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INTRODUCTION

Nanotechnology-driven smart agriculture has been considered as one of the highly potential
approaches in improving crop productivity (Fincheira et al., 2020). Actually, plants serve as a
potential pathway for the transportation of nanoparticles (NPs), closely resembling endogenous
mineral nutrients. In modern agricultural production system, rapid and uniform seed germination
is required for successful seedling establishment and to finally yield achievement (Chen and Arora,
2013). The increasing application of nanoparticles in diverse agricultural sectors has made it a
crucial subject of study. Although nanoparticle based studies are fruitful in numerous fields over a
decade, such as nanomedicine (Spence et al., 2015; He et al., 2016; Liu et al., 2018), nanoindustrial
application (Santos et al., 2015), nanopharmacy (Hsu et al., 2018) and nanopesticide (Sarlak et al.,
2014; Kumar et al., 2019), a higher advancement of nanoparticle based studies in releasing seed
dormancy and enhancing seed germination as well as seedling development have recently come to
the limelight in the form of seed-nanopriming technology.

Seed priming is a process in which partial hydration of a seed is performed using natural/
synthetic compounds such as vitamins, PEG or water before sowing (Hussain et al., 2015; Ibrahim,
2016). Nanopriming, a technique based on the combination of seed priming and nanoparticle
treatment, has been an useful tool for enhancing seed quality, seedling establishment and crop yields
as well as increasing tolerance to environmental stresses, compared to unprimed or other agents
primed seeds in tomato, cucumber and pea crops (Mahakham et al., 2017). Nanopriming
technology has risen to the limelight only in recent years with reports published in both dicot
and monocot seeds (Mahakham et al., 2017; Anand et al., 2019). However, the information provided
in the recently published reports are at the preliminary level with depiction of phytohormone
crosstalk limited only to abscisic acid (ABA) and gibberellins (GA). These reports have not
presented a detailed physiological as well as molecular analysis in relation to the various factors
regulating the effect of seed nanopriming on germination. Therefore, the need to understand the
detailed molecular mechanisms particularly, the nanoparticle driven other phytohormones (except
ABA and GA) biosynthesis and signaling cascades in different primed seed compartments (seed
coat, endosperm, and embryo) is of interest given the promotive role of nanopriming towards seed
germination. Here, we present some important questions with regard to the unidentified factors in
this novel filed.
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ROLES OF AUXIN DURING
NANOPARTICLE ADHESION IN
NANOPRIMED SEEDS

It has been reported that the binding proportion between seeds
and priming agent in nanoprimed seeds was found to be high
compared to other agent's primed seeds, such as PEG, water and
vitamins. (Mahakham et al., 2017; Anand et al., 2019). In
relation to this, the seed coat phenolic is endogenously
regulated by the hormonal balance of ABA and GA, helping
in nutrient passage across seed compartments in Suaeda salsa
seeds (Xu et al., 2016), whereas on the other side it has also been
found that the phytohormone auxin (IAA) produced in
endosperm, transport to seed coat in crosstalk with GA by the
mediation of AGL62 transcription factor (Figueiredo et al.,
2016). From these available evidences, it needs to be
first cleared whether IAA have a role in nanoparticle
internalization and transport across tissues in primed seeds? If
so, how does it interplay with ABA/GA in causing higher
percent of nanoparticle adhesion? Further, how do these two
hormones or even more regulate the carriers involved in
transporting nanoparticles from seed coat to endosperm and
then to embryonic tissues, has not been characterized
Frontiers in Plant Science | www.frontiersin.org 2
(Figure 1). To understand this, an auxin insensitive mutant
msg1, defective in hypocotyl growth, can be assessed under
nanopriming and non-priming treatments (Watahiki and
Yamamoto, 1997). The outcome of this experiment would
determine the participation of IAA in nanoparticle adhesion
and transportation in primed seeds with regard to hypocotyl
elongation. A vast study needs to be performed to perceive this
action. Further, it will also be of interest, whether the in vivo seed
mineral content have a role during internalization of various
mineral based nanoparticles (for example; iron, silver, copper,
zinc and titanium based). To assess this, overall mineral
composition and metabolite analysis are required to be
assessed in the coming years in nanoprimed seeds.
CROSSTALK BETWEEN ROS AND
PHYTOHORMONES IN NANOPRIMED
SEEDS

Previous studies have revealed that ABA represses whereas GA
enhances seed germination (Shu et al., 2013; Shu et al., 2016a;
Shu et al., 2016b; Lorrai et al., 2018; Shu et al., 2018). In addition,
FIGURE 1 | Supposed molecular events occurred in nanoprimed seed compartments. Internalization of nanoparticles from seed coat into nanoprimed seeds.
(A) Undetermined involvement of GA and IAA in internalization as well as transport from seed coat to endosperm is highlighted by dashed lines. (B) Unidentified
antioxidant scavengers triggering transduction events in ROS signaling on seed germination (C) Unknown downstream regulators of ROS transcription factors in
turning on phytohormones is shown.(D) Factors involved in sugar signaling responses after nanoparticle adhesion to radicle emergence is indicated. (E, F)
Phytohormone crosstalk between aquaporin genes and nanoparticles beyond ABA/GA are highlighted which includes the both upregulated and downregulated
aquaporin mediated gene transcription. (G) Involvement of phytohormones and factors controlling the breakdown of starch granules in to a-amylase after
nanoparticle internalization. (H) Undetermined downstream regulators of GA signaling pathway in promoting seed germination after priming is denoted. (I) Role of
phytohormones in high uptake of water in nanoprimed seeds after imbibition is currently unknown and are presented. NP, Nanoparticles; AQP, Aquaporin's; GA,
Gibberellic acid; ABA, Abscisic acid. Dashed lines indicate unknown factors involved.
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a recent study has also highlighted the response of various
phytohormones to nanoparticle treatment during plant growth
and development (Yang et al., 2017). Intriguingly, seeds
recognize nanoparticles as external agents, however the
knowledge about this perception process, except for ABA and
GA-mediated pathways, are currently unavailable (Mahakham
et al., 2017; Anand et al., 2019). In general, nanoparticles
internalization on the seed coat induce reactive oxygen species
(ROS) accumulation, there by activating several chains of
downstream events (Guha et al., 2018). ROS signaling is
required for seed dormancy breaking and stimulation of
germination probably via the activation of GA synthesis and
mobilization of storage proteins (Dietz et al., 2016).
Wide knowledge about the crosstalk between ROS and
phytohormones signaling for dormancy release are currently
known, whereas only meagre studies are available on
enforcement of ROS in nanoprimed seeds (Oracz and
Karpinski, 2016). Notably, the spatial and temporal localization
of ROS plays a pivotal role in the cell‐to‐cell communication and
the breakage of hydrolytic bonds between polysaccharides in the
cell wall of seed endosperm (Oracz and Karpinski, 2016). ROS
are efficiently interlinked with the GA and ABA which are
associated with seed germination and seed dormancy (Bailly
and Kranner, 2011; Bailly, 2019).

From these evidences, we speculate that ROS probably act as a
positive signal in the release of seed dormancy, enforced by
nanopriming treatment. However, it is to be noted that the
knowledge about phytohormones interfering in ROS influx in
intercellular trafficking other than ABA/GA are largely unknown
(Mahakham et al., 2017). Hence, it remains to be explored in
knowing about the downstream protein targets modified by ROS
as well the transporters involved in intercellular transportation,
enabling stimulus specific cellular responses from the seed coat
or the molecular regulators which allow ROS–phytohormone
interactions tuning in seed germination including ABA, GA,
auxin, and other hormones (Figure 1). In association to this, a
complete genomic as well as proteomic analysis needs to be
performed using ROS signaling mutants to determine the roles of
specific ROS related enzymes part ic ipat ing in the
crosstalk networks.
ROLE OF ANTIOXIDANT SCAVENGING
SYSTEM IN PROMOTING GERMINATION
IN NANOPRIMED SEEDS

Seeds must be well supported by a scavenging system that tightly
regulates ROS concentration and enables them to act as cellular
messengers. Previous studies reported the accumulation of ROS,
e.g. hydrogen peroxide (H2O2), hydroxyl radicals (OH) and
superoxide radicals (O2) that enhanced the dynamics of seed
germination in various crops (Wojtyla et al., 2016). ROS induced
upon external stimuli is fine-tuned by the antioxidant system
(Mittler et al., 2011). By maintaining ROS homeostasis, the
antioxidants system plays an important role in redox
regulation by ROS removal and counteracts potential
Frontiers in Plant Science | www.frontiersin.org 3
molecular damage in cells (Dietz et al., 2016). This system
involves several antioxidant enzymes, such as guaiacol
peroxidase (POX), catalases (CATs), and superoxide
dismutases (SODs) and enzymes of the ascorbate-glutathione
cycle, such as ascorbate peroxidase (APX), dehydroascorbate
reductase (DHR), and glutathione reductase (RG), in association
with other low-molecular-weight antioxidants like ascorbic acid,
glutathione (GSH) and its oxidized form glutathione disulfide
(GSSG) (Gupta et al., 2019).

The antioxidant enzymes indirectly determine the role of
ROS in promoting germination in nanoprimed seeds
(Elmaaroufbouteau et al., 2013; Anand et al., 2019). For
example, activity of SOD and CAT was observed to be
increased thereby controlling the activity of “H2O2” radicals in
tomato, cucumber and pea nanoprimed seeds (Barbaespin et al.,
2012; Bhardwaj et al., 2012; Anand et al., 2019). ROS
accumulation in the form of O2 and H2O2 radicals play a
positive role in the germination and dormancy release (Mittler
et al., 2011). From the available evidences, it is clear that the
antioxidant regulation of ROS is limited to SOD and CAT
enzymes in diverse nanoprimed seeds, thus requiring a vast
exploration in understanding the regulatory mechanism of
ROS accumulation by the other antioxidant scavengers. In
addition, H2O2 also regulates the expression of various genes
involved in the germination process, through protein
carbonylation, activation, and modulation of kinase
transduction cascades along with changes in the cellular redox
states (Elmaaroufbouteau et al., 2013). In relation to this, we
speculate that the participation of antioxidant scavengers in
triggering these transduction events needs further elucidation.
Besides these antioxidant enzymes, participation of a metal
binding protein metallothionein (MT) as an H2O2 scavenger
has also been reported (Zhou et al., 2012; Leszczyszyn et al., 2013;
Mierekadamska et al., 2018). Expression of two metellothinein
genes MT1 and MT4 were found be highly induced in
nanoprimed tomato seeds, suggesting their possible
involvement in ROS signaling during germination of
nanoprimed seeds (Anand et al., 2019). However due to the
limited experimental evidences, further studies involving
metallothionein related mutants might provide the evidence
for elucidating the role of metallothionein in the scavenging
ROS signaling in nanoprimed seeds.
PHYTOHORMONES MEDIATED STARCH
AND SUCROSE METABOLISM IN
NANOPRIMED SEEDS

Nanopriming involves rapid starch degradation, determined in
terms of a-amylase activity (Mahakham et al., 2017). In line with
this, another study found that a-amylase pitched the starch
granule surface first, then penetrated into the interior and
hydrolyzed the granule from the inside out, implying a higher
induction of a-amylase activity in nanoprimed seeds (Man et al.,
2013). This induction of biosynthesis of a-amylase is dependent
on the activity of GA. Evidently, Mahakham and colleagues,
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showed the failure in the production of a-amylase under the
absence of GA (Mahakham et al., 2017). This study clearly states
a signaling crosstalk pathway existing among nanoparticles, a-
amylase and GA in nanoprimed seeds. However, the upstream
GA signaling factors involved in the starch degradation via a-
amylase activity are yet to be identified. Intriguingly, a previous
study showed an existence of antagonism between GA and
cytokinins in regulating a-amylase activity during metal
(cadmium) stress (Atici et al., 2005). However, it remains
unclear on the involvement of multiple phytohormones in a
-amylase enrichment in nanoprimed seeds. In addition to this, it
will also be interesting to investigate the crosstalk between
phytohormones and sugar signaling responses initiated by
nanoparticles after priming (Figure 1). To further bisect,
involvement of sugar insensitive mutants like sis4 and sis5
which are defective in ABA biosynthesis might be helpful in
extracting other phytohormone factors involvement in sugar
signaling factors enhancing germination process in
nanoprimed seeds (Laby et al., 2000). Future studies involving
an overall phytohormone profiling will identify crucial hormones
involved in a-amylase enrichment apart from GA. Detailed
studies concerning this might produce many number of
interesting findings in the coming years.
UNIDENTIFIED FACTORS OR
MECHANISMS UNDERLYING RAPID
WATER UPTAKE IN NANOPRIMED SEEDS

Nanopriming treatment can improve seed water uptake, as
primed seeds exhibit a faster imbibition in comparison with
non-primed as well as other primed agent seeds (Mahakham
et al., 2017). Water uptake in seeds is influenced by the balance
between ABA and GA, and this ABA/GA balance regulates
dormancy induction and release, resulting in shifting water
potential thresholds for radicle emergence (Rodriguezgacio
et al., 2009). Interestingly, enhanced ROS levels also activate
aquaporin signaling pathway genes as well as in causing changes
at phosphorylation sites in critical aquaporin proteins rendering
a high uptake of water (Boursiac et al., 2008). Critical aquaporin
family genes like PIP2, NIP1, TIP3 and TIP4 are controlled by
ABA during seed germination (Footitt et al., 2019). How do
ABA/GA balance regulate aquaporin genes mitigating faster
uptake of water driven by nanopriming? Considering the fact
that primed seeds exhibit a faster water uptake by the
upregulation of transcription of PIP1 and PIP2 (Mahakham
et al., 2017), it remains to be cleared about the role of ABA on
the control of aquaporin genes expression. Critical transcription
factors directly regulating the expression of these genes are
needed to be identified (Figure 1), as some seed specific
vacuolar aquaporin's are regulated by ABI3 transcription factor
(Mao and Sun, 2015). In support, it has also been previously
established that several phytohormones regulate various plant
Frontiers in Plant Science | www.frontiersin.org 4
aquaporin's (Kapilan et al., 2018). Hence, a complete genome
wide transcriptome analysis in diverse nanoparticle treatments
will be helpful in understanding the common regulatory
networks responding to nanoparticles. Also, using aquaporin
family of mutants like pip1, pip2, tip1, nip1 and pip1pip2 under
nanopriming treatments, might unravel many more
transcription co-factors associated with aquaporin genes
expression in primed seeds. It will also be of vital importance
to find the phosphorylation dependent PIP and TIP aquaporin
intercellular trafficking triggered by nanoparticles in primed
seeds causing an increase in water uptake.
CONCLUSION AND FUTURE PROSPECTS

Overall, the link between nanoparticle adhesion and
phytohormone crosstalk in influencing seed germination in a
nanoprimed seed is only in the beginner's stage. Having done
several studies on phytohormone crosstalk during seed
germination and seedling establishment (Shu et al., 2013; Shu
et al., 2016a; Shu et al., 2018), we propose that this emerging field
has the potential to: (i) identify the crosstalk between auxin and
GA in nanoparticle adhesion in seed coat; (ii) identify
downstream regulatory proteins of ROS-Phytohormone
complex along with critical antioxidant enzymes; (iii) identify
antioxidant scavengers involved in transduction of ROS
signaling cascades; (iv) identify phytohormone mediated
critical factors that can help in starch degradation during seed
germination mediated by nanopriming; (v) find factors and
phosphorylation events controlling water uptake and transport
mediated by phytohormone and ROS signaling in nanoprimed
seeds. These investigations will help us to understand more about
the regulatory role of nanopriming in tackling seed germination
under severe environmental stress conditions.
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