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Toxic heavy metals and metalloids in agricultural ecosystems are crucial factors that limit
global crop productivity and food safety. Industrial toxic heavy metals and metalloids such
as cadmium, lead, and arsenic have contaminated large areas of arable land in the world
and their accumulation in the edible parts of crops is causing serious health risks to
humans and animals. Plants have co-evolved with various concentrations of these toxic
metals and metalloids in soil and water. Some green plant species have significant
innovations in key genes for the adaptation of abiotic stress tolerance pathways that are
able to tolerate heavy metals and metalloids. Increasing evidence has demonstrated that
phytohormone abscisic acid (ABA) plays a vital role in the alleviation of heavy metal and
metalloid stresses in plants. Here, we trace the evolutionary origins of the key gene families
connecting ABA signaling with tolerance to heavy metals and metalloids in green plants.
We also summarize the molecular and physiological aspects of ABA in the uptake, root-
to-shoot translocation, chelation, sequestration, reutilization, and accumulation of key
heavy metals and metalloids in plants. The molecular evolution and interaction between
the ABA signaling pathway and mechanisms for heavy metal and metalloid tolerance are
highlighted in this review. Therefore, we propose that it is promising to manipulate ABA
signaling in plant tissues to reduce the uptake and accumulation of toxic heavy metals and
metalloids in crops through the application of ABA-producing bacteria or ABA analogues.
This may lead to improvements in tolerance of major crops to heavy metals
and metalloids.
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INTRODUCTION

Toxic mineral elements, such as metals and metalloids, are
ubiquitous in the Earth's crust. The amount of toxic metals
and metalloids in water and soil is increasingly attributed to
anthropogenic activities (Bowell et al., 2014; Zhu et al., 2014;
Zhao et al., 2015). These contaminates affect agricultural
productivity and ecosystem function and also threat human
health, posing a great risk to global economic growth
(Landrigan et al., 2018). Moreover, toxic metals and metalloids
accumulated in edible parts of plants, such as cereals and
vegetables, as well as in pasture for animals, should be tightly
controlled to reduce health risks. Therefore, urgent actions are
required to mitigate the serious problems from heavy metals and
metalloids' contamination.

Since the evolution of land plants from ancestral green algae
(Cheng et al., 2019; Zhao et al., 2019; Wang et al., 2020), land
plants have been indispensable to the biosphere and our daily
life. In addition to feeding the world's population, many plant
species have also been employed to alleviate the increasing
pol lut ion of heavy metals and metal loids through
bioremediation. Over 700 plant species have been identified as
hyperaccumulators of trace metals, metalloids, and nonmetals.
The hyperaccumulator species are from 52 families belonging to
angiosperms and petridophyta (Reeves et al., 2017). For instance,
one plant used is a hardy, versatile, fast-growing brake fern
(Pteris vittata) with extreme efficiency in extracting and
translocating soil arsenic (As) to the above-ground biomass,
which can significantly remove arsenic from contaminated soils
(Ma et al., 2001; Yan et al., 2019). Therefore, exploring the early-
divergent plant species for their tolerance mechanisms is
essential to utilize them as potential hyperaccumulators for
heavy metals and metalloids.

Among the toxic minerals, Arsenic, cadmium (Cd), and lead
(Pb) were ranked as the top hazardous substances (Clemens and
Ma, 2016) due to their toxicity, prevalence, and potential for
human exposure. During the last decade, considerable advances
in As and Cd accumulation and detoxification mechanisms in
angiosperms, in particular the model plant species rice (Oryza
sativa) and Arabidopsis (Arabidopsis thaliana) (Clemens and
Ma, 2016; Singh et al., 2016; Deng et al., 2019; Deng et al., 2020;
Zhao and Wang, 2020) have been made. Although genetic
engineering is a powerful strategy for generating ideal plants
for food safety and phytoremediation (Shim et al., 2013; Deng
et al., 2018), it's not widely used in agriculture at present due to
its controversy in potential risk to human health and agricultural
ecosystems (Andersen et al., 2015). Therefore, understanding the
molecular mechanisms of elements absorption and root-to-shoot
translocation make it possible to promote the efficiency of
phytoremediation instead of genetic engineering.

Abscisic acid (ABA) plays vital roles in plant responses to a
range of abiotic stresses such as drought, salinity, high light,
nutrient deficiency, and heavy metals (Chen Z. H. et al., 2016; Cai
et al., 2017; Liu X. et al., 2017; Vishwakarma et al., 2017; Wang F.
et al., 2017; Kuromori et al., 2018; Babla et al., 2019; Mak et al.,
2019; Mega et al., 2019; Feng et al., 2020; Shabala et al., 2020) and
its agonist and antagonist were considered as candidate
Frontiers in Plant Science | www.frontiersin.org 2
compounds to overcome these stresses (Joshi-Saha et al., 2011;
Kitahata and Asami, 2011; Miyakawa et al., 2013; Park et al.,
2015; Gupta et al., 2020). ABA is one of the foremost
phytohormone driving plant resistance to toxic metals and
metalloids such as As, Cd, and Pb (Maestri and Marmiroli,
2012; Chmielowska-Bak et al., 2014; Vishwakarma et al., 2017;
Amir et al., 2018; Pál et al., 2018; Shi et al., 2019; Zhang P. et al.,
2019; Zhang W. et al., 2019; Pan et al., 2020). Mechanisms of
ABA in response to heavy metals and metalloids stresses in non-
angiosperm plant lineages is still limited; we took a comparative
genomic evolutionary approach to shed some light on the
insights of ABA and tolerance to heavy metals and metalloids.

There have been many excellent reviews on ABA and plant
stress tolerance in recent years (Osakabe et al., 2014; Mittler and
Blumwald, 2015; Zhu, 2016; Hauser et al., 2017; Kuromori et al.,
2018; Chen et al., 2020). Here, we summarize three ABA-activated
pathways that contribute to heavy metals detoxification in
angiosperms using rice and Arabidopsis as model species. We also
attempt to trace the origin and evolution of the core components
linking ABA and tolerance to toxic metals and metalloids involved
in the processes.
OVERVIEW OF ABA SIGNALING
NETWORK

Abscisic acid (ABA) is a vital phytohormone that regulates many
developmental processes in plants and in the response to abiotic
stresses including drought, cold, salinity, and heavy metals
(Chmielowska-Bak et al., 2014; Mittler and Blumwald, 2015;
Chen et al., 2017; Hauser et al., 2017; Chen et al., 2019; Zhang P.
et al., 2019; Zhao et al., 2019). The biosynthesis, catabolism,
transport, signal perception and transduction, downstream
response, and modulation of ABA have been extensively
investigated in angiosperms, in particular in Arabidopsis
thaliana (Hauser et al., 2011; Cai et al., 2017; Hauser et al.,
2017; Chen et al., 2020).

ABA is primarily synthesized from carotenoids, which are
catalyzed by various enzymes including b-carotene hydroxylases,
zeaxanthin epoxidase (ZEP, ABA1), 9-cis-epoxycarotenoid
dioxygenase (NCEDs), short-chain alcohol dehydrogenase/
reductases (SDRs, such as ABA2), abscisic aldehyde oxidases
(AAOs), molybdenum cofactor sulfurase (MOCO, ABA3), and
ABA4, which is required for neoxanthin synthesis (Nambara and
Marion-Poll, 2005; North et al., 2007; Finkelstein, 2013; Cai et al.,
2017; Hauser et al., 2017). The hydroxylation and esterification
of ABA are two major pathways for regulating ABA levels
mediated by four CYP707As and eight glucosyltransferases
(UGTs). The inactivated ABA-glucosyl ester (ABA-GE)
conjugation is a storage or transport form of ABA and the site
can be cleaved by b-glucosidases (BGLUs) (Finkelstein, 2013).
The mobility of ABA from vascular tissues to target tissues is
transported by three groups of membrane-localized proteins: G-
type ATP binding cassette transporters (ABCG22, ABCG25,
ABCG30, ABCG31, ABCG40), ABA-Importing Transporters
(AIT1~4) belonging to the Nitrate Transporter 1/Peptide
July 2020 | Volume 11 | Article 909
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Transporter (NRT1/PTR, NPF) family, and a member of DTX/
Multidrug and Toxic Compound Extrusion (MATE) family
DTX50 in Arabidopsis (Kang et al., 2010; Kuromori et al.,
2010; Kuromori et al., 2011; Kanno et al., 2012; Zhang et al.,
2014; Kang et al., 2015).

The core components of ABA perception and transduction
consist of intracellular Pyrabactin Resistance 1 (PYR1)/PYR-Like
(PYL)/Regulatory Component of ABA receptors (RCARs), clade
A Protein Phosphatases PP2C (ABA Insensitive 1/2, ABI1/2, and
Hypersensitive to ABA1/2, HAB1/2), sucrose non-fermenting-1-
related protein kinase 2 family members (SnRK2s) (Ma et al.,
2009; Park et al., 2009; Umezawa et al., 2009). SnRK2.2, -2.3, and
-2.6 (Open Stomata 1, OST1) are strongly activated in the
presence of ABA (McLoughlin et al., 2012). SnRK2.6 is a key
regulator of stomatal closure by enhancing Cl-, K+, malate2-

efflux from guard cells mediated by S-type anion channel 1
(SLAC1), K+ uptake transporter 6 (KUP6), and Aluminum-
activated malate transporter (ALMT12), and inhibiting the
activity of Potassium channel 1 (KAT1) to reduce K+ influx
(Finkelstein, 2013; Chen et al., 2020). ABA also enables the
activation of guard cell membrane-localized transporters
through phosphorylation mediated by calcium dependent
kinases (CDPKs) and other kinases, indicating alternative
stomatal regulatory pathways independent of SnRK2s (Cai
et al., 2017; Pornsiriwong et al., 2017). Most recently, subgroup
B Raf-like kinases have been identified as upstream regulators of
SnRK2s for ABA signal transduction and response to osmotic
and drought stresses in Arabidopsis (Saruhashi et al., 2015;
Katsuta et al., 2020; Lin et al., 2020; Soma et al., 2020;
Takahashi et al., 2020). Furthermore, it's revealed that this
regulatory module is evolutionarily conserved in land plants, at
least for conferring protection against drought (Katsuta et al.,
2020). The other biological regulations induced by ABA are
mostly implemented through transcriptional processes mediated
by ABA Insensitive 3/4 (ABI3/4) and 9 ABA-response element
(ABRE) binding factors (ABFs) (Chen et al., 2020). ABI3 and
ABI4 genes encode B3-type and APETALA2 domain a
transcription factors, respectively, while ABFs consisting of
ABF1~4, ABI5, bZIP15, bZIP67, and EEL (Enhanced Em Level)
belong to group A subfamily of bZIP (basic region/leucine zipper)
transcription factors (Choi et al., 2000; Finkelstein, 2013; Huang
et al., 2016; Skubacz et al., 2016; Chen et al., 2020). All the listed
components are candidates for the role of ABA in response to
toxic metals and metalloids stresses.
ABA ALLEVIATES TOXIC METALS AND
METALLOIDS STRESSES IN PLANTS

First of all, the biosynthesis and signaling pathways of ABA are
affected by heavy metal stresses. Elevated endogenous ABA
content was detected in rice, potato (Solanum tuberosum),
oilseed rape (Brassica napus), Malus hupehensis, Sedum
alfredii, and other plants exposed to Cd, partially due to the
upregulation of genes for ABA biosynthesis (Hsu and Kao, 2003;
Stroiński et al., 2013; Yan et al., 2016; Shi et al., 2019; Zhang W.
Frontiers in Plant Science | www.frontiersin.org 3
et al., 2019; Lu et al., 2020b). In rice, the expression levels of
OsNCED3, OsNCED4, and OsNCED5 were upregulated by Cd
(Tan et al., 2017). In addition, Cd-induced rapid ABA
production was more significant in the leaves and roots of Cd-
tolerant rice cultivar than those in the Cd-sensitive genotype
(Hsu and Kao, 2003), indicating the positive correlation between
endogenous ABA content and Cd tolerance.

In Arabidopsis, enhanced Cd sensitivity and increased Cd
accumulation was observed in three ABA-deficient mutants
(aba-1, aba-3, aba-4, nced3) and two ABA-insensitive mutants
(abi2-1, abi3-1) (Sharma and Kumar, 2002; Zhang W. et al.,
2019). These genes are involved in ABA synthesis (ABA1, ABA3,
ABA4, nced3) and signal transduction (ABI2, ABI3), respectively.
Similarly, the Arabidopsis mutants bglu10 and bglu18 with
reduced root cytoplasmic ABA levels were more sensitive to
Cd stress compared to the wild type (Table 1) (Wang et al.,
2018). Ectopic expression of Malus hupehensis NCED3
(MhNCED3) in Arabidopsis increased ABA content and
reduced Cd accumulation in both root and leaves (Zhang W.
et al., 2019). Moreover, in Cd-contaminated soil, greater biomass
and lower Cd concentrations were determined in Arabidopsis
and Brassica chinensis inoculated with ABA-generating bacteria,
Azospirillum brasilense or Bacillus subtilis (Xu et al., 2018; Pan
et al., 2019). By contrast, decreasing the endogenous ABA
amount by inoculation with an ABA-catabolizing bacteria,
Rhodococcus qingshengii, significantly increased Cd content in
Arabidopsis shoots by 47% (Lu et al., 2020a). Compared to the
wild type, higher root Cd concentration was detected in ABA-
deficient Slsit tomato mutant (Table 1) (Pompeu et al., 2017).
Application of ABA further enhanced Cd tolerance and
accumulation activity in the Cd-hyperaccumulating ecotype
(HE) of Sedum alfredii (Lu et al., 2020b). Interestingly, elevated
levels of endogenous ABA accompanied by up-regulated
SaNCED and SaABA2 was observed in the non-
hyperaccumulating ecotype (NHE) subjected to Cd treatment
compared to those in HE, restricting radial transport of Cd
toward root vascular tissues (Tao et al., 2019; Lu et al., 2020b).

Elevated ABA content was increased in both roots and shoots
of As-exposed Indian mustard (Brassica juncea), which is a
potential As accumulator for phytoremediation (Srivastava
et al., 2013). Furthermore, ABA-related genes were regulated
predominately in As-tolerant ecotype Col-0, however, all the 25
genes involved in ABA biosynthesis, receptor, and signaling
pathways detected in sensitive ecotype Ws-2 were unaltered by
the treatment of As (Fu et al., 2014). In addition to the
upregulated OsNCED1, OsNCED2, OsNCED3, and OsABA4
responsible for ABA biosynthesis, the expression levels of
genes probably involved in ABA signaling including OsPP2Cs,
OsbZIP10 (OsABI5), OsbZIP12 (OsABF1), OsbZIP66 (OsABF5),
and OsbZIP72 (OsABF4) were also elevated when rice plants
were exposed to As (Huang et al., 2012; Yu et al., 2012).
Moreover, increased endogenous ABA levels were detected in
germinating chickpea (Cicer arietinum) and leaves of pea (Pisum
sativum) exposed to Pb (Parys et al., 1998; Atici et al., 2005).
Compared to that of control, ABA concentration was increased
by 107% in the leaves of Gray Poplar (Populus × canescens) with
July 2020 | Volume 11 | Article 909
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Pb exposure, while application of exogenous ABA alleviated Pb
toxicity (Shi et al., 2019). Recently, comparative transcriptomic
analyses between Arabidopsis (Pb sensitive) and Hirschfeldia
incana (Pb tolerant) revealed that genes involved in ABA
biosynthesis were upregulated in the roots and shoots of H.
incana subjected to Pb (Auguy et al., 2016).

These imply a positive role of ABA in alleviating accumulation
and toxicity of heavy metals and metalloids. Consistently, the
application of exogenous ABA to angiosperms subjected to Cd, As,
or Pb could alleviate the stresses. Three major pathways involved
in the detoxification of toxic metals andmetalloids can be triggered
by ABA, inhibiting the uptake, altering the translocation from root
to shoot, and promoting the conjugation with chelators (Figure 1).
ABA LIMITS TOXIC HEAVY METALS AND
METALLOIDS UPTAKE

In Arabidopsis, Iron Regulated Transporter 1 (IRT1) functions
as a primary transporter for Cd uptake from the rhizosphere
(Lux et al., 2011). The expression of IRT1 is tightly regulated by
FIT (FER-like Deficiency Induced Transcripition Factor) and Ib
subgroup of the bHLH (basic helix-loop-helix) transcriptional
factors including bHLH38, bHLH39, bHLH100, and bHLH101
in Arabidopsis (Wu et al., 2012; Wang et al., 2013). Application
of low concentrations of ABA (0.1~1.0 mM) or inoculation with
ABA-generating bacteria strains decreased Cd uptake through
inhibiting transcription of IRT1 and thereby alleviating Cd-
induced growth inhibition (Fan et al., 2014; Zhang P. et al.,
2019; Pan et al., 2020). By contrast, an increase was observed in
expression level of IRT1 and its homologous genes such as ZIP1
(Zinc Regulated Transporter/IRT-like Protein 1) and ZIP4 with
Cd transporting-activity in the roots inoculated with ABA-
catabolizing bacteria (Xu et al., 2018; Pan et al., 2019; Lu et al.,
Frontiers in Plant Science | www.frontiersin.org 4
2020a). These positive effects were reduced in the ABA-
Importing Transporter 1 (AIT1)-deficient mutant ait1 but
enhanced in the AIT1-overexpressing transgenic plants (Pan
et al., 2020). Furthermore, the loss-of-function Arabidopsis
mutant of ABI5 and ABA-insensitive double mutant of
snrk2.2/2.3 abolished the reduction of Cd accumulation
A B

FIGURE 1 | ABA inhibits Cd and As(V) uptake in Arabidopsis. (A) Cd uptake
and accumulation mediated by IRT1 and HIPP proteins is activated by a
transcriptional factor MYB49, which can be inactivated by interaction with
ABA-induced ABI5. (B) Arsenate uptake mediated by PHT1;1 is repressed by
ABA-induced transcriptional factor WRKY6.
TABLE 1 | Phenotype of mutant lines under Cd treatment.

Species Genotypes ABA condition Physiological performace compared to control (wild type) References

Arabidopsis
thaliana

abi5-1 ABA-insensitive Increased Cd accumulation and reduced root elongation but
not affacted by ABA

(Zhang P. et al., 2019)

myb49-1/2,
MYB49-SRDX

Normal Reduced Cd accumulation, enhanced Cd tolerance but
recovered by overexpressing HIPP44

ait1 ABA transporter
defective

Increased Cd in roots and leaves and reduced Cd tolerance
but partially abolished by ABA

(Fan et al., 2014; Xu et al., 2018; Lu et al.,
2019; Pan et al., 2020)

irt1 Normal Reduced Cd in roots and shoots but not largely afffacted by ABA
snrk2.2/2.3 ABA-insensitive ABA-inhibited Cd accumulation was abolished
abi1/abi2/hab1 ABA-sensitive Promoted Cd accumulation by inoculation with ABA-

catabolizing bacteria
(Lu et al., 2019)

bglu10/18 Reduced active
form of ABA

Enhanced Cd sentivity (Wang et al., 2018)

aba-1 Normal Inhibited Cd sensitivity (Sharma and Kumar, 2002)
aba-3 ABA-deficient
aba-4 ABA-deficient
abi2-1 ABA-insensitive
abi3-1 ABA-insensitive
nced3 ABA-deficient Enhanced Cd accumulation in roots and leaves (Zhang W. et al., 2019)

Tomato
(Solanum
lycopersicum)

Slsit ABA-deficient Higher Cd concentration in the roots (Pompeu et al., 2017)
July 2020 | Volume 11 | Article 909
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induced by exogenously applied ABA or ABA-generating
bacteria. The elevated IRT1 transcription was diminished in
snrk2.2/2.3 mutant but further enhanced in the roots of ABA-
sensitive triple PP2Cs mutant abi1/hab1/abi2 lines, suggesting
the involvement of AIT1, ABI5, SnRK2s, and PP2Cs in Cd
absorption mediated by IRT1 (Fan et al., 2014; Xu et al., 2018;
Pan et al., 2019; Zhang P. et al., 2019; Lu et al., 2020a).
Additionally, ABI5 can be directly phosphorylated by
SnRK2.2/2.3 and inactivated via dephosphorylation of ABI1/
HAB1/ABI2 (Fujii et al., 2009; Skubacz et al., 2016). ABI5 could
directly interact with Cd-induced transcriptional factor MYB49
to inhibit its binding to the promoter regions of bHLH38 and
bHLH101, which are required for IRT1 expression (Wu et al.,
2012; Wang et al., 2013; Zhang P. et al., 2019). As a result, ABI5 is
a negative regulator of IRT1 and Cd uptake. Moreover, MYB49
directly induces the expression of HIPP22 and HIPP44, members
belonging to Heavy metal-associated Isoprenylated Plant Proteins
family (HIPPs) involved in Cd accumulation (Tehseen et al., 2010;
Zhang P. et al., 2019). The expression of Arabidopsis HIPP22 and
HIPP44 are positively correlated with Cd accumulation (Tehseen
et al., 2010; Zhang P. et al., 2019). It is noteworthy that tobacco
(Nicotiana tabacum) and Arabidopsis SnRK2s are transiently
activated by Cd exposure, knockout of AtSnRK2.4 enhanced Cd
tolerance. However, the induced SnRK2.4 is ABA-independent but
probably influences ROS accumulation (Kulik et al., 2012).

Cd absorption was also observed to be inhibited in lettuce
(Lactuca sativa) and oilseed rape (Brassica napus), however,
whether this is a conserved route is not clear (Shen et al., 2017;
Tang et al., 2020). On the other hand, Cd absorption was not
affected by ABA in rice, Indian mustard, and A. helleri (Salt et al.,
1995; Hsu and Kao, 2003; Zhao et al., 2006), which could be due
to a different Cd uptake system in these species. For instance, the
major transporters for Cd uptake in rice is OsNramp5 (Sasaki
et al., 2012) with less contribution from OsIRT1 and OsIRT2
(Nakanishi et al., 2006). OsNramp5 is a member belonging to
Natural Resistance-Associated Macrophage Protein family and
polarly localized at the distal side of both root exodermis and
endodermis cells (Sasaki et al., 2012). Knockout of OsNramp5
almost abolished the ability to take up Cd (Ishikawa et al., 2012;
Sasaki et al., 2012). In summary, we propose that ABA alleviates
Cd uptake potentially through the ABI5-MYB-bHLHs-IRT1 and
ABI5-MYB49-HIPPs pathways in Arabidopsis (Figure 1A), and
the ABA core components including AIT1, ABI1/HAB1/ABI2,
and SnRK2.2/2.3 are involved in these processes.

In As stress, Phosphate Transporters (PHTs, PTs) and
Nodulin 26-like Intrinsic membrane Proteins (NIPs) are two
major families responsible for arsenate (AsV) and arsenite
(AsIII) uptake, respectively (Lindsay and Maathuis, 2017; Deng
et al., 2020). In Arabidopsis, As(V) uptake is mainly mediated via
PHT1;1 and PHT1;4 (Shin et al., 2004). An As(V)-responsive
transcription factor WRKY6 was identified as a negative
regulator for As(V) uptake through directly repressing
expression of PHT1;1 and removal of PHT1;1 from the plasma
membrane (Figure 1B) (Castrillo et al., 2013). The expression of
WRKY6 was induced by ABA (Song et al., 2016), knockout of
WRKY6 resulted in ABA insensitivity, while WRKY6-
Frontiers in Plant Science | www.frontiersin.org 5
overexpressing lines showed ABA-hypersensitive phenotypes
during seed germination (Huang et al., 2016), indicating that
WRKY6 functions as a positive regulator in ABA signaling.
Therefore, we speculate that ABA may inhibit As(V) uptake
through WRKY6-PHT1;1 route in Arabidopsis, which requires
future investigation. It's also worthy to isolate and functionally
characterize rice and brake fern homologs of AtWRKY6 in As(V)
uptake because OsPT1, OsPT4, OsPT8, PvPHT1, PvPHT1;3, and
PvPHT1;4 confer to As(V) accumulation and toxicity in rice and
P. vittata, respectively, most likely via their role in As(V) uptake
in roots (Kamiya et al., 2013; DiTusa et al., 2016; Wang et al.,
2016; Cao et al., 2017; Ye et al., 2017; Cao et al., 2019; Sun et al.,
2019). Arabidopsis NIP1;1, NIP3;1, NIP3;2, and NIP7;1 function
in As(III) uptake and accumulation (Lindsay and Maathuis,
2017; Deng et al., 2020), however, the regulation of them being
mediated by ABA is still elusive.

Tremendous progress has been made recently in dissecting
the entry of Cd and As into plant cells (Clemens and Ma, 2016;
Lindsay and Maathuis, 2017; Zhao and Wang, 2020), and the
involvement of ABA in Cd and As(V) uptake is strongly
supported by experimental evidence. By contrast, the
molecular understanding of Pb uptake pathways is limited. In
Pb stress, the plasma membrane-localized G-type ABC members
AtABCG36 (PDR8, for Cd and Pb), AtABCG40 (PDR12, for Pb)
function as extrusion pumps conferring Pb resistance by limiting
their accumulation in Arabidopsis (Lee et al., 2005; Kim et al.,
2007; Fu et al., 2019; Wang et al., 2019). Most recently, it has
been reported that the expression of PcABCG40 were stimulated
by exogenous ABA in Pb-exposed Gray Poplar (Shi et al., 2019),
while the transcription of AtABCG40 is activated by Pb-Sensitive
1 (AtPSE1), which is a cytoplasmic protein conferring to Pb
tolerance in Arabidopsis (Fan et al., 2016). Besides, Arabidopsis
ABCG36 is positively regulated by WRKY13 through directly
binding to its promoter (Sheng et al., 2019). Therefore, further
studies are required for uncovering the involvement of ABA in
Pb uptake, such as the role of ABA in Pb extrusion from root,
potentially via ABCGs, PSE1, and WRKY13.
ABA ALTERS TOXIC METALS AND
METALLOIDS DISTRIBUTION BETWEEN
ROOT AND SHOOT

Exogenous ABA tends to hinder metal ion and metalloid
translocation to the shoot via inhibiting transpiration. Xylem
loading is a limiting step for metal ion and metalloid
accumulation in the above-ground tissues; the activity is largely
dependent on transpiration activity and membrane transporters
(Uraguchi et al., 2009; Clemens and Ma, 2016; Deng et al., 2018;
Deng et al., 2019). For Cd stress, pre-treatment with ABA
dramatically reduced Cd accumulation in the leaves of Indian
mustard (Salt et al., 1995) and less Cd accumulation was detected
in parallel with a reduced transpiration rate and stomatal closure
with up to 100 mMABA treatment in rice and Arabidopsis helleri
(Salt et al., 1995; Hsu and Kao, 2003; Zhao et al., 2006; Uraguchi
July 2020 | Volume 11 | Article 909
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et al., 2009). Besides, involvement of transpiration capacity in the
ABA-induced reduction of Cd allocation from roots to leaves is
yet to be validated in lettuce (Lactuca sativa) and field mustard
(Brassica campestris) (Shen et al., 2017; Tang et al., 2020).

Membrane transporters play critical roles in loading minerals
toward root vascular tissues and subsequent accumulation in
plants (Song et al., 2014a; Clemens and Ma, 2016; Deng et al.,
2019; Zhao and Wang, 2020). For example, the plasma
membrane-localized heavy metal ATPases (HMAs), such as
AtHMA2, AtHMA4, and OsHMA2, confer to loading Cd into
the stele and subsequent accumulation in shoot (Hussain et al.,
2004; Mills et al., 2005; Yamaji et al., 2013), while the tonoplast-
localized AtHMA3 and OsHMA3 limit Cd allocation to the stem,
leaves, and grain through sequestration Cd into the vacuole of
root cells (Morel et al., 2009; Ueno et al., 2010). As a result, the
mutant plants without functional AtHMA2, AtHMA4, or
OsHMA2 accumulate less Cd compared to the wild type
(Hussain et al., 2004; Mills et al., 2005; Yamaji et al., 2013).
Knockout of AtHMA3 or OsHMA3 increased Cd accumulation
in aerial organs (Morel et al., 2009; Ueno et al., 2010), whereas
overexpressing OsHMA3 enhanced Cd tolerance and produced
Cd-free rice lines (Ueno et al., 2010; Sasaki et al., 2014; Lu C.
et al., 2019). Similar functionsoftheirhomologshavebeenreported
in other plants, including barley (Hordeum vulgare), wheat
(Triticum aestivum), soybean (Glycine max), cucumber (Cucumis
sativus), and Cd hyperaccumulators Sedum plumbizincicola,
Noccaea caerulescens, and Arabidopsis halleri (Hanikenne et al.,
2008; Miyadate et al., 2011; Ueno et al., 2011; Mills et al., 2012;
Wang et al., 2012; Tan et al., 2013; Migocka et al., 2015; Liu H.
et al., 2017). Natural variations in the HMA3 genes are key
determinants of Cd translocation to and accumulation in the
shoot of Arabidopsis, rice, soybean, and Brassica rapa (Chao
et al., 2012; Wang et al., 2012; Liu et al., 2019; Sui et al., 2019;
Zhang L. et al., 2019). In addition, some members belonging to
NRAMPs also transport free Cd ions (Clemens and Ma,
2016; Zhang et al., 2018). For instance, the expression of
HMA3, Nramp1, Nramp3, and Nramp4 were upregulated in
Arabidopsis incubation with ABA-catabolizing bacteria (Lu
et al., 2020a), but overexpression of MhNCED3 in Arabidopsis
inhibited the expression of IRT1, Nramp1, andHMA2, leading to
reduced Cd uptake and root-to-shoot translocation (Zhang W.
et al., 2019). Application of ABA promotes Cd resistance and
mobility from root to shoot in the Cd-hyperaccumulating
ecotype (HE) of Sedum alfredii by inducing the transcription
of SaHMA2, SaHMA3, and SaHMA4 (Lu et al., 2020b).
Interestingly, more endogenous ABA was generated in the
non-hyperaccumulating ecotype (NHE) subjected to Cd
treatment and induced the expression of lignin- and suberin-
related biosynthetic enzymes in NHE roots to limit Cd radial
transport towards the stele as well as accumulation in the shoot
(Tao et al., 2019). Moreover, some membrane transporters are
indirectly involved in ABA-related Cd tolerance. In Arabidopsis,
nitrate transporter NRT1.5 plays a vital role in the root-to-shoot
translocation of nitrate (Lin et al., 2008), while NRT1.8 is
responsible for removing nitrate from xylem vessels and also
Frontiers in Plant Science | www.frontiersin.org 6
confers tolerance to CD in a nitrate-dependent manner (Li et al.,
2010). Exogenous ABA inhibits the expression of NRT1.5 but has
no effect on the transcripts of NRT1.8, leading to increased
accumulation of nitrate in the roots and thus enhances Cd
resistance (Wang et al., 2018). Vacuolar proton pumps V-
ATPase and V-PPase are able to resist Cd through enhanced
compartmentation activity into root vacuoles (Wang et al.,
2018). Knockout of BGLU10 or BGLU18 reduced endogenous
active ABA level, resulting in higher levels of NRT1.5 and lower
V-ATPase and V-PPase activities, resulting in higher Cd
accumulation and sensitivity (Wang et al., 2018). However, the
direct regulators of these transporters response to ABA remains
to be discovered and functionally characterized.

For As stress tolerance and translocation, many of the
fundamental studies were conducted in rice. For instance, a
plasma membrane-localized ABC transporter OsABCC7,
highly expressed in the root xylem parenchyma cells, is
involved in the root-to-shoot translocation of glutathione
(GSH)- and Phytochelatins (PCs)-conjugated As (Tang Z.
et al., 2019). As(III) uptake and loading to shoot are
predominantly accomplished by plasma membrane-polar
localized OsLsi1 and OsLsi2 in rice (Ma et al., 2008). OsLsi1 is
a member of NIPs required for As(III) uptake from soil into the
root cells while OsLsi2 is responsible for the subsequent As(III)
transport out of epidermal and endodermal cells toward the stele
(Ma et al., 2008). Knockout of OsLsi1 reduced As uptake, while
mutation of OsLsi2 decreased As accumulation in rice straw and
grain (Ma et al., 2008). OsLsi6, a homolog of OsLsi1 highly
expressed in rice nodes, was implicated as a transporter required
for As distribution from leaf and node to panicle (Yamaji et al.,
2015; Deng et al., 2020). The expression levels of OsLsi1, OsLsi2,
and OsLsi6 were negatively regulated by Arsenite-Responsive
MYB 1 (OsARM1) through the direct binding to the promoters
or genomic regions of the three key As transporters (Figure 2)
(Wang F.-Z. et al., 2017). Knockout of OsARM1 improved
tolerance to As(III) and increased As accumulation in shoot
and the upmost node, while As concentrations in these organs
and the tolerance to As(III) were reduced in OsARM1-
overexpressing plants compared to those of wild-type plants
(Wang F.-Z. et al., 2017). Most interestingly, it was found that the
expression of OsARM1 was repressed by exogenous ABA
treatment (Sato et al., 2011; Guo et al., 2016). Therefore, we
propose that ABA may enhance As tolerance by promoting As
accumulation in above-ground tissues, which is partially
dependent on the OsARM1-OsLsi1/Lsi2/Lsi6 pathway. The
direct components for the ABA-inhibited transcription of
OsARM1 require further investigations.

For Pb stress tolerance, stomatal closure and a decreased
transpiration ratio were observed in the pea leaves with Pb
exposure, accompanied with elevated amount of endogenous
ABA (Parys et al., 1998). Moreover, the mobility of Pb from root
to shoot in rice and Gray Poplar (Populus × canescens) was also
affected by exogenous ABA in a dose-dependent manner. When
subjected to 10 mM exogenous ABA, stimulated Pb uptake and
vascular loading in the roots was observed in Gray Poplar (Shi
July 2020 | Volume 11 | Article 909

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Hu et al. ABA Signaling for Metal Tolerance
et al., 2019). In rice, a low concentration of ABA (0.38 mM)
decreased Pb translocation from roots to shoots, whereas a high
concentration of ABA (3.8 and 38 mM) resulted in antipodal Pb
distribution (Zhao et al., 2009). However, the genetic evidence
underlying the ABA-affected Pb distribution is still lacking.

In summary, ABA is important in regulating the root-to-
shoot translocation ratio of heavy metals and metalloids. Many
physiological investigations suggest that ABA-induced stomatal
closure and a reduced transpiration rate limit the long-distance
transport of heavy metals and metalloids from root to shoot.
Numerous transporters for Cd, As, and Pb distribution have
been identified in Arabidopsis and rice, potentially supporting
the participation of ABA in these processes.
ABA PROMOTES CHELATION AND
VACUOLAR SEQUESTRATION OF TOXIC
METALS AND METALLOIDS

The cytosolic Cd, As, and Pb can be conjugated by thiol-
containing chelators, GSH, and/or PCs and then compartmented
into vacuoles. These processes play pivotal roles in the
detoxification of toxic metals and metalloids by restricting their
mobility (Clemens et al., 1999; Gong et al., 2003; Kim et al., 2006;
Song et al., 2010; Park et al., 2012; Song et al., 2014b; Hayashi et al.,
2017; Deng et al., 2018; Deng et al., 2019). It is well documented
Frontiers in Plant Science | www.frontiersin.org 7
that GSH is synthesized through g-glutamylcysteine synthetase
(GSH1 or g-ECS) and glutathione synthetase (GSH2), while PCs
are polymerized from GSH by PCS (PCS1, PCS2) in Arabidopsis
(Cobbett, 1999; Vatamaniuk et al., 1999; Cobbett, 2000).

In Arabidopsis, the transcription of GSH1, GSH2, PCS1, and
PCS2 are positively regulated by a Cd-induced Cysteine-2/
Histidine-2 type zinc-finger (C2H2) transcriptional factor,
ZAT6 (Chen J. et al., 2016). Overexpressing ZAT6 significantly
enhanced Cd tolerance, whereas loss of function of ZAT6 led to
Cd sensitivity (Chen J. et al., 2016). In a systematic study of the
ABA transcriptional regulatory network, the expression of ZAT6
was upregulated by exogenous ABA treatment (Song et al., 2016).
In addition to activating the transcription of ABCG40, genes
involved in PCs synthesis are also activated by PSE1, which
confers Pb tolerance in Arabidopsis (Figure 3) (Fan et al., 2016).
WRKY12 negatively regulates Cd tolerance by repressing the
expression of PCs synthesis genes (Han et al., 2019). Recently,
OsPCS1 and OsPCS2 were identified and played crucial roles in
the detoxification and accumulation of As and Cd in rice
(Hayashi et al., 2017; Uraguchi et al., 2017; Yamazaki et al.,
2018). Loss-of-function of OsPCS1 increased As allocation from
node to seed, while overexpressing OsPCS1 significantly reduced
grain As content (Hayashi et al., 2017). Overexpression of wheat
TaPCS1, Morus notabilis MnPCS1, and MnPCS2 or Populus
tomentosa PtPCS in Arabidopsis and/or tobacco enhanced Cd
tolerance (Figure 3) (Fan et al., 2018). In addition, a plastid
envelope membrane-localized CRT-like transporter, OsCTL1, is
required for As and Cd detoxification through exporting g-
glutamylcysteine and GSH from plastids to the cytoplasm,
where PCS synthesis takes place (Yang et al., 2016). Treatment
of potato (Solanum tuberosum) plants with ABA clearly
enhanced StPCS1 transcript level, PCS activity, and PCs
content in roots, while application of the ABA biosynthesis
inhibitor, fluridone, limited the Cd-induced PCS activity
FIGURE 2 | ABA alters the root-to-shoot translocation of Cd, As, and Pb
through multiple routes. ABA is able to promote the generation of root
apoplastic barriers to inhibit Cd radial transport toward stele in the non-
hyperaccumulating ecotype of Sedum alfredii. ABA-induced stomatal closure
repress the allocation of Cd, As, and Pb from root to shoots. ABA can
change the distribution of heavy metals by inducing the expression of certain
HMAs, ZIPs, and Nramps transporter genes in various plant species. ABA
change Cd distribution between root and shoots through increasing the
activates of vacuolar protons, V-ATPase, and V-PPase and inhibiting nitrate
movement from root to shoot mediated by NRT1.5. In rice, As uptake,
distribution, and tolerance mediated by OsLsi1, OsLsi2, and OsLsi6 is
repressed by the ABA-inhibited transcriptional factor, OsARM1.
FIGURE 3 | ABA-dependent and -independent regulation of heavy metals
and metalloids chelation and compartmentation. The generation of GSH and
PCs can be promoted by the ABA-induced transcriptional factors AtZAT6 in
Arabidopsis, bZIP members in different plant species. AtWRKY12 functions
as an ABA-independent negative regulator of AtGSH1, while PCS expression
is enhanced by PSE1. Moreover, PcABCC1.1 is activated by ABA and may
participate in Pb sequestration in Gray Polar.
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(Stroiński et al., 2010; Stroiński et al., 2013). ABA-induced
expression of StPCS1 was in parallel with an elevated level of
StbZIP, encoding a potential ABF on the upstream of StPCS1
(Figure 3) (Stroiński et al., 2010; Stroiński et al., 2013). Similarly,
the transcript levels of PcECS1 and PcPCS1.1 genes, encoding
rate-limiting enzymes for GSH and PCs synthesis, were
upregulated in the roots of Gray Poplar treated with ABA
compared with the control, irrespective of Pb treatments
(Figure 3) (Shi et al., 2019).

The members of the ABC transporter family mediate the
transport of GSH- or PCs-conjugated toxic metals and
metalloids for detoxification (Song et al., 2010; Park et al.,
2012; Song et al., 2014b; Brunetti et al., 2015). The vacuolar
membrane-localized Arabidopsis ABCC1 and ABCC2 mediate
tolerance to both Cd and As by sequestrating the complexes into
vacuoles, while ABCC3 only confers Cd detoxification (Song
et al., 2010; Park et al., 2012; Brunetti et al., 2015). Knockout
of OsABCC1 resulted in enhanced As sensitivity and largely
increased As accumulation in rice grain, and ectopic expression
of OsABCC1, ScYCF1 (Saccharomyces cerevisiae yeast cadmium
factor 1, homolog of ABCC1 in yeast), and g-ECS reduced grain
As content by 70% compared to that of control by trapping AS-
PCs into vacuoles of root cortical cells (Song et al., 2014b;
Deng et al., 2018), indicating the critical role of OsABCC1
in As tolerance and reducing As distribution to grains.
Overexpression of ScYCF1 in Arabidopsis enhanced tolerance
and accumulation of Cd and Pb (Song et al., 2003). The
mitochondrial transporter ABCB25 (ATM3) contributes to Cd
and Pb resistance, possibly by transporting glutamine synthetase
(GS)-conjugated complexes across the mitochondrial membrane
(Kim et al., 2006). In addition to the upregulated expression of
genes for PCs synthesis, the mRNA levels of the PcABCC1.1 was
increased by exogenous ABA in Pb-exposed Gray Poplar (Figure
3) (Shi et al., 2019), indicating a possible enhanced Pb
compartmentation activity of plants with ABA treatment.

Taken together, ABA alleviates heavy metals and metalloids'
toxicity partially through increasing the generation of GSH and
PCs as well as the vacuolar sequestration capacity of the
conjugated complexes. PSE1 and transcriptional factors bZIPs,
C2H2, and WRKYs are the likely candidates responsible for the
ABA-induced GSH and PCs production. However, the
evolutionary origin and conservation of this regulatory pattern
in land plants and algae needs further evidence.
EVOLUTION OF GENE FAMILIES FOR
ABA-RESPONSIVE HEAVY METALS AND
METALLOIDS DETOXIFICATION

Growing evidence has revealed the evolutionarily conserved roles
of ABA and its biosynthesis and signaling systems from
bryophytes to angiosperms that cause them to survive and
thrive in terrestrial conditions (Sakata et al., 2014; Cuming and
Stevenson, 2015; Shinozawa et al., 2019). However, our
understating of ABA signaling processes leading to heavy
Frontiers in Plant Science | www.frontiersin.org 8
metals detoxification in non-angiosperms is still limited. Using
a range of available tools in bioinformatics and plant
evolutionary biology (Leebens-Mack et al., 2019; Zhao et al.,
2019; Adem et al., 2020), we were able to glimpse the evolution of
gene families for ABA-responsive heavy metals and metalloids'
detoxification and trace the origin and co-evolution of ABA
signaling and tolerance to metals and metalloids in plants.

ABA Biosynthesis and Signaling Network
As described above, physiological and genetic evidence reveals
the involvement of ABA in plants resistance to Cd, As, and Pb
stresses. Certain members belonging to ZEPs, NCEDs, AAOs,
MOCOs, BGLUs, AITs (NPF4s), SnRK2s, and ABFs (bZIPs) are
positive regulators, while PP2Cs play negative roles.
Bioinformatics analyses were performed to identify the
predicted gene families responsible for ABA biosynthesis,
catabolism, transport, signal perception, and transduction in
these 10 gene families across 41 species, including chlorophyte
and streptophyte algae, red algae, and plants (Figure 4). All
ZEPs, NCEDs, MOCOs, BGLUs, ABC transporters, and DTX
transporters have been identified across most tested land plant
and algal species (Figure 4), which showed the same pattern to
those of SnRK and PP2C protein families (Cai et al., 2017; Chen
et al., 2017). The orthologs of SDRs and AAOs were mainly
identified in fern Azolla filiculoides and seed plants but not in any
algae. NPFs were found in Chlorophyta Volvox carteri, all tested
Streptophyte, and land plants, but not in red algae (Figure 4).
Molecular and genetic evidence revealed that core ABA signaling
networkz consisting of PYR/PYL/RCARs, PP2Cs, and SnRK2s of
early land plants is comparable to that of Arabidopsis (Tougane
et al., 2010; Takezawa et al., 2015; Bowman et al., 2017; Briskine
et al., 2017; Cai et al., 2017; Eklund et al., 2018; Jahan et al., 2019;
Shinozawa et al., 2019). As a result, the ABA signaling network
evolved before the land plants.

The above summarized experimental evidence revealed that
ABFs belonging to bZIPs are the main regulators for Cd, As, and
Pb uptake, distribution, and detoxification regulated by ABA
signaling. The origin of land plant gene families that are relevant
to ABA and metal and metalloid tolerance can be traced to
Streptophyte algae with 7 members of bZIP transcriptional
factors in the basal Streptophyta species Klebsormidium
flaccidum and Chara braunii (Figure 4) (Cai et al., 2017; Chen
et al., 2017; Zhao et al., 2019; Adem et al., 2020), indicating an
early evolution of these gene families in Viridiplantae (green
plants). The bZIPs gene family has since evolved and diversified
into multiple members based on genome assembly of recently
sequenced Streptophyte algae Spirogloea muscicola (Figure 4) in
the Zygnematophyceae family (Cheng et al., 2019), which
includes mosses, liverworts, lycophytes, ferns, gymnosperms,
and angiosperms. For instance, there are 78 genes in the bZIP
family in Arabidopsis thaliana (Jakoby et al., 2002) and the
evolution of orthologues of bZIPs can be identified in the basal
lineage of mosses: Sphagnum fallax in Sphagnopsida and
Physcomitrella patens in Bryopsida (Figure 4).

Regulation of stomata and transpiration are vital for plants'
tolerance to heavy metals and metalloids by reducing their
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uptake. Rapid stomatal responsiveness to fluctuant environmental
stimulus is an essential adaptation to terrestrial plant life (Cai
et al., 2017; Chen et al., 2017; Zhao et al., 2019). The opening and
closing of stomata is predominantly dependent on ABA, which
can be induced in plants under heavy metals and metalloids' stress
(Amir et al., 2018; Chen et al., 2020). In flowering plants, stomata
are directly regulated by ion flux mediated by several guard cell
membrane-localized transporters, which are triggered by ABA in
the Ca2+-dependent and Ca2+-independent pathway (Cai et al.,
2017; Chen et al., 2017; Chen et al., 2019; Zhao et al., 2019; Chen
et al., 2020). Comparative genomics and transcriptomics revealed
that the ABA reception complex protein families including
RCARs, PP2Cs, and SnRK2s, guard cell transporter families
consisting of SLACs, KATs, and ALMTs, and kinases CDPKs
and CIPKs critical for ABA-induced stomatal closure have been
identified across the land plant species with stomata (Lind et al.,
2015; Chater et al., 2016; Cai et al., 2017; Chen et al., 2017; Zhao
et al., 2019). The physiological roles of certain members from
liverworts, mosses, and ferns have been verified through genetic
complementation tests (Tougane et al., 2010; Chater et al., 2011;
Ruszala et al., 2011; Komatsu et al., 2013; Lind et al., 2015; Cai
et al., 2017). The results reveal that the molecular mechanism
underlying ABA-regulated stomatal aperture tends to be similar
across plant lineages, but the stomata of vascular plants are
Frontiers in Plant Science | www.frontiersin.org 9
generally more responsive to ABA than those in early plant
species (Chen et al., 2017). In addition to ABA-regulated
stomata responsiveness, the emergence of functional root and
vascular tissues, which connect the various organs of plants and
are essential for the long-distance transport of minerals, is
indispensable for the Cd, As, and Pb distribution among tissues
driven by ABA. Therefore, we propose that ABA is able to regulate
heavy metals and metalloids' distribution in all vascular plant
species, which of course remain to be investigated by the plant
research community.

Regulation of ABA-Responsive Heavy
Metals and Metalloids Detoxification
Some proteins responsible for the uptake, distribution, chelation,
and compartmentation of Cd, As, and Pb are directly or indirectly
regulated by ABA. Here, we identified the orthologues of
transporter families including ZIPs, HIPPs, PHTs, NIPs, NPFs,
and ABCs, transcriptional factor families consisting of bZIPs,
MYBs, bHLHs, WRKYs, and C2H2s, enzymes for GSH and PCs
synthesis from 41 plant and algal genomes (Figure 4).

In Arabidopsis, ABA is able to inhibit Cd uptake and
accumulation mediated by IRT1, HIPP22, and HIPP44 at
transcriptional levels (Zhang P. et al., 2019), while reducing
endogenous ABA content increased the expression of IRT1 and
FIGURE 4 | Similarity heat map of ABA signaling components and ABA-responsive heavy metals and metalloids-related proteins in different species. Candidate
protein sequences were selected by BLASTP searches which satisfied E value <10-10 and query coverage >50%. Colored squares indicate protein sequence
similarity from zero (Blue) to 100% (red). White squares indicate proteins that satisfied neither of the selection. ZEP, zeaxanthin epoxidase; NCEDs, 9-cis-
epoxycarotenoid dioxygenase; SDRs, short-chain alcohol dehydrogenase/reductases; AAOs, abscisic aldehyde oxidases; MOCOs, molybdenum cofactor sulfurase;
BGLUs, b-glucosidases; ABCs, ATP-binding cassette transporters; NPFs, Nitrate Transporter 1/Peptide Transporter; DTXs, DTX/Multidrug and Toxic Compound
Extrusion (MATE); bZIPs, Basic region/leucine zipper proteins; MYBs, MYB transcriptional factors; bHLHs, basic helix-loop-helix transcriptional factors; WRKYs,
WRKY transcriptional factors; C2H2s, Cysteine-2/Histidine-2 type zinc-finger transcriptional factors; ZIPs, Zinc Regulated Transporter/Iron Regulated Transporter-like
Proteins; HIPPs, Heavy metal-associated Isoprenylated Plant Proteins; PHTs, Phosphate transporters; NIPs, Nodulin 26-like Intrinsic membrane Proteins; GSHs,
glutathione synthetases; PCSs, Phytochelatin synthetases.
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its homologs, ZIP1 and ZIP4 (Lu et al., 2020a). IRT1 is a member
of the ZIP family with board substrates including iron (Fe), zinc
(Zn), cobalt, manganese (Mn), and Cd (Rogers et al., 2000; Vert
et al., 2002). Homologs of ZIPs were identified in almost all
examined algae and land plants, except in Rhodophyta Porphyra
yezoenesis and Chlodophyta Volvox carteri (Figure 4), indicating
the early arising of ZIPs prior to the evolution of land plants.
There are 17 ZIPs in Arabidopsis, and IRT1-like members are
only found in angiosperms (Lo et al., 2016). For example, five
and four ZIPs were isolated from M. polymorpha and P. patens
respectively; they were clustered into an IRT3-like group
encoding Fe/Zn transporters in Arabidopsis and ZIP2-like
subgroup transporting Zn, Fe, and Mn but not Cd (Lo et al.,
2016). The activation of IRT1 by MYB49 requires Ib subgroup
members of bHLHs to act as the bridge regulators, while the
expression of HIPP22 and HIPP44 are directly regulated by
MYB49 (Zhang P. et al., 2019). The origin of bHLHs can be
traced to Chlorophyta, but MYBs and HIPPs appear to be land
plant specific (Figure 4). Therefore, the analysis implicated that
the ABI5-MYB49-bHLH-IRT1 pathway is likely to be conserved
in land plants.

Arsenate uptake mediated by PHT1;1 can be restricted by
WRKY6 transcriptional factor in Arabidopsis (Castrillo et al.,
2013), while As(III) take up and distribution mediated by NIPs
can be repressed by MYB protein OsARM1, whose expression is
downregulated by ABA (Wang F.-Z. et al., 2017). Both As(V)
and phosphate (P), which is an essential macro element for all
organisms, are the substrates of PHTs (Lindsay and Maathuis,
2017). Four, eight, and twelve PHT orthologues are identified in
Porphyra yezoenesis, Chlorophyta Ostreococcus sp., and
Klebsormidium flaccidum, but the numbers are rapidly
expanded to 25 in moss Physcomitrella patens, 26 in rice, and
19 in Arabidopsis (Figure 4). In addition, the PHT proteins show
high similarity (over 60%) among all the land plants (Figure 4).
Transcription factors WRKYs tend to be widespread in all the
species examined, except Rhodophyta (Figure 4). The putative
NIPs are found in the most ancient Rhodophyta Porphyra
yezoenesis, basal Streptophyta Klebsormidium flaccidum, and
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all land plants examined (Figure 4). The origin of NIPs is
found from horizontal gene transfer of bacterial aquaporin
group with As efflux activity, and NIPs from Charophytes,
mosses, and angiosperms are permeable to As (Pommerrenig
et al., 2020). Moreover, Arabidopsis NPFs are divided into 8
subgroups (Léran et al., 2014), 4 NPF4s are ABA-importing
transporters (Pan et al., 2020), while 2 NPF7s indirectly
participate in ABA-altered Cd distribution in roots and shoots
(Wang et al., 2018). Using 53 Arabidopsis NPFs as reference, we
identified 1,990 orthologs from 36 representative genomes
consisting of Chlorophyta Volvox carteri, Streptophyte algae,
and land plants (Figure 4). Among the 2,398 putative NPFs
identified from 33 genomes, 350 members were clustered into
NPF4s and 206 belonged to NPF7s (Léran et al., 2014), which
may be the candidates with ABA transport activity and tolerance
to Cd induced by ABA in different plant species, respectively.

The ubiquitous thiol-containing small peptide, PCs, protect
cells against the toxic effects of heavy metals and metalloids
(Clemens, 2006) and the synthesis of PCs is catalyzed by PCS
using reduced GSH and related thiols as substrates (Cobbett,
1999). Genes encoding GSHs can be traced to an ancestral
streptophyte alga Klebsormidium flaccidum (also found in
Cyanidioschyzon merolae, an unicellular red alga the phylum
Rhodophyta), and the similarity among the members from
monocots and dicots is over 60% (Figure 4). The potential PCS
orthologs are found in the Klebsormidium flaccidum, Spirodela
polyrhiza, liverwort Marchantia polymorpha, and most vascular
plants. However, the activities and responsiveness to various
metals of PCS are divergent in various kinds of plants. In
general, the PCSs of basal plants appear to be less active
compared with Arabidopsis PCS (Degola et al., 2014; Petraglia
et al., 2014). Expression of GSHs and PCSs could be activated by
ABA-induced C2H2 transcriptional factor AtZAT6 and StbZIP
but repressed by AtWRKY12 (Stroiński et al., 2013; Chen J. et al.,
2016; Han et al., 2019). We found that the C2H2 member family
shows the same evolutionary origin as that of GSHs, whereas
WRKYs may be originated from Chlorophyta (Figure 4).
Transcriptional factors belonging to the bZIP subfamily
FIGURE 5 | Proposed evolution of ABA-responsive pathways for toxic metals and metalloids uptake, distribution, and detoxification. Please refer to the section of
Conclusions and Future Perspectives for a detailed description.
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activates PCS transcription in potato and Gray Poplar subjected
to exogenous ABA (Stroiński et al., 2010; Stroiński et al., 2013;
Shi et al., 2019), which is consistent with the parallel evolution of
bZIPs and PCSs from Streptophyte algae (Figure 4). Further
experiments have to be conducted to test the conservation of
these regulatory modules in different plant species.

ABC transporters are important for ABA signaling and
responses to heavy metals and metalloids. For instance,
ABCB25 has a role in Cd and Pb resistance in Arabidopsis and
C-type ABC transporters are involved in sequestration of GSH-
and PC-conjugated heavy metals and metalloids in various
angiosperms. G-type ABC transporters contribute to ABA
transport as well as Cd and Pb efflux (Song et al., 2014a;
Hwang et al., 2016). We found that ABC transporters are
ubiquitous in all 41 genomes used for comparative genetic
analysis (Figure 4). There are 69, 125, 130, and 133 ABC
transporters in green algae Chlamydomonas reinhardtii, moss
Physcomitrella patens, Arabidopsis, and rice, respectively
(Hwang et al., 2016). In Rhodophyta Porphyra yezoenesis, 9, 3,
and 2 ABC transporter homologs are classified into B-, C-, and
G-type subgroups, respectively. The numbers of B-type, C-type,
and G-type members increased substantially to 20, 14, and 42, in
Physcomitrella paten and 30, 17, and 43 and Arabidopsis,
respectively (Hwang et al., 2016). These are the suggested
specific proliferations of ABCB, ABCC, and ABCG subfamily
members in land plants. Therefore, it is interesting to verify the
evolutionary conservation of the functions of ABC transporters
for heavy metals and metalloids' detoxification in the early
divergent lineages of plant species.
CONCLUSIONS AND FUTURE
PERSPECTIVES

In summary, in the key components of the ABA biosynthesis,
signaling perception, and transduction pathways, regulatory
patterns were evolutionary conserved in land plants but also
diversified in different lineages. This may be the case for
mechanisms underlying the plant response to toxic metals
and metalloids. According to the analyses, we propose that:
(1) ABA-repressed Cd uptake mediated by ABI5-MYB49-
HIPPs network may be conserved in land plants, (2)
Frontiers in Plant Science | www.frontiersin.org 11
ABA-reduced As distribution and detoxification through
MYB-NIPs is likely to be conserved in land plants, (3) GSH
for metal and metalloid chelation ABA-induced C2H2

transcriptional factor is likely in green plants, and (4) the
earliest origin of bZIP-induced PCS can be traced to the
Streptophyta (Figure 5). Therefore, future work is suggested
to focus on: (1) the discovery of direct regulators of the ABA-
responsive transcriptional factors including WRKY6, ZAT6,
ARM1, and bZIPs and downstream transporters comprising of
ABCs, HMAs, ZIPs, Nramps, NRT1.5, V-ATPase, and V-
PPase; (2) characterization of the putative Cd, As, and Pb
transporters in major clades of land plants using heterologous
expression systems such as yeast and Xenopus laevis; and (3)
investigation of the roles of heavy metal and metalloid stress-
related and ABA-regulated components of major clades of land
plants via genetic complementation of these genes in
corresponding mutants of Arabidopsis and rice. The
proposed research will shed light on the practices for
mitigation the contaminations. For instance, application of
ABA or its analogues in crops for diminishing the accumulation
of toxic metals and metalloids and their antagonists can be
employed in the hyperaccumulators (e.g. algae, plants)
for phytoremediation.
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