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The ethylene response factor (ERF) plays a crucial role in plant innate immunity. However,
the molecular function of ERF in response to Exserohilum turcicum (E. turcicum) remains
unknown in maize. In this study, a novel ERF gene, designated as ZmERF105, was firstly
isolated and characterized. The ZmERF105 protein contains an APETALA2/ETHYLENE
RESPONSIVE FACTOR (AP2/ERF) domain and a conserved LSPLSPHP motif in its C-
terminal region. ZmERF105 protein was exclusively localized to the nucleus. ZmERF105
expression responded to E. turcicum treatment. Yeast one-hybrid and transcription
activity assays revealed that ZmERF105 is an activator of transcription and binds to
GCC-box elements. Over-expression of ZmERF105 was shown to increase maize
resistance against E. turcicum, and erf105 mutant lines displayed opposite phenotype.
Moreover, the activities of superoxide dismutase (SOD) and peroxidase (POD) in the
ZmERF105 over-expression lines were markedly higher than in the wild-type maize lines
(WT) after infection with E. turcicum, and were compromised in the erf105 mutant lines.
Simultaneously, ZmERF105 over-expression lines enhanced the expression of several
pathogenesis-related (PR) genes, including ZmPR1a, ZmPR2, ZmPR5, ZmPR10.1, and
ZmPR10.2 after infection with E. turcicum. In contrast, the expression of PR genes was
reduced in erf105 mutant lines. Our work reveals that ZmERF105 as a novel player of the
ERF network and positively regulates the maize resistance response to E. turcicum.
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INTRODUCTION

Maize (Zea mays L.) is one of the most important food crops in the world. Its productivity is
frequently hampered by pathogens and so improved disease resistance is an important goal in many
breeding projects (Galiano-Carneiro andMiedaner, 2017; Weems and Bradley, 2018). Northern corn
leaf blight (NCLB), caused by Exserohilum turcicum (E. turcicum), is a destructive disease of maize
worldwide (Chang and Fan, 1986). It can reduce crop yields approximately 50%, severe infection
even results in a total yield loss (Raymundo and Hooker, 1981; Perkins and Pedersen, 1987).
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Resistant cultivars are the most effective and economical way of
controlling NCLB. Nine qualitative Ht genes which confer
resistance to specific races of E. turcicum have already been
identified in maize, including Ht1, Ht2, Ht3, HtN, Htm1, Htn1,
HtP, ht4, and rt (Carson, 1995; Welz and Geiger, 2000; Hurni
et al., 2015). Qualitative resistance often results in breakdown of
disease resistance because of a change in the pathogen
population; quantitative resistance breeding has become the
primary method for NCLB control (Carson, 1995; Welz and
Geiger, 2000). Thus, it is necessary to isolate resistance genes and
analyze their funtions in order to improve maize resistance to
E. turcicum.

Plants have evolved an array of defense mechanisms that
enable them to protect themselves from pathogen infection
(Boller and He, 2009; Cui H. T. et al., 2009; Bigeard et al.,
2015; Birkenbihl et al., 2017). APETALA2/ETHYLENE
RESPONSIVE FACTOR (AP2/ERF) are thought to be the
major transcription factors (TFs) that regulate the plant
defense system (Nakano et al., 2006; Li et al., 2011; Pieterse
et al., 2012; Lai et al., 2013; Lu et al., 2013; Sherif et al., 2013).
They were usually classified to three families, including AP2,
RAV, and ERF family (Licausi et al., 2013). The ERF family is
sometimes further divided into two major subfamilies, the ERF
subfamily and the DREB subfamily (Sakuma et al., 2002). The
ERFs contain a highly conserved AP2/ERF domain consisting of
57 or 59 amino acid residues, and the AP2/ERF domain binds to
the cis-acting element AGCCGCC (GCC-box) presents in the
promoters of pathogenesis-related (PR) genes (Ohme-Takagi
and Shinshi, 1995; Zarei et al., 2011; Cheng et al., 2013;
Franco-Zorrilla et al., 2014). The ERF gene was firstly isolated
in tobacco (Ohme-Takagi and Shinshi, 1995), and successively
identified in other plant species, such as wheat (Xu et al., 2007),
tomato (Pan et al., 2010), soybean (Zhai et al., 2013) and rice
(Zhang et al., 2013).

ERF genes acting as transcription activators or repressors
involved in plant defense reactions (McGrath et al., 2005; Sherif
et al., 2013; Huang et al., 2016; Li et al., 2018; Huang et al., 2019).
Over-expression of AtERF1 activated the expression of PLANT
DEFENSINS (PDF1.2) directly, and increased the plants resistance
against a range of pathogens (Berrocal-Lobo et al., 2002; Lorenzo
et al., 2003). A T-DNA insertion mutant of AtERF14 increased
susceptibility to infection by Fusarium oxysporum (F. oxysporum)
(Oñate-Sánchez et al., 2007). AtERF96 positively regulated the
Arabidopsis resistance to necrotrophic pathogen through
enhancing the expression of PDF1.2a, PR-3, PR-4, and ORA59
(Catinot et al., 2015). The transcription activator, AtERF15 could
positively regulate the Arabidopsis resistance against Pseudomonas
syringae pv. tomato (Pst) DC3000 and Botrytis cinerea (B. cinerea)
(Zhang et al., 2015). Although many ERF TFs identified so far are
transcription activators, several ERFs were shown to act as
negatively regulators of plant defense mechanisms (McGrath
et al., 2005; Maruyama et al., 2013; Tian et al., 2015). Over-
expression of AtERF4 was more susceptible to F. oxysporum, and
knockout mutants of AtERF9 showed enhanced resistance to B.
cinerea by suppressing the expression of the PDF1.2 (McGrath
et al., 2005; Maruyama et al., 2013). StERF3, which contains an
Frontiers in Plant Science | www.frontiersin.org 2
EAR motif, negatively regulates resistance to Phytophthora
infestans (P. infestans) (Tian et al., 2015).

Previous reports have demonstrated that many ERF genes
respond to various stimulus, such as ethylene (ET), salicylic acid
(SA), and jasmonic acid (MeJA) (Grant and Jones, 2009; Cheng
et al., 2013; Müller and Munné-Bosch, 2015; Yang et al., 2015;
Zhang et al., 2017; Xie et al., 2019). Transcription of the TaERF1
is induced by ABA, ET, and SA (Xu et al., 2007). Expression of
GmERF7 is induced by treatment with MeJA, ET, and ABA (Zhai
et al., 2013). Transcription of the GmERF113 can be induced by
ABA, ET, and SA (Zhao et al., 2017). These stimulus have been
associated with resistance against different types of pathogens,
such as (hemi) biotrophic pathogens are modulated via SA
signaling pathway while necrotrophic pathogens are mediated
through MeJA/ET signaling pathway (Ward et al., 1991; Farmer
et al., 2003; Yang et al., 2005; Vlot et al., 2009; Verhage et al.,
2010; Caarls et al., 2017). For example, AtERF1, AtERF5, AtERF6,
and ORA59 are suggested to participate in JA/ET-regulated
defense responses and increased plants resistance against B.
cinerea by promoting the expression of AtPDF1.2 and ChiB
(Lorenzo et al., 2003; Pre et al., 2008; Leon-Reyes et al., 2010;
Zarei et al., 2011; Son et al., 2012; Moffat et al., 2012; Cheng et al.,
2013; Van der Does et al., 2013; He et al., 2017; Kim et al., 2018).
ERF11 acted as a regulator of the SA-mediated signaling pathway
to enhance the Arabidopsis defense response against Pst DC3000
by directly regulating the expression of BT4 (Zheng et al., 2019).

Although the regulatory functions of the ERF genes have been
widely explored in plants, the role of ERF genes in response to E.
turcicum remain unknown. In a previous study, a novel ERF gene
was significantly induced after infection with E. turcicum in the
resistant inbred line “Mo17” than in the susceptible inbred line
“Huobai”. In this work, we firstly isolated and characterized this
ERF gene in maize, designated as ZmERF105 (GenBank No.
NM001177195). ZmERF105 protein was exclusively localized to
the nucleus. ZmERF105 acts as a transcriptional activator that
binds to GCC-box elements. ZmERF105 expression responded to
E. turcicum treatment. ZmERF105 positively regulated plant
resistance against E. turcicum via regulating the expression of
defense-related genes and the activities of antioxidant enzymes.
These data suggested that ZmERF105 plays an important role in
plant defense reactions, and may be useful in molecular breeding
to improve the defensive capacity of maize against E. turcicum.
MATERIALS AND METHODS

Plant Materials and Stress Treatments
E. turcicum and maize inbred lines were provided by Maize
Breeding Team in Jilin Agricultural University. The seeds of the
maize inbred line B73 were germinated in a greenhouse under a
long-day photoperiod (16-h light, 8-h dark), and watered once
every 3 days. Plant stress treatments were performed at the three-
leaf stage. For hormone treatments, maize seedlings were sprayed
with 0.1 mM MeJA, 0.1 mM ABA, or 0.5 mM SA. ET treatment
was performed in sealed plexiglass chamber by dissolving 2 ml of
40% ethephon and 1 g of NaHCO3 in 200 ml of H2O.
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E. turcicum (mixed races) was inoculated into the maize
inbred line Mo17 (resistant inbred line) and Huobai
(susceptible inbred line) according to the methods described by
Wu et al. (2014), The plants were inoculated with two to three
drops of conidial suspension at six-leaf stage, and the
concentration of conidia was estimated to be about 1 × 105

spores ml−1. After inoculation, the plants were kept at 100%
relative humidity to ensure spore germination. The leaves were
collected at 6, 12, 24, 48, and 72 h after the treatment, and were
frozen in liquid nitrogen for RNA extraction.

Cloning of ZmERF105 and
Phylogenetic Analysis
The full-length cDNA sequence of ZmERF105 was amplified
from the leaves of the maize inbred line B73 using reverse
transcription PCR (RT-PCR). The amplified products were
cloned into the pMD-18T vector (Takara) for sequencing
(Sangon, Shanghai, China). The amino acid sequences of
ZmERF105 and other AP2/ERF members were obtained from
NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Multiple sequence alignment was analyzed using DNAMAN
software, and the phylogenetic tree was generated with the
neighbor-joining method using MEGA 5.0 software. The
primers used for ZmERF105 cloning were provided in
Supplementary Table S1.

Quantitative Real-Time PCR Analysis
Total RNA was extracted from maize leaves using Trizol reagent
(Invitrogen, China) and reverse transcription was performed by
using 1 µg of total RNA. Quantitative real-time PCR (qRT-PCR)
was performed on a QuantStudio 3 instrument (Thermo, USA)
using a SYBR Mixture system (TOYOBO, Japan). The relative
expression levels were calculated by the 2−DDCt method with the
maize housekeeping gene ZmTub (GRMZM2G066191). The
expression analysis was performed using three biological and
three technical replicates, and statistically analyzed using
Student’s t-test (*P < 0.05, **P < 0.01). The primers used for
expression analysis were provided in Supplementary Table S1.

Maize Transformation and Assessment of
Plant Disease Resistance
The coding sequence of ZmERF105 was ligated into the NcoI and
PmlI sites of pCAMBIA3301 vector to construct the CaMV 35s:
ZmERF105 plasmid, and the recombinant plasmid was
introduced into Agrobacterium tumefaciens strain LBA4404
using the freeze-thaw method (Holsters et al., 1978).
Germinating embryos of the maize inbred line H99
(susceptible inbred line) were used as explants transformed
with the Agrobacterium-mediated method (Zhou et al., 2011).
T2 transgenic maize lines were further confirmed using PCR and
qRT-PCR. Primers used for the vector construction and
detection were presented in Supplementary Table S1.

erf105 UFMu mutant lines (W22, mu2041934) were obtained
from the Maize Genetics Cooperation Stock Center. The
homozygous mutant lines were identified using PCR. The
transcription levels were detected using qRT-PCR as described
Frontiers in Plant Science | www.frontiersin.org 3
previously. Primers used for detection were presented in
Supplementary Table S1.

To investigate the transgenic and mutant maize lines
resistance against E. turcicum, artificial inoculation procedures
were performed as described by Wu et al. (2014). The wild-type
maize lines (WT) were used as the control. The living ear leaves
of T2 transgenic lines and mutant lines were infected with E.
turcicum. Disease symptoms on infected leaves were observed
with a Nikon D7000 camera at 5 days post-inoculation (dpi). The
relative lesion area was measured as described by Cui H. W. et al.
(2009) using Photoshop CS3.

Subcellular Localization of ZmERF105
The full-length ZmERF105 sequence was cloned and ligated into
the KpnI and XbaI sites of pCAMBIA1300 vector to construct the
CaMV 35s: ZmERF105-GFP plasmid. After sequencing
confirmation, CaMV 35s: ZmERF105-GFP plasmid and empty
vector were transiently expressed in N. benthamiana (Liu et al.,
2010). The GFP fluorescence signal was visualized and
photographed with a laser scanning confocal microscope (Leica
TCS SP5, Germany). The primers used for expression analysis
were provided in Supplementary Table S1.

Yeast One-Hybrid Assay
The coding sequence of ZmERF105 was amplified and ligated
into the NcoI and EcoRI sites of the pGADT7 vector. The specific
DNA fragments, GCC (ATCCATAAGAGCCGCCACTAAAA
TAAGACCGATCAA) and muta t ed GCC (mGCC)
(ATCCATAAGATCCTCCACTAAAATAAGACCGATCAA)
were inserted into the pHIS2 vector. The plasmids were
transformed into yeast strain Y187 and the transformants were
selected on SD (-Trp/-Leu). Transformed colonies were
subsequently grown on SD (-Trp/-His/Leu) medium with 100
mM 3-amino-1, 2, 4-triazole (3-AT), and were cultured at 28°C
for 3 days. Primers used for the vector construction were
presented in Supplementary Table S1.

Transcription Activity Assay
For transcription activity assay, the coding sequence of
ZmERF105 was inserted into NcoI and PmlI sites of
pCAMBIA3301 vector to construct the CaMV 35s:
ZmERF105 effector plasmid. The reporter plasmid was
constructed according to the method described by Dong et al.
(2015). The combined reporter and effector plasmids were
cotransformed into the Arabidopsis protoplasts according to a
protocol described by Yoo et al. (2007). The relative GUS
activity was determined as described by Chen et al. (2006).
Primers used for the vector construction were presented in
Supplementary Table S1.

Enzyme Activity Assay
The fresh leaves (approximately, 0.1 g) of seedlings were
harvested and homogenized in 1 ml of 50 mM ice-cold
phosphate buffer (pH 7.8). The extract was centrifuged at
12,000 rpm for 20 min at 4°C. Superoxide dismutase (SOD)
and Peroxidase (POD) activities were measured following the
method that described by Li et al. (2015).
June 2020 | Volume 11 | Article 850

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zang et al. ZmERF105 Improves Exserohilum turcicum Resistance
RESULTS

Isolation and Sequence Analysis
of ZmERF105
The full-length cDNA sequence of ZmERF105 (GenBank No.
NM001177195) was isolated from the leaves of maize inbred line
B73 using RT-PCR. ZmERF105 has an open reading frame (ORF)
of 990 bp, encoding a polypeptide of 329 amino acids with a
predicted molecular mass of 34.5 kDa and a theoretical PI of 5.77.
The deduced ZmERF105 protein contains a conserved AP2/ERF
domain consisting of 58 amino acids, with conserved alanine (A)
and aspartic acid (D) in it, suggesting that it is a member of the ERF
family (Figure 1). The AP2/ERF domain contains conserved YRG
and RAYD elements, which may play a key role in DNA binding
and protein interaction, respectively (Figure 1). In addition, the
ZmERF105 protein contains a conserved LSPLSPHPmotif in its C-
terminal region which is a mitogen-activated protein kinase
(MAPK) phosphorylation site (Figure 1). The results from
searching the Phytozome database (http://www.phytozome.net/
maize) showed that ZmERF105 did not have intron and is
located on chromosome 5. The phylogenetic tree analysis
indicated that ZmERF105 protein shows highly similarity to
SiERF105 (GenBank No. XP004953326), SbERF5 (GenBank No.
XP021315889), and OsERF5 (GenBank No. XP015624058),
respectively (Figure 2A). According to Fujimoto et al. (2000),
ZmERF105 protein belongs to class III ERF group. The results
from searching the SWISS-MODEL database (https://swissmodel.
expasy.org/) showed that the 3D structure of ZmERF105 has a long
C-terminal a-helix (a) wrapped in a three-stranded anti-parallel
b-sheet (b1–b3) (Figure 2B).
Frontiers in Plant Science | www.frontiersin.org 4
Expression Profiles of ZmERF105 Under
Various Stresses
In order to better understand the function of ZmERF105, the
expression levels of ZmERF105 were investigated using qRT-PCR.
The results demonstrated that ZmERF105 was expressed, with the
highest expression in stems, followed by the leaves and the roots
(Figure 3A). Under SA and ET treatments, the expression levels of
ZmERF105 peaked at 5 and 10 h, respectively (Figures 3C, F).
MeJA treatment induced a down-regulation of ZmERF105
expression at 2 h, followed by a slow increase, with maximum at
24 h (Figure 3D). In contrast, ZmERF105 expression rapidly
reached the maximum at 2 h after ABA treatment, followed by a
rapid decline in 5–10 h, and increased at 24 h (Figure 3E).

ZmERF105 expression was detected in Mo17 (resistant inbred
line) and Huobai (susceptible inbred line) plants after infection
with E. turcicum. As shown in Figure 3B, the expression level of
ZmERF105 was higher in Mo17 leaves than that in Huobai leaves
during E. turcicum infection. A significant up-regulation of
ZmERF105 expression was detected at 6 h and reached a
maximum level at 24 h. These results demonstrated that
ZmERF105 may involve in response to pathogen and
multiple stimulus.

Subcellular Localization of the
ZmERF105 Protein
To determine the subcellular location of ZmERF105 protein, a
ZmERF105-GFP fusion protein under the control of the 35S
promoter was obtained and introduced into the epidermal cells
of N. benthamiana. Consistent with its function as a TF, the
ZmERF105-GFP fusion protein was exclusively localized to the
FIGURE 1 | Conserved motifs of the ZmERF105 protein sequence in alignment with other ERF transcription factors. The sequence alignment was performed using
DNAMAN software. The AP2 DNA binding domain is indicated by pink box. The one a-helix and three b-sheets are marked above the corresponding sequences.
The YRG and RAYD elements are indicated below the alignment. The conserved alanine and aspartic acid residues in the AP2 domain are marked by red triangles.
A conserved LSPLSPHP motif is marked by ‘‘+’’. AtERF5 (NP568679) is derived from Arabidopsis thaliana, OsERF5 (XP015624058) is derived from Oryza sativa,
SbERF5 (XP021315889) is derived from Sorghum bicolor, and SiERF105 (XP004953326) is derived from Setaria italica.
June 2020 | Volume 11 | Article 850
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nucleus, and the fluorescent signals of the control were observed
in whole cells (Figure 4).

ZmERF105 Binds to GCC-Box Elements
and Functions as a Transcription Activator
Previous studies have shown that ERF genes contain a conserved
DNA-binding domain which can bind to GCC-box elements
(Zhang et al., 2004; Tang et al., 2007). To further investigate
whether ZmERF105 specifically binds to GCC-box elements, a
yeast one-hybrid assay was performed. As shown in Figure 5A,
the bait stain (pHIS2-GCC) transfected with prey vector
(pGADT7-ZmERF105) could grow on SD (-Leu/-Trp/-His)
medium containing 100 mM 3-AT, while mutant bait stain
(pHIS2-mGCC) could not. The result indicated that
ZmERF105 can bind specifically to GCC-box elements

Transient transcription activity assay was used to determine
whether ZmERF105 functions as a transcription activator.
Expression of ZmERF105 was driven by the CaMV 35S
promoter, and the GUS reporter gene was driven by 4× GCC
35S mini promoter. As shown in Figure 5B, the relative GUS
activity of the Arabidopsis protoplasts transformed with was the
CaMV 35S: ZmERF105 and 4× GCC 35S: GUS was
approximately 1.4 times as high as the control. These results
demonstrated that ZmERF105 functions as a transcriptional
activator and binds to GCC-box elements.

ZmERF105 Positively Regulates Maize
Resistance Against E. turcicum
To investigate whether ZmERF105 can improve resistance to E.
turcicum in transgenic maize plants, T2 transgenic plants,
constituting three independent ZmERF105 over-expressing
transgenic lines (OE3, OE4, and OE7) was used to investigate
the response to E. turcicum. The expression of ZmERF105 in the
Frontiers in Plant Science | www.frontiersin.org 5
representative transgenic lines (OE3, OE4, and OE7) was further
detected by qRT-PCR (Figure 6B). As illustrated in Figures 6A, C,
the sizes of the lesions in over-expressing lines were significantly
smaller than in the wild-type maize lines (WT) at 5 dpi. In
addition, the relative expression of ZmERF105 had about 0.2-
fold and 0.3-fold declines in erf105 mutant lines, respectively
(Figure 6E). After inoculation with E. turcicum, the erf105
mutant lines displayed significantly susceptibility compared with
the WT at 5 dpi (Figures 6D, F). These results demonstrated that
ZmERF105 positively regulates the maize resistance against
E. turcicum.

ZmERF105 Affects Antioxidant
Enzyme Activity
SOD and POD are the most important antioxidant enzyme in the
process of ROS scavenging reaction, and it was suggested to
participate in various defense mechanisms (Liu et al., 2016). To
further confirm whether the role of ZmERF105 in resistance
against E. turcicum is related to SOD and PDD activities, we
examined the activities of SOD and POD in ZmERF105 over-
expression and erf105 mutant lines. After inoculation E.
turcicum, both SOD and POD activities were significantly high
in ZmERF105 over-expression lines compared with those in the
mock-inoculated lines at 24 h, and were remarkably decreased in
the erf105 mutant lines (Figure 7). These results suggested that
ZmERF105 increases the activities of the antioxidant enzymes in
maize resistance to E. turcicum.

ZmERF105 Involves in Various Plant
Defense Responses
ERF genes are suggested to participate in plant defense responses
through regulating the expression of PR genes (Lorenzo et al., 2003;
Pre et al., 2008; Moffat et al., 2012; Son et al., 2012). To further
A B

FIGURE 2 | The phylogenetic tree and predicted three-dimensional structure of ZmERF105 protein. (A) The phylogenetic tree was generated with the neighbor-
joining method using MEGA 5.0 software. ZmERF105 is indicated by the red dot. The accession numbers are as follows: AtERF1 (NP188965), AtERF2 (NP199533),
AtERF3 (NP175479), AtERF4 (NP188139), AtERF5 (NP568679), AtERF6 (NP567529), AtERF7 (NP188666), AtERF8 (NP175725), AtERF9 (NP199234), AtERF10
(NP171876), AtERF11 (NP174159), AtERF12 (NP174158), AtERF13 (NP182011), AtERF14 (NP171932), AtERF15 (NP9850162), AtERF104 (NP_200968), GmERF4
(ACE76905), GmERF5 (AEX25891), GmERF6 (AEQ55267), GmERF7 (AEQ55266), NtERF3 (BAJ72664), NtERF5 (AAU81956), SbERF5 (XP021315889), SiERF105
(XP004953326), and OsERF5 (XP015624058). (B) Predicted three-dimensional structure of ZmERF105 protein.
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FIGURE 4 | Subcellular localization of ZmERF105-GFP fusion protein in the epidermal cells of N. benthamiana. N. benthamiana leaves transiently expressing GFP
alone (upper) and ZmERF105-GFP (bottom) proteins were observed with a confocal microscope. Bars = 25 mm.
A B

C D

E F

FIGURE 3 | Expression profiles of ZmERF105 in maize. (A) Expression analysis of ZmERF105 in different organs. (B) Relative expression levels of ZmERF105 in
Mo17 (resistant inbred line) and Huobai (susceptible inbred line) plants infection with E. turcicum. The samples were collected at 0, 6, 12, 24, 48, and 72 h after E.
turcicum infection. The relative expression levels were compared with susceptible inbred line Huobai at same points. (C–F) Expression analysis of ZmERF105 under
hormone treatments, including 0.5mM SA, 0.1mM MeJA, 0.1mM ABA or ET. The relative expression levels were calculated by the 2-DDCt method with the maize
housekeeping gene ZmTub (GRMZM2G066191) as an internal control. The experiment was performed using three biological and technical replicates each, and
analyzed using Student' t-tests (*P < 0.05, **P < 0.01). Bars indicate standard error of the mean (SE).
Frontiers in Plant Science | www.frontiersin.org June 2020 | Volume 11 | Article 8506
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analyze the role of ZmERF105 in resistance against E. turcicum in
maize, we examined the expression of PR genes that including
ZmPR1a (GRMZM2G465226), ZmPR2 (GRMZM5G456997),
ZmPR5 (GRMZM2G402631), ZmPR10.1 (GRMZM2G112488),
and ZmPR10.2 (GRMZM2G112538). As shown in Figure 8,
after 24h incubation with E. turcicum, the expression levels of
these PR genes were highly induced in ZmERF105 over-expressing
lines compared with those in the mock-inoculated lines, and were
remarkably reduced in the erf105 mutant lines. These results
indicated that ZmERF105 may enhance maize defense against E.
turcicum by directly or indirectly regulating these PR genes.

Due to the expression levels of SA-associated genes ZmPR1a and
ZmPR5 exhibited significant increase in the ZmERF105 over-
expression lines and were decreased in the erf105 mutant lines
after E. turcicum infection, the expression level of ZmERF105 was
induced by SA treatment, we speculated whether ZmERF105 is
required for SA induced defense response. To test this hypothesis,
we further assessed SA induces resistance to E. turcicum infection in
erf105mutant lines. As shown in Supplementary Figure S1, erf105
mutant lines showed less severe disease symptom by application of
exogenous 10 mM SA than the water-treated lines at 5 dpi
(Supplementary Figure S1). These results demonstrated that
ZmERF105 may involve in SA-induced defense response. To
further confirm whether ZmERF105 involved in MeJA, ET, and
ABA induced defense responses, we detected the expression of
MeJA-associated gene ZmLox1 (GRMZM2G156861), ET-
associated gene ZmACS6 (GRMZM2G04361), and ABA-
associated gene ZmRD20 (GRMZM2G342685), respectively. The
Frontiers in Plant Science | www.frontiersin.org 7
results showed that the expression levels of ZmLox1 and ZmACS6
significantly increased in the ZmERF105 over-expression lines and
were decreased in the erf105mutant lines after E. turcicum infection,
while ZmRD20 showed opposite results (Supplementary Figure
S2). These results demonstrated that ZmERF105 may act positively
as regulators of MeJA and ET signaling pathways in resistance to E.
turcicum, and negatively in ABA signaling pathway.
DISCUSSION

Plants have evolved an array of defense mechanisms to protect
themselves when they are exposed to a wide variety of pathogens
(Schwessinger and Ronald, 2012; Fu and Dong, 2013; Birkenbihl
et al., 2017). ERFs are one of the most important TFs in the plant
defense syetem (McGrath et al., 2005; Pre et al., 2008; Maruyama
et al., 2013). In maize, a total of 98 predicted ERF members have
been identified (Liu et al., 2013). In this study, a novel maize ERF
gene, ZmERF105, was isolated and identified. ZmERF105 is
involved in the pathogen response pathway and positively
regulates the maize resistance against E. turcicum.

To our knowledge, ERF families were divided into ERF
subfamily and DREB subfamily according to the amino acids
difference at position 14th and 19th in AP2/ERF domain
(Sakuma et al., 2002). Similar to other ERF proteins,
ZmERF105 protein contains a conserved AP2/ERF domain
consisting of 58 amino acids, with conserved alanine (A) and
aspartic acid (D) in it (Figure 1), suggesting that it is a member
A

B

FIGURE 5 | Binding to the GCC-box elements and transcription activity analysis of ZmERF105. (A) The binding activity of ZmERF105 to the GCC-box elements in
yeast one-hybrid assay. Yeast cells were selected on SD (-Trp/-Leu) and SD (-Trp/-Leu/-His) media supplemented with 100 mM 3-AT. (B) Transcription activity
analysis of ZmERF105 in Arabidopsis protoplasts. The numbers show the fold increase in GUS activity compared with the reporter vector driven by 4× GCC 35S
mini promoter alone. The experiment was performed using three biological and technical replicates each and analyzed using Student’s t-tests (**P < 0.01). Bars
indicate standard error of the mean (SE).
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A B

C D

FIGURE 7 | Analysis of antioxidant enzyme activity under mock treatment and infected by E. turcicum at 24-h post-inoculation (hpi). (A, B) The activity of the SOD
in ZmERF105 over-expression and erf105 mutant lines, respectively. (C, D) The activity of the POD in ZmERF105 over-expression and erf105 mutant lines,
respectively. The activity of the WT sample [mock-treated wild-type (WT) plants] was set to unity. The experiment was performed on three biological replicates, each
with three technical replicates, and statistically analyzed using Student’s t-test (*P < 0.05, **P < 0.01). Bars indicate standard error of the mean (SE).
A B

C
D

E F

FIGURE 6 | Responses of ZmERF105 over-expression and erf105 mutant lines to E. turcicum. (A) Disease symptoms on the leaves of T2 transgenic lines at 5 dpi.
(B) Relative expression analysis of ZmERF105 in T2 transgenic lines. (C) The relative lesion areas of the transgenic lines at 5 dpi. (D) Disease symptoms on the
leaves of erf105 mutant lines at 5 dpi. (E) Relative expression analysis of ZmERF105 in erf105 mutant lines. (F) The relative lesion areas of the erf105 mutant lines at
5 dpi. The experiment was performed using three biological and technical replicates each and analyzed using Student’s t-tests (**P < 0.01). Bars indicate standard
error of the mean (SE).
Frontiers in Plant Science | www.frontiersin.org June 2020 | Volume 11 | Article 8508

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zang et al. ZmERF105 Improves Exserohilum turcicum Resistance
of the ERF subfamily. Sequence analysis showed that ZmERF105
protein contains a LSPLSPHP motif in its C-terminal region,
which maybe indicate the role of ZmERF105 in MAPK signaling
pathway (Figure 1).

ERF genes have been shown to act as transcription activators
or repressors and are able to bind to GCC-box elements
(Fujimoto et al., 2000). For example, AtERF1, ORA59, AtERF6,
and AtERF96 serve as transcriptional activators while GmERF5
and StERF3 serve as transcriptional repressors, and they can bind
to GCC-box elements (Zarei et al., 2011; Wang et al., 2013;
Catinot et al., 2015; Dong et al., 2015; Tian et al., 2015). In this
study, we found that nuclear loci of ZmERF105 binds specifically
to the GCC-box elements by yeast one-hybrid assay and shows
transactivation activity in Arabidopsis protoplast (Figures 4 and
5). Our results suggested that ZmERF105 may function as a
transcription activator and regulate defense-related genes
expression by binding to GCC-box elements present in
their promoters.
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Most of ERFs act as activators and positively regulate the
plant resistance against pathogens (Berrocal-Lobo et al., 2002;
Son et al., 2012). Over-expression of AtERF1, ORA59, AtERF6,
AtERF96, and AtERF104 were shown to increase plant resistance
against B. cinerea (Berrocal-Lobo et al., 2002; Pre et al., 2008;
Bethke et al., 2009; Zarei et al., 2011; Meng et al., 2013; Wang
et al., 2013; Catinot et al., 2015). The transcription activator,
AtERF15 could positively regulate the Arabidopsis resistance
against Pst DC3000 and B. cinerea (Zhang et al., 2015). Over-
expression of GmERF113 in transgenic soybean led to increased
resistance to Phytophthora Sojae (P.sojae) (Zhao et al., 2017). In
our research, the expression of ZmERF105 was significantly
induced after infection with E. turcicum in the resistant inbred
line “Mo17” than in the susceptible inbred line “Huobai” (Figure
3B). Therefore, we speculate that ZmERF105may play important
role in response to E. turcicum. As a result, we further analyzed
the function of ZmERF105 in resistance to E. turcicum. Over-
expression of ZmERF105 was shown to increase maize resistance
A B C

D E F

G H I

J

FIGURE 8 | Relative expression levels of defense-related genes under mock treatment and infected by E. turcicum at 24 hpi in ZmERF105 over-expression and
erf105 mutant lines, respectively. (A, B) The expression of the ZmPR10.1. (C, D) The expression of the ZmPR10.2. (E, F) The expression of the ZmPR2. (G, F) The
expression of the ZmPR1a. (H, I) The expression of the ZmPR5. The relative expression levels were calculated by the 2−DDCt method with the maize housekeeping
gene ZmTub (GRMZM2G066191) as an internal control. The expression of the WT sample [mock-treated wild-type (WT) plants] was set to unity. The experiment
was performed using three biological and technical replicates each and analyzed using Student’s t-tests (**P < 0.01). Bars indicate standard error of the mean (SE).
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against E. turcicum, and erf105 mutant lines displayed opposite
phenotype (Figure 6). These results demonstrated that
ZmERF105 positively regulates the maize resistance response to
E. turcicum.

ERF genes are mainly involved in plant defense response by
directly regulating the expression of defense-related genes (Meng
et al., 2013; Wang et al., 2013). AtERF96 positively regulates the
Arabidopsis resistance to B. cinerea by enhancing the expression
of PDF1.2a, PR-3, and PR-4 (Catinot et al., 2015). Over-
expression of AtERF1, AtERF5, AtERF6, and ORA59 increased
Arabidopsis resistance against B. cinerea by promoting the
expression of AtPDF1.2 (Lorenzo et al., 2003; Zarei et al., 2011;
Son et al., 2012; Moffat et al., 2012; Cheng et al., 2013). Over-
expression of GmERF3 in transgenic tobacco enhanced
resistance against tobacco mosaic virus (TMV) and activating
the expression of PR1, PR2, and PR4 (Zhang et al., 2009). Over-
expression of GmERF113 increased soybean resistance to P. sojae
and increased transcript levels of GmPR1 and GmPR10-1 (Zhao
et al., 2017). Our previous research demonstrated that
ZmERF105 over-expression lines enhanced the expression of
several PR genes, including ZmPR1a, ZmPR2, ZmPR5,
ZmPR10.1 and ZmPR10.2 after infection with E. turcicum,
while the expression levels of these PR genes were reduced in
erf105 mutant lines (Figure 8). We speculated that ZmERF105
may enhance maize defense against E. turcicum by directly or
indirectly regulating these PR genes.

POD and SOD are the most important antioxidant enzymes
to help eliminate the excessive accumulation of ROS in plants, to
induce resistance or repair the damage (Liu et al., 2016). In the
present study, the activities of SOD and POD in the ZmERF105
over-expression lines were markedly higher than in the WT after
infection with E. turcicum, and were compromised in the erf105
mutant lines (Figure 7). These results demonstrated that
ZmERF105 can strengthen ROS scavenging capability to
provide sufficient protection against oxidative damage.

The phytohormones ET, JA, SA, and ABA are important for
plants to distinguish and resist distinctive pathogens (Pieterse
et al., 2012; Van der Does et al., 2013). Over-expression of
AtERF5 resulted in increased resistance to B. cinerea through
MeJA/ET signaling pathway, while showed increased
susceptibility to the hemibiotroph Pst DC3000 via suppressing
SA-mediated signaling pathway (Son et al., 2012; Moffat et al.,
2012). AtERF1 and ORA59 are more resistant to B. cinerea via
MeJA/ET-mediated signaling pathway (Berrocal-Lobo et al.,
2002; Pre et al., 2008). AtERF15 involved in defense against B.
cinerea and Pst DC3000 through SA signaling pathway (Zhang
et al., 2015). ERF11 acted as a regulator of the SA-mediated
signaling pathway to enhance the Arabidopsis defense response
against Pst DC3000. The expression levels of SA-associated genes
ZmPR1a and ZmPR5 exhibited significant increases in the
ZmERF105 over-expression lines but were decreased in the
erf105 mutant lines after E. turcicum infection (Figure 8).
Furthermore, the expression of ZmERF105 was induced by SA
treatment (Figure 3C) and SA induces resistance to E. turcicum
infection in erf105 mutant lines (Supplementary Figure S1).
These results demonstrated that ZmERF105 may involve in
Frontiers in Plant Science | www.frontiersin.org 10
defense response to E. turcicum in the regulation of SA
signaling pathways. In addition, we further demonstrated that
ZmERF105 may positively regulate the expression of MeJA-
associated gene and ET-associated gene in response to E.
turcicum, and negatively regulate the expression of ABA-
associated gene Supplementary Figure S2). The results
showed that ZmERF105 may act positively as regulators of
MeJA and ET signaling pathways in resistance to E. turcicum,
and negatively in ABA signaling pathway.

In conclusion, ZmERF105 is a novel ERF gene and plays an
important role in the plant defense system. ZmERF105 protein
was exclusively localized to the nucleus. ZmERF105 acts as a
transcriptional activator that binds to GCC-box elements.
ZmERF105 expression responded to E. turcicum treatment.
ZmERF105 positively regulated plant resistance against E.
turcicum via regulating the expression of defense-related genes
and the activities of antioxidant enzymes. Overall, our study
provides new information to dissect the poorly understood
mechanism of ZmERF105 in plant immune pathways.
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