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To infect their hosts and cause disease, plant viruses must replicate within cells and
move throughout the plant both locally and systemically. RNA virus replication occurs
on the surface of various cellular membranes, whose shape and composition become
extensively modified in the process. Membrane contact sites (MCS) can mediate non-
vesicular lipid-shuttling between different membranes and viruses co-opt components of
these structures to make their membrane environment suitable for replication. Whereas
animal viruses exit and enter cells when moving throughout their host, the rigid wall
of plant cells obstructs this pathway and plant viruses therefore move between cells
symplastically through plasmodesmata (PD). PD are membranous channels connecting
nearly all plant cells and are now viewed to constitute a specialized type of endoplasmic
reticulum (ER)-plasma membrane (PM) MCS themselves. Thus, both replication and
movement of plant viruses rely on MCS. However, recent work also suggests that
for some viruses, replication and movement are closely coupled at ER-PM MCS at
the entrances of PD. Movement-coupled replication at PD may be distinct from the
main bulk of replication and virus accumulation, which produces progeny virions for
plant-to-plant transmission. Thus, MCS play a central role in plant virus infections, and
may provide a link between two essential steps in the viral life cycle, replication and
movement. Here, we provide an overview of plant virus-MCS interactions identified to
date, and place these in the context of the connection between viral replication and
cell-to-cell movement.

Keywords: plant virus, membrane contact site, replication, cell-to-cell movement, synaptotagmin,
plasmodesmata

Abbreviations: ER, endoplasmics reticulum; MCS, membrane contact site; MP, movement protein; PD, plasmodesmata;
PM, plasma membrane; RNP, ribonucleoprotein; VRC, viral replication complex.
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INTRODUCTION: PLANT VIRUS
MOVEMENT IN THE CONTEXT OF
INFECTION

Viruses that infect plants have to overcome the barrier of the
cell wall when moving between host cells. The only pathway
available to them are plasmodesmata (PD) (Rojas et al., 2016;
Pitzalis and Heinlein, 2017; Reagan and Burch-Smith, 2020),
membranous channels traversing the wall, and plant viruses have
evolved specialized transport systems consisting of virus-encoded
movement proteins (MPs) to facilitate shuttling of infectious
genomes through PD (Lucas, 2006; Tilsner et al., 2014; Heinlein,
2015; Hong and Ju, 2017). Viral cell-to-cell movement is a “race”
against the antiviral mobile RNA silencing signal (Zhang et al.,
2019) and usually occurs early in infection, often within a few
hours after cell entry, when viral genomes are not yet abundant
in the host cell (Derrick et al., 1992; Angell et al., 1996; Kawakami
et al., 2004; Tilsner and Oparka, 2012). It is therefore crucial for
the success of the infection that the movement system correctly
selects viral genomes for transport. However, no characterized
MPs so far have shown sequence specificity to their cognate
viral genomes, and how transport specificity is achieved remains
an important unresolved question (Tilsner and Oparka, 2012).
Different plant viruses move either as encapsidated virions
or as a non-virion, MP-containing ribonucleoprotein (RNP)
complex, respectively (Lucas, 2006; Tilsner et al., 2014). In the
former case, the specificity of transport depends on cognate
interactions between MPs and capsid proteins (Nagano et al.,
1997; Carvalho et al., 2003; Takeda et al., 2004), whilst specificity
of encapsidation is achieved through capsid protein-nucleic acid
secondary structure interactions (Rao, 2006) as well as through
linking to (genome-specific) replication (Annamalai et al., 2008;
Lee et al., 2011).

In the case of viruses moving as non-virion RNP, movement
happens in competition with virion formation. As genome-
specific replication proteins have also been implemented in cell-
to-cell movement (Hirashima and Watanabe, 2003; Christensen
et al., 2009) in addition to the non-sequence-specific MPs
(Citovsky et al., 1990), transport specificity may be achieved
through spatial co-compartmentation of the assembly of
movement RNP complexes with replication. PD targeting of
replication complexes may link directly with movement and
the transported RNP could include the viral replicase or some
of its components (Kawakami et al., 2004; Tilsner et al., 2013;
Levy et al., 2015). Thus, in both virion- and non-virion RNP-
transporting plant viruses, spatial coupling of replication to
encapsidation/movement, or directly to movement is likely
important to achieve specific transport of viral genomes. In
agreement with their lack of sequence specificity, MPs can often
complement transport of unrelated viruses (Latham and Wilson,
2008). However, this implies that there are probably few specific
direct MP-replicase interactions involved in achieving movement
specificity. Instead, coupling may be achieved through CP-
replicase interactions (in virion-transporting viruses), localized
translation of MPs at replication sites, joint MP-RNA and
RNA-replicase interactions on the same genome (Tilsner and

Oparka, 2012), or host factors. For instance in Red clover necrotic
mosaic virus, the MP is recruited to replication complexes by
the host protein, glyceraldehyde 3-phosphate dehydrogenase A
(Kaido et al., 2014).

Recently, membrane contact sites (MCS) have emerged as
host cell structures that are being exploited by plant viruses for
both replication and movement, raising the intriguing possibility
that they might also be involved in linking these processes
and thus play crucial roles in plant virus infections. Here, we
summarize the so far identified interactions of plant viruses
with MCS, and discuss how they may contribute to linking
replication and movement.

PLANT MEMBRANE CONTACT SITES
AND PLASMODESMATA

Whilst the presence of ER-PM contacts in plants has been known
for some time (Hepler et al., 1990), it is only recently that the
identities of the first ER-PM MCS proteins were revealed. These
include the actin binding protein networked (NET) 3C, vesicle-
associated membrane protein (VAMP)-associated protein 27
(VAP27), synaptotagmins (SYT) A/1, E/5 and 7 and multiple C2
domains and transmembrane region proteins (MCTPs) (Wang
et al., 2014, 2016; Levy et al., 2015; Perez-Sancho et al., 2015;
Brault et al., 2019). Reticulons, some of which bind SYTA/1 and
VAP, and localize to PD, were shown to be MCS proteins in
non-plant systems, and may represent another component of
plant MCSs (Kriechbaumer et al., 2015; Caldieri et al., 2017).
VAPs are ER integral membrane proteins that interact with
various lipid binding/sensing/transport proteins, including the
oxysterol-binding proteins (OSBPs) (Lev et al., 2008). VAPs and
OSBP-related proteins (ORPs) function in lipid transfer, and were
shown to localize to ER-PM contact sites in yeasts (Schulz et al.,
2009; Stefan et al., 2011; Manford et al., 2012; Siao et al., 2016).

Mammalian extended-synaptotagmins (E-SYTs) localize at
ER-PM junctions, and take part in tethering the ER to the PM
(Giordano et al., 2013). Like classical SYTs, E-SYTs contain an
N-terminal, ER-inserted transmembrane domain, and several
C-terminal C2 domains, which can bind PM lipids. However,
they also possess an additional central domain called the
synaptotagmin-like mitochondrial and lipid binding protein
(SMP) domain (Giordano et al., 2013). SMP domains are lipid-
binding modules that are proposed to have a specialized role in
lipid transfer at MCS (Schauder et al., 2014; Yu et al., 2016),
and are necessary to localize E-SYTs to ER-PM MCSs (Toulmay
and Prinz, 2012). Arabidopsis SYTs contain the SMP domain,
and localize to ER-PM sites where they act as membrane tethers
(Levy et al., 2015; Perez-Sancho et al., 2015; Siao et al., 2016;
Ishikawa et al., 2018, 2020). Like E- SYTs and plant SYTs, MCTPs
bind to the PM with C2 domains and are ER-anchored by a
transmembrane region, but their C2 domains are located at the
N-, and the transmembrane region, which spans the membrane
multiple times, at the C-terminus (Brault et al., 2019). MCTPs do
not contain an SMP domain.

Most of the plant ER is situated close to the PM (referred to
as “cortical ER”), and is expected to be strongly anchored to the
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PM (Sparkes et al., 2011; Chen et al., 2012). The Arabidopsis
genome contains at least 10 genes encoding for proteins with
an SMP domain, including all Arabidopsis SYTs (Levy et al.,
2015), double the number of Homo sapiens (Lee and Hong, 2006),
suggesting that MCS may play a uniquely central role in plant
cell signaling, compared to that in mammalians cells. About
a third of SYTA/1-labeled contact sites are localized adjacent
to PD (Schapire et al., 2008; Levy et al., 2015). Whilst plant
SYTs appear to be mainly localized at PD entrances, several
members of the MCTP family have now been found to be highly
enriched in purified PD fractions and localize predominantly
to the inside of the channels, making them likely candidates
for connecting the ER and PM inside PD (Liu et al., 2012;
Vaddepalli et al., 2014; Brault et al., 2019). Several MCTP family
proteins have been implicated in macromolecular trafficking
through PD. For instance, FT-INTERACTING PROTEIN 1
(FTIP1)/MCTP1 is required for systemic transport of the
florigen signal flowering locus T (FT) through the phloem
(Liu et al., 2012), QUIRKY (QKY)/MCTP15 promotes non-cell-
autonomous signaling by the receptor-like kinase STRUBBELIG
(SUB) (Vaddepalli et al., 2014) and MCTP3/4 negatively
affect movement of SHOOTMERISTEMLESS (STM), a class
I KNOTTED1 (KN1)-like homeobox (KNOX) protein, in the
shoot apical meristem (Liu et al., 2018), whereas MCTP3/4
knock out reduces GFP movement in leaves (Brault et al., 2019).
These results indicate a tight connection between MCSs and
intercellular communication in plants (Tilsner et al., 2016).

MCS AND VIRAL REPLICATION

The majority of RNA viruses have predominantly cytoplasmic
infection cycles and replicate on the surface of various cellular
membranes. In the process of establishing their membrane-
bound replication complexes, they extensively modify the
membrane architecture into novel structures like invaginated
spherules or tubules, or stacked membranes, known as viral
replication complexes (VRCs), viroplasms or virus factories
(Miller and Krijnse-Locker, 2008; den Boon et al., 2010; Xu and
Nagy, 2014). These structures may provide a variety of functions
in infection: (1) hide viral replication intermediates such as
double-stranded RNA from cellular defense surveillance (Överby
et al., 2010), (2) provide a scaffold for replication complexes
(Gouttenoire et al., 2014) and activate replication enzymes
(Xu and Nagy, 2017), (3) compartmentalize metabolic energy
delivery (Lin et al., 2019), translation (Bamunusinghe et al., 2009;
Mäkinen and Hafren, 2014), and virion assembly (Annamalai
and Rao, 2006), and (4) provide access to cellular membrane
trafficking routes. VRC formation often involves de novo lipid
synthesis, and shuttling of suitable lipids to the replication site. In
turn, inhibition of lipid production can cause VRC disassembly
and inhibit replication (Bamunusinghe et al., 2009; Lyn et al.,
2009). Given the emerging role of MCS in non-vesicular lipid
shuttling, it is perhaps not surprising that viruses have been found
to hijack MCS components to establish their “factories.”

SYTA/1 was shown to play a role in the formation of
VRCs during Turnip vein clearing virus (TVCV; Tobamovirus)

infection - in a syta mutant TVCV VRCs are significantly smaller
than in wild-type plants (Levy et al., 2015). Although dispensable
for replication, the MP of the closely related Tobacco mosaic
virus (TMV; Tobamovirus) plays a role in the formation of
replication sites (Mas and Beachy, 1999), which could be related
to its interaction with SYTA/1 (Lewis and Lazarowitz, 2010).
SYTA/1 accumulates inside the TVCV VRCs, and, through its
putative lipid transfer properties (Yu et al., 2016) may support
the formation of the VRC by inducing the redistribution of lipids,
similar to VAP/OSBPs in other viruses (see below). Reticulons,
ER-tubulating proteins which promote formation of ER-PM and
ER-mitochondrial MCS in animals (Caldieri et al., 2017), and
which bind Arabidopsis SYTA/1 (Kriechbaumer et al., 2015) and
may therefore be components of ER-PM MCSs, associate with
Brome mosaic virus (BMV; Bromovirus) 1a replicase component
and play a role in VRC formation, likely by stabilizing positive
membrane curvature at the openings of ER-derived spherules
containing the replication complexes (Diaz et al., 2010).

The role of Tomato bushy stunt virus (TBSV; Tombusvirus)
p33 in VRC formation was studied in detail. The tombusvirus
p33 replication protein interacts with an ER-resident VAP
protein (Scs2 in yeast) and with several OSBP homologs (called
OSBP-related proteins or ORPs in plants and yeast) to form
MCSs between the ER and peroxisomes (the site of TBSV
replication). The recruited ORPs mediate the transfer of sterols
to peroxisome membranes, resulting in the enrichment of sterol
in the replication organelles (Barajas et al., 2014). VAP27 proteins
were also shown to interact with the Cowpea mosaic virus
(CPMV; Comovirus) 60K protein, required for the formation
of replicative vesicles of the virus (Carette et al., 2002), which
includes de novo lipid synthesis (Carette et al., 2000). Thus,
manipulation of lipid transfer at MCS could represent one general
mechanism for the formation of virus replication bodies, and
these processes seem to have similarities in both plant and non-
plant systems (Amarilio et al., 2005; Lev et al., 2008; Manford
et al., 2012; van der Schaar et al., 2016; Galindo et al., 2019).

MCS AND VIRAL MOVEMENT

Targeting MCS, and especially ER-PM MCSs that are localized
adjacent to PD, could provide an ideal location for viruses

FIGURE 1 | Similarity between localizations of ER-PM MCS and movement
proteins. (A) SYTA/1-GFP transient expression in Nicotiana benthamiana leaf
epidermal cells. Adapted from Levy et al. (2015) (Figure 1A), used with
permission. (B) N. benthamiana leaf epidermal cell infected with Tobacco
mosaic virus expressing MP-GFP. Adapted from Heinlein et al. (1998)
(Figure 2J), used with permission. Scale bars, 5 µm.
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to simultaneously achieve both membrane remodeling toward
VRC formation and PD targeting. The association between
viral MPs and SYTA/1 was studied in detail. SYTA/1 was
found to be required for the movement of viruses from the
Tobamovirus [TMV, TVCV, and Youcai mosaic virus (YoMV)],
Potyvirus [Turnip mosaic virus (TuMV)] and Begomovirus
[Cabbage leaf curl virus (CaLCuV)] genera (Uchiyama et al.,
2014; Cabanillas et al., 2018; Ishikawa et al., 2020). SYTA/1
forms a complex with SYTE/5 and SYT7 that likely also involves
actin (Ishikawa et al., 2020), and was shown to localize at PD
entrances (Levy et al., 2015; Ishikawa et al., 2020). SYTA/1
interacts with the movement proteins of TMV, TVCV, CaLCuV
and Squash leaf curl virus (SqLCV; Begomovirus) (Lewis and
Lazarowitz, 2010; Levy et al., 2015). SYTA/1 was required for
the targeting of MPTVCV and MPTMV to PD (Levy et al., 2015;
Yuan et al., 2018), and the SYTA/1-E/5-7 complex for the cell-
to-cell movement of MPYoMV (Ishikawa et al., 2020). It was also
shown that the PD localization signal of MPTMV interacts with
SYTA/1 both in vitro and in vivo (Yuan et al., 2018). The Fig
mosaic virus (FMV; Emaravirus) MP also localizes to ER-PM
MCSs, and this localization was required for PD targeting of
MPFMV (Ishikawa et al., 2017). This list demonstrates the wide

diversity of plant viruses that associate with the ER-PM MCS, and
utilize SYT proteins, including viruses with different genomes
(DNA/RNA), and different movement strategies. Intriguingly,
what is now recognized as the typical localization pattern of
ER-PM MCS proteins (peripheral puncta which are found on
all sides of the cell including the upper surface of epidermal
cells where there are no PD, and which can be irregular in
shape or extend along peripheral ER tubules) appears remarkably
similar to the localizations of viral movement proteins when
overexpressed or expressed in PD-less protoplasts (Heinlein et al.,
1998) (Figure 1). This suggests that MPs may associate with
ER-PM MCS to achieve PD targeting at a sub-set of these
structures. Whilst Tobamovirus MPs require SYTA/1 for PD
targeting (Levy et al., 2015; Yuan et al., 2018), SYTA/1 had
no effect on GFP secretion or PD targeting of PD LOCATED
PROTEIN 1 (PDLP1), which reaches PD through the secretory
pathway (Thomas et al., 2008; Levy et al., 2015), indicating
that Tobamovirus MPs use an alternative pathway to the PD.
Similarly, knock out or overexpression of truncated forms of
the ER-PM MCS localized SYTs A/1 and E/5 inhibited TuMV
movement, whereas knock out/overexpression of truncations of
the Golgi-associated SYTS B/2 and F/6, or inhibition of ER-Golgi

FIGURE 2 | Model for Tobamovirus movement. Viral ribonucleoprotein complexes containing the viral RNA (black), movement protein, and likely the replicase (not
shown) enter the newly infected cell and slide along the ER endomembrane, until reaching and attaching to SYTA/1 ER-PM anchors, some of them located adjacent
to PD. Utilizing MCS components, the virus will modify the ER membranes to form a replication complex (shown in boxed area on the bottom right). From
PD-anchored replication complexes, new virus nucleoprotein complexes can exit directly into PD and quickly move on the plasmodesmal ER membrane to the next
cell. MCS may also play an additional role in regulating PD aperture. Additional replication of viral RNA (purple) (as well as replication at complexes not localized at
PD) will lead to accumulation of viral progeny in the cell in the form of virions. vRNA: viral RNA. Elements in this figure are not to scale.
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transport, actually enhanced movement (Cabanillas et al., 2018).
Other viruses which do not require the secretory pathway for
PD targeting and/or movement include CPMV (Pouwels et al.,
2002) and Potato virus X [PVX; Potexvirus (Schepetilnikov et al.,
2005)]. Collectively, these results suggest that MCSs may play an
important role in “unconventional” PD targeting that does not
involve the secretory pathway.

CONCLUSION: CO-REPLICATIONAL
MOVEMENT

The integration and coordination of cell-to-cell transport with
other parts of the infection process as described above require
that the activities of movement proteins are spatially and
temporally linked to replication, encapsidation and suppression
of host defenses. One way in which a regulated distribution of
viral progeny between movement and other infection processes,
and ordered assembly and modification of RNP complexes could
occur is through co-compartmentalization. For several viruses,
there is now strong evidence that replication and movement
indeed become spatially coupled, and furthermore, that at least in
some cases this actually happens at PD. In TMV, viral replicase,
which is directly implicated in movement, is found in MP-
organized modified ER-membranes at the entrances of PD (Saito
et al., 1987; Szecsi et al., 1999; Kawakami et al., 2004), and
similar structures are observed in the closely related TVCV
(Levy et al., 2015). In TuMV, replicative vesicles formed by p6K2
protein, the membrane anchor for the potyviral replicase, are also
recruited to PD by the CI and P3N-PIPO MPs (Schaad et al.,
1997; Movahed et al., 2017; Chai et al., 2020). In PVX, MPs
organize the structure of VRCs (Tilsner et al., 2012), and some
of these replication sites are found at PD openings. Additionally,
in this case, virions accumulate all around cytoplasmic VRCs,
whereas at PD-anchored replication sites, CP is only found inside
the channels, raising the possibility that PVX movement is co-
replicational, i.e., all nascent progeny virus might be inserted
directly into PD as it emerges from the viral replicase (Tilsner
et al., 2013). PD-localized replication has also been proposed for
a plant DNA virus (Rodriguez et al., 2014; Schoelz et al., 2016).

MCS play important roles in both cell-to-cell movement
and replication of plant viruses, and may link these processes.
A model for Tobamovirus movement and replication is shown
in Figure 2. We suggest SYTs at PD entrances serve as a docking
point for Tobamovirus MP-containing RNPs or VRCs gliding
along the ER. As only a portion of the MCS are situated next
to PD, this model supports the notion that virus movement
is a limited process compared to the subsequent replication
(Tilsner and Oparka, 2012). MP interaction with ER-PM tethers,
particularly MCTPs, could also have a role in the ability of

MPs to increase the PD size exclusion limit, required for
movement. ER-PM tethers may not only determine the diameter
of the cytoplasmic compartment of PD between the PM and
the ER, but also contribute to the correct localization of PD
regulating proteins (Brault et al., 2019), both directly through
protein-protein interactions, and indirectly by contributing to
PD membrane lipid homeostasis (Tilsner et al., 2016). Similarly,
reticulons at PD may play a role in regulating PD aperture
directly via maintaining constriction of the plasmodesmal ER
(Tilsner et al., 2011; Knox et al., 2015) or indirectly by recruitment
of other MCS components. Thus, MP interactions with MCSs
may be important for maintaining PD in an open state. New
reports also connect MCSs to additional cellular processes that
likely have a role in virus replication and movement such
as reactive oxygen species (ROS) signaling, calcium signaling,
autophagy and organelle trafficking and positioning (Prinz et al.,
2020). These diverse functions of MCSs are likely to affect virus
infections as well. For example, opening of PD by MPs may be
related to altering MCS Ca2+ and ROS signaling adjacent to PD,
thereby regulating turnover of the polysaccharide callose, whose
accumulation in the cell wall around PD entrances constricts
their opening and reduces cell-to-cell transport (Amsbury et al.,
2017). MCS regulation may also affect autophagy, another cellular
process with an emerging role in plant virus movement (Clavel
et al., 2017). Thus, MCSs may not only connect membranous
cellular organelles, but also the different sub-processes of viral
infections. Further developments in the field of plant MCS
research will be of major interest to plant virologists, and in turn,
the way in which plant viruses exploit MCSs in their host cells will
help to elucidate the functions of these structures.
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