target trait (GY) in each environment. In more
details, CGM-TAP consists in the following two steps:

– Step 1: Prediction of the secondary trait (HD) for the test
set using CGM. In this first step, the two main genetic
parameters of the CGM involved in phenology (sensitivity
to photoperiod “SLDL” and phyllochron “P”) are estimated
(CVnewE and CVrandom) or predicted (CVnewG) for the
test set. These variety specific genetic parameters are then
used as input to the CGM together with the daily climatic
data (temperature, daylength) to predict HD for the test
varieties in each environment. In scenarios CVnewE and
CVrandom, the test varieties are scored for HD in some
environments, and so a Bayesian algorithm (Rincent et al.,
2017) was used to directly estimate the genetic parameters
of the test varieties. Briefly, the MCMC algorithm is a
hybrid Gibbs sampler that updates the coordinates of the
different parameters through a Metropolis-Hastings step
using as proposal a Gaussian distribution centered on the
previous value of the chain. In scenario CVnewG, there
is no phenotypic information on the test varieties and so
the genetic parameters cannot be estimated. So, a GBM
approach was applied in which the genetic parameters are
estimated for the calibration varieties, and then a GBLUP
model (with major phenology markers as fixed effects) was
used to predict the genetic parameters of the test varieties.

– Step 2: Different trait-assisted prediction models were then
used to predict the target trait (GY) for the test set:

EG_HD : Yij = µj + αj × hij + Gi+ ∈ij,

with Gi ∼ N(0,Kσ2
g4) (4)

EG_GxE_HD : Yij = µj + αj × hij + Gi + GEij+ ∈ij,

with GEij ∼ N(0,K ⊗ INEσ
2
g5) (5)

EG_GxW_HD : Yij = µj + αj × hij + Gi + GEij+ ∈ij,

with GEij ∼ N(0,K ⊗Wσ2
g6) (6)

with hij the heading date of variety i in environment j. hij was
observed for the calibration varieties and predicted for the test
set. αjis the effect of HD on GY in environment j.

Three other models similar to models 4–6 but with a quadratic
effect of HD were also used:

EG_HD2
: Yij = µj + αj × hij + βj × h2

ij + Gi + εij (7)

EG_GxE_HD2
: Yij = µj + αj × hij + βj × h2

ij + Gi + GEij + εij

(8)

EG_GxW_HD2
: Yij = µj + αj × hij + βj × h2

ij + Gi + GEij + εij

(9)

with h2
ij the squared heading date (centered and scaled) of variety

i in environment j. βj is the quadratic effect of HD on GY in
environment j. All models are summarized in Table 2.

For CVnewE, αj and βj cannot be estimated in models 4–9
because there is no observation of HD and GY in the test
environment even for the calibration set, and so an alternative
procedure was applied. First, αj and βj were estimated using
a linear or a quadratic regression of GY on HD in each
environment except the test environment. The estimates of
the regression coefficients were then used to fit a multiple
linear regression on the EC measured in these environments.
A stepwise forward-backward procedure (function “step” of R
package “stats” with a penalty k = 3.7 for α and k = 8 for β)
was applied to select the most relevant EC and estimate their
effects. This calibrated model was then used to predict αj and βj in
the test environment. The estimates α̂j and β̂j were plugged into
models 4–9, which could then be used to predict GY in the test
environment. We suppose here that the target environments are
characterized by EC, so they are not totally unknown.

For each model, predictions were obtained as the sum of
the BLUEs of the fixed effects and the BLUPs of the random
effects. For each cross-validation scenario, the predictive ability
(correlation between the predictions and the adjusted means) and
root mean square error (RMSE) of HD in step 1 was estimated, as
well as the RMSE of αj and βj for CVnewE. The predictive ability
of GY in step 2 was evaluated for each model as presented above.

RESULTS

Relationship Between HD and GY in the
Sixteen Environments
The variance of HD was highly variable from one environment to
another (Figure 2). HD was constraint to 15 days in Vra13LN
whereas it covered around 30 days in other environments
(Gre14WD, Coi12WW).

TABLE 2 | Description of the reference and CGM-TAP models.

Structure of the models

E G GEI h h2

Reference models

EG x K – – –

EG_GxE x K K ⊗ INE – –

EG_GxW x K K ⊗W – –

CGM-TAP models

EG_HD x K – x –

EG_GxE_HD x K K ⊗ INE x –

EG_GxW_HD x K K ⊗W x –

EG_HD2 x K – x x

EG_GxE_HD2 x K K ⊗ INE x x

EG_GxW_HD2 x K K ⊗W x x

It is specified if the effect was included (x) or excluded (–) from the model. For mixed
effects (G and GEI) the structure of the covariance matrix is indicated.
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FIGURE 2 | Linear and quadratic regressions of GY on HD in the 16 environments and the 220 bread wheat varieties. The linear and the quadratic adjustments are
represented by a blue line and a red curve, respectively. Adjusted R2 are indicated for the linear (in blue) and for the quadratic (in red) adjustments.

The average adjusted R2 of the linear relationship was of 0.04,
0.26, 0.46, and 0.13 in the low, medium, high and quadratic
classes, respectively. For the quadratic environments, the adjusted
R2 of the quadratic regression was of 0.27 on average, and
higher than the adjusted R2 of the linear regression. In all four
environments of this class, the quadratic relationship was concave
with an optimal HD.

Predictive Ability and RMSE of the
Secondary Trait (HD) in the Different
Scenarios
Before looking at the predictive abilities of GY with the different
models, we looked at the predictive ability of the secondary
trait (HD) in the different cross-validation scenarios (Table 3).
The average predictive abilities of HD were above 0.78 in all
scenarios, and it was higher in scenarios CVrandom and CVnewE
(0.91) than in CVnewG (0.78). This was expected as the genetic
parameters of the CGM had to be predicted in scenario CVnewG.
RMSE was low in the three scenarios (average always below
3.33 days), and it was lower for CVrandom (1.86 days) than
for CVnewG (2.88 days) and CVnewE (3.33 days). There was

a strong variability of RMSE between folds with a maximum of
6.63 days in scenario CVnewE.

Prediction of the Regression Coefficients
of HD on GY (α and β) in Scenario
CVnewE
For models EG_HD, EG_GxE_HD, and EG_GxW_HD, it was
necessary to first predict the value of α to be able to run
the models in CVnewE, because no phenotypic observation is
available on the predicted environment and thus, the relationship
between HD and GY could not be directly estimated. For the
same reasons, both α and β should be predicted before running
models EG_HD2, EG_GxE_HD2, and EG_GxW_HD2.

The multiple linear regression on the environmental
covariates was moderately efficient to predict the value of α for
the linear regression of HD on GY in the new environment
(Figure 3A). The RMSE was equal to 0.40 for observed α values
varying between −0.99 and 1.91. For all environments except
one, the environmental covariates were able to accurately predict
the sign of the regression.

The predictions of α and β were less accurate for the quadratic
linear regression of GY on HD, with RMSE equal to 0.44 for α,
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TABLE 3 | Predictive ability and RMSE of the secondary trait (HD) in the three prediction scenarios.

CVrandom CVnewG CVnewE

Min. Mean Max. Min. Mean Max. Min. Mean Max.

Pred. ability 0.68 0.91 0.98 0.49 0.78 0.95 0.86 0.91 0.96

RMSE (days) 0.81 1.86 3.40 1.39 2.88 5.37 1.62 3.33 6.63

CVrandom corresponds to sparse testing, CVnewG to the prediction of unobserved varieties, and CVnewE to the prediction of unobserved environments. CVrandom and
CVnewG were 6-folds cross-validations repeated ten times, and CVnewE was a leave-one-out scenario. Predictive abilities were computed as the correlation between
adjusted means and predictions. RMSE are the root mean squared errors.

FIGURE 3 | Scatter plot of the predicted and observed values of the regression coefficient of a linear regression (A) or of a quadratic regression (B,C) of GY on HD in
scenario CVnewE. Observed α and β correspond to the estimates obtained from the linear (A) and quadratic (B,C) regressions of GY on HD in each environment.
Predicted α and β correspond to the prediction of the α (A) or α and β (B,C) of the predicted environment (leave-one-environment-out scheme), using a multiple
linear regression of the α (A) or α and β (B,C) estimated in the calibration environments on the environmental covariates. The black line corresponds to the line y = x.

and 0.50 for β (Figures 3B,C). For β, the sign of the regression
was inaccurately predicted for three environments.

Predictive Ability of the Target Trait (GY)
in the Different Scenarios
The predictive abilities for the target trait (GY) were highly
variable between scenarios and between models (Table 4). On
average over the four kinds of environments (low, medium, high
and quadratic), the highest predictive abilities were obtained
in scenario CVrandom (0.73 for EG_GxW_HDpred and
EG_GxW_HDpred2). It was slightly lower for CVnewE (0.70 for
EG_GxW_HDpred) and CVnewG (0.57 for EG_GxW_HDpred).
The inclusion of GEI effects in the model (GxE and GxW)
always increased predictive abilities in comparison to the main
effect model EG, in particular when EC were used to estimate
covariance between environments (GxW). On average over the
four kinds of environments, the introduction of term GxW
increased predictive abilities by 39% for scenario CVrandom,
37% for CVnewG, and 25% for CVnewE in comparison to the
main effect model.

For all scenarios and kinds of environment, the best model
was always a CGM-TAP model, except in CVnewE for “low”
and “quadratic” environments. The inclusion of HD as fixed
effect (CGM-TAP) in the three reference models (EG, EG_GxE,

and EG_GxW) always increased the average (over the four
kinds of environments) predictive abilities. This increase strongly
depended on the kind of environment and on the reference
model considered. For the environment with a low correlation
between GY and HD, and the environments with a quadratic
relationship, the inclusion of HD as fixed effect in the reference
models resulted in similar predictive abilities than those of the
reference models, or to lower predictive abilities in CVnewE.
Inclusion of HD increased predictive abilities of the reference
models for environments with a medium GY/HD relationship.
This increase was of 31, 30, and 5% in CVrandom, CVnewG
and CVnewE, respectively, for model EG. As expected, the
interest of CGM-TAP was highest for environments with a
strong GY/HD relationship (“high”). For these environments
the increase brought by CGM-TAP model was of 141, 127,
and 132% in comparison to model EG in CVrandom, CVnewG
and CVnewE, respectively. This increase was high but less
pronounced for more complex reference models: it was of
7.1, 5.3, and 29.0% in comparison to model EG_GxW in
CVrandom, CVnewG and CVnewE, respectively. Interestingly,
in many cases, the simple CGM-TAP models (EG_HDpred,
and ED_GxE_HDpred) performed as well as complex model
involving environmental covariates (EG_GxW).

The introduction of a quadratic relationship in the reference
models only slightly increased predictive abilities in scenario
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TABLE 4 | Predictive abilities of the reference and of the CGM-TAP models in three prediction scenarios with HD as the secondary trait and GY as the target trait.

CVrandom CVnewG CVnewE

Models Low Medium High Quadratic Average Low Medium High Quadratic Average Low Medium High Quadratic Average

EG 0.57 0.55 0.27 0.66 0.51 0.44 0.43 0.22 0.52 0.40 0.61 0.57 0.28 0.68 0.54

EG_HDpred 0.59 0.72 0.65 0.66 0.66 0.46 0.56 0.50 0.53 0.51 0.65 0.60 0.66 0.64 0.64

EG_HD2pred 0.59 0.71 0.66 0.68 0.66 0.41 0.55 0.48 0.40 0.46 0.64 0.62 0.66 0.14 0.51

EG_GxE 0.66 0.67 0.54 0.67 0.64 0.53 0.57 0.56 0.54 0.55 – – – – –

EG_GxE_HDpred 0.67 0.73 0.65 0.68 0.68 0.54 0.59 0.59 0.54 0.57 – – – – –

EG_GxE_HD2pred 0.66 0.71 0.64 0.70 0.68 0.50 0.59 0.54 0.45 0.52 – – – – –

EG_GxW 0.71 0.73 0.70 0.70 0.71 0.54 0.57 0.57 0.53 0.55 0.68 0.69 0.62 0.70 0.67

EG_GxW_HDpred 0.72 0.76 0.75 0.70 0.73 0.55 0.59 0.60 0.54 0.57 0.65 0.68 0.80 0.66 0.70

EG_GxW_HD2pred 0.71 0.75 0.74 0.72 0.73 0.52 0.59 0.55 0.46 0.53 0.60 0.73 0.78 0.24 0.59

CVrandom is a 6-fold cross-validation scheme in which the test set was randomly sampled from the full dataset (sparse testing). CVnewG is a 6-fold cross-validation
scheme, for which the objective is to predict new varieties in known environments. CVnewE is a leave-one environment-out scheme, in which the objective is to predict
the performance of known varieties in a new environment. “low,” “medium,” “high,” and “quadratic” correspond to groups of four environments with different kinds of
HD/GY relationships (Table 1 and Figure 2). No results are indicated for models involving the GxE term in scenario CVnewE, because these models are unable to make
predictions in environments without any phenotypic data.

CVrandom. In other scenarios, the introduction of a quadratic
relationship resulted in similar or lower abilities. It considerably
decreased predictive abilities in scenario CVnewE, in which
the regression coefficients (α and β) have to be predicted first
using the EC (there is no phenotypic information in the test
environments, and so the regression coefficients of the GY/HD
relationship cannot be directly estimated).

DISCUSSION

In plant breeding, the knowledge that we have on the
candidate varieties is limited because of the necessity to control
phenotyping costs and the duration of the breeding cycles.
This lack of information considerably limits the chance of
identifying top varieties candidate for the registration process.
Genomic prediction is a promising tool to screen early generation
material (Heffner et al., 2010), because it allows transferring the
information collected on the previous breeding cycles to other
combination of genes and environmental conditions even in
presence of GEI. Different models were proposed in the past
years to predict GEI, which involved genetic and environmental
characteristics (markers and EC) (Heslot et al., 2014; Jarquín
et al., 2014; Cooper et al., 2016; Ly et al., 2018). We developed
a new approach, called CGM-TAP, in which a secondary trait
is predicted for the test set in each environment thanks to
CGM. This secondary trait, easy to predict and capturing GEI,
is then used as an environment specific covariate in usual
GEI GS models. To sum up, it is a trait assisted prediction
model, in which the secondary trait is predicted thanks to
CGM instead of being phenotyped. Here we used HD and
GY as secondary and target traits, respectively, to evaluate
this new approach.

The results presented here reveal that in almost all situations,
the CGM-TAP models performed at least as good as the
corresponding reference models. It performed even better than
the most sophisticated reference model involving EC (EG_GxW)

with an increase of predictive ability of 7.1, 5.3, and 29.0%
for the environments with the highest correlation between
HD and GY (“high”) in scenarios CVrandom, CVnewG and
CVnewE, respectively. The increase of predictive ability was
generally stronger when the relationship between the secondary
and the target trait was strong, as expected. But even for the
“low” environments, CGM-TAP models (without the quadratic
relationship) performed at least as good as the reference models.
In the three cross-validation scenarios there were even situations
in which the simple CGM-TAP model including only the main
effects and the secondary trait (EG_HD) performed as good as
the most sophisticated reference model EG_GxW (Table 4).

However, the introduction of a quadratic effect in the CGM-
TAP models did not lead to a higher predictive ability and was
even detrimental for the “quadratic” environments in scenario
CVnewE. This is because we were unable to predict the regression
coefficients α and β sufficiently well in new environments
(Figure 3). The use of a larger set of environments would
probably help to better predict these coefficients. Another option
would be to use CGM to directly predict the HD/GY relationship
in new environments, but we were unable to do it accurately.
In other prediction scenarios (CVrandom and CVnewG), the
introduction of the quadratic effect resulted in similar or lower
predictive abilities in comparison to the CGM-TAP models
without quadratic effect. This may be due to the necessity to
reach more precise prediction of the secondary trait if a quadratic
relationship is fitted. Another explanation is that the quadratic
relationships were not very pronounced in this dataset (Figure 2).

These promising results show that the predictions of the
secondary trait by the CGM were sufficiently accurate to
be able to run a trait-assisted prediction model (without
quadratic relationship) in all three prediction scenarios without
phenotyping the test set. The RMSE of the prediction of HD with
the CGM were indeed relatively low (Table 3). It was equal to
1.86 days in scenario CVrandom, which is close to usual field
phenotyping error for this trait. The interest of the CGM-TAP
models is dependent on our ability to predict the secondary trait.
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This means that CGM-TAP should work better if the calibration
set was bigger, or was phenotyped in a MET optimized for the
genetic parameters estimation (Rincent et al., 2017). Note that the
use of the observed HD instead of the predicted HD as covariate
in the CGM-TAP models resulted in much higher predictive
abilities (results no shown). This means that CGM-TAP could
work much better if we were able to predict HD more accurately.

Most studies on multi-trait and trait-assisted predictions are
based on mixed models involving a genetic correlation between
secondary and target traits (Rutkoski et al., 2016; Sun et al., 2017;
Michel et al., 2018; Lado et al., 2018; Schulthess et al., 2018).
Here, we proposed to introduce the secondary trait as covariate
as in Crain et al. (2018), which allows modeling non-linear
relationship between traits. This is useful in some situations with
complex dependencies as illustrated by the quadratic relationship
between HD and GY in some environments. This could also
be the case with other secondary traits, for which there is an
optimum value depending on the environment such as aerial
or root biomass.

The choice of HD as a secondary trait was justified by the
fact that it is easily predicted by CGM (Bogard et al., 2014), and
it is an adaptive trait, and so is expected to be related to GY,
at least in some environments (Richards, 1991; Semenov et al.,
2014; Flohr et al., 2017). The relationship between phenology
and productivity is important for most species (Andrade, 1995;
Ouk et al., 2007), and so we can expect our strategy to be
valuable for other crops. This relationship was confirmed in our
dataset in which environments with strong HD/GY correlations
or quadratic relationship could be found (Figure 2). However, the
range of HD in breeding programs would be narrower and the
correlation probably less pronounced. HD was a good candidate
to test this approach, but other traits even more related to the
target trait could be used. The important development of high-
throughput phenotyping and of crop-growth modeling should
make it possible to predict other yield related traits in the future.
A suitable secondary trait to run CGM-TAP models should be
accurately predicted with CGM and strongly related to the target
trait. Traits related to light interception (LAI) or even yield
components are secondary traits of choice and may be accurately
predicted thanks to CGM in the near future with the help of HTP.

Note that the predictive abilities obtained in scenario CVnewG
are probably higher in this study as would be in practice, as
the folds of the cross-validation were randomly sampled. This
indeed implies that varieties in the calibration set and in the
test set are sampled from a same population, which is not
the case in a real breeding scheme. Considering the reference
models, the results of this study confirm that the introduction
of an interaction (GEI) term in the prediction model increased
predictive abilities in comparison to a main effect model for all
scenarios. The model involving the environmental covariance
matrix W (EG_GxW), performed better than model EG_GxE
in scenario CVrandom, but similarly in scenario CVnewG.
A major advantage of EG_GxW is that it allowed predicting
in new environments, and these predictions were much more
accurate than the main effect model. This is in agreement with
previous publications (Jarquín et al., 2014; Malosetti et al., 2016;
Rincent et al., 2019).

CONCLUSION

In this paper, we propose a new way to predict genotype by
environment interactions (CGM-TAP). This is a trait-assisted
prediction approach in which the secondary trait is predicted
by a crop growth model, instead of being phenotyped. The
relationship between the secondary trait and the target trait
is environment specific and thus allow predicting environment
specific effects. This approach applied to yield (target trait) and
heading date (secondary trait) increased predictive abilities of
all reference GEI models, even those involving sophisticated
environmental covariates, for various prediction scenarios (new
varieties, new environments and sparse testing). This proof of
concept could be applied to other traits in breeding programs
in the near future, and is a new way of combining crop growth
modeling and genomic prediction in the context of GEI.
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