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Unmanned aerial vehicle (UAV) based remote sensing is a promising approach for non-
destructive and high-throughput assessment of crop water and nitrogen (N) efficiencies.
In this study, UAV was used to evaluate two field trials using four water (T0 = 0 mm,
T1 = 80 mm, T2 = 120 mm, and T3 = 160 mm), and four N (T0 = 0, T1 = 120 kg
ha−1, T2 = 180 kg ha−1, and T3 = 240 kg ha−1) treatments, respectively, conducted on
three wheat genotypes at two locations. Ground-based destructive data of water and
N indictors such as biomass and N contents were also measured to validate the aerial
surveillance results. Multispectral traits including red normalized difference vegetation
index (RNDVI), green normalized difference vegetation index (GNDVI), normalized
difference red-edge index (NDRE), red-edge chlorophyll index (RECI) and normalized
green red difference index (NGRDI) were recorded using UAV as reliable replacement of
destructive measurements by showing high r values up to 0.90. NGRDI was identified as
the most efficient non-destructive indicator through strong prediction values ranged from
R2 = 0.69 to 0.89 for water use efficiencies (WUE) calculated from biomass (WUE.BM),
and R2 = 0.80 to 0.86 from grain yield (WUE.GY). RNDVI was better in predicting the
phenotypic variations for N use efficiency calculated from nitrogen contents of plant
samples (NUE.NC) with high R2 values ranging from 0.72 to 0.94, while NDRE was
consistent in predicting both NUE.NC and NUE.GY by 0.73 to 0.84 with low root mean
square errors. UAV-based remote sensing demonstrates that treatment T2 in both water
120 mm and N 180 kg ha−1 supply trials was most appropriate dosages for optimum
uptake of water and N with high GY. Among three cultivars, Zhongmai 895 was highly
efficient in WUE and NUE across the water and N treatments. Conclusively, UAV can
be used to predict time-series WUE and NUE across the season for selection of elite
genotypes, and to monitor crop efficiency under varying N and water dosages.
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INTRODUCTION

Low water and nutrient uptake efficiency of crops is one of the
most detrimental limitation in agriculture productivity (Chuan
et al., 2016; Lesk et al., 2016). Efficient irrigation and nitrogen
(N) supply according to the plant requirement is a key regulator
for resource-efficient crop yield (Christopher et al., 2016; Chuan
et al., 2016; Nehe et al., 2018; Thorp et al., 2018). Amelioration
in uptake efficiency can be adjusted by manipulation of dosage of
water and N-fertilizer (Ali and Talukder, 2008) or by improving
input use efficiency in crop cultivars (Hawkesford, 2017). Genetic
improvement of genotypes for water and N uptake, defined as
the ratio of crop yield and water or N consumption capacity of
plants is an important goal in crop breeding (Passioura, 2012).
Nowadays, the use of N fertilizer increased from 9.2 Mt of
pure N in 1960 to 108 Mt of pure N in 2015 worldwide (FAO,
2018). Over-dosage and low N utilization efficiency of crops have
caused major resources concerns and substantial greenhouse gas
emissions (Guo et al., 2010; Zhang et al., 2015). In China, the
agricultural system generally relies on the high-to-excessive N
inputs and the total average application of N for winter wheat
has increased more than 500 kg N/ha, while the nitrogen-use
efficiency (NUE) in wheat system remains lowest as compared
with other crops like maize and rice (Cui et al., 2018). Moreover,
the traditional irrigation of winter wheat is up to 310 mm and the
water use efficiency (WUE) is lower than that of the world (Sun
et al., 2011). Establishing substantial regulations and breeding
new varieties for high water and N acquisition could provide an
effective approach to improve WUE, NUE, and yield potential
(Hu and Xiong, 2014; Zhang et al., 2017).

Assessment of resource efficiencies could be detected through
physiological indicators such as biomass, water status, N contents
and chlorophyll level of plants (Ali and Talukder, 2008; Potgieter
et al., 2017). Previously, several studies have been conducted
to assess NUE and WUE through destructive approaches for
selection and genetic improvement in wheat (Zhang et al., 2007;
Haile et al., 2012; Hawkesford, 2017). But destructive methods
are considered as bottleneck for rapid and precise estimations
of biomass, N and water status at multiple time points in case
of large number of genotypes (Cobb et al., 2013; Potgieter et al.,
2017). Therefore, use of advance phenotyping technology can
increase the precision in data collection and future decision on
crop improvement (Araus and Cairns, 2014; Rasheed et al., 2020).
Ground-based and aerial-based non-destructive phenotyping
systems have been validated as complementary platforms for
several traits like green cover, biomass, water stress severity,
chlorophyll level, and photosynthesis rate (Araus and Kefauver,
2018; Hassan et al., 2018a). The unmanned aerial vehicle (UAV)
platform is capable of covering larger area in a shorter period
of time. This can minimize the measurement error caused
by changes in environmental factors, and is independent of
field condition which can disturb the movement of ground-
based systems (Potgieter et al., 2017; Yang et al., 2017).
UAV-based remote estimation of canopy water and N-status
can provide implication on detection of physiological status
for establishing decisions and immediate adopt measures for
appropriate irrigation and N-fertilizer applications (Yi et al.,

2013; Li et al., 2018). Previously, UAV-based multispectral and
RGB imagery have been validated for detection of biomass,
plant density, leaf area, senescence rate and photosynthetic
activity in wheat, barley, and sorghum (Bendig et al., 2014;
Sankaran et al., 2015; Jin et al., 2017; Potgieter et al., 2017;
Hassan et al., 2018a, 2019).

Physiological traits such as chlorophyll content, nitrogen
concentration, and water status are often hard to be assessed
by the human eye but can be detected through variations in
reflectance of light spectrum (Haboudane et al., 2002; Mutanga
and Skidmore, 2004; Zhang and Zhou, 2019). UAV-based remote
sensing has given a great opportunity to assess plants growth
by capturing different bands (Blue, NIR, Red, Green, and Red-
edge) of light spectrum. Under optimum conditions, healthy
plants look green because they absorb red bands and reflect
green band of light spectrum (Hatfield et al., 2008). Strong
relationship of these combination of light has been reported with
photosynthesis, stress and nutrient status in plants (Hatfield et al.,
2008; Shafian et al., 2018). For example, normalized difference
vegetation index (NDVI), red edge chlorophyll index (CIRed-
edge), normalized difference red-edge (NDRE) have been used
to differentiate genotypes for stay-green, water stress, growth
under N-fertilizer and chlorophyll level (Potgieter et al., 2017;
Li et al., 2018; Zheng et al., 2018; Zhang and Zhou, 2019).
Grain yield has also been predicted through UAV-based sensors
in wheat and sorghum (Han et al., 2018; Hassan et al., 2018b).
Therefore, multispectral vegetation indices can be used to assess
the status of water and nitrogen and their fluctuations under
diverse environmental conditions. The aims of this study were to
(1) assess UAV-based multispectral platform determining water
and N use efficiencies, (2) evaluate the water and N-fertilizer
application strategy using UAV, and (3) identify the genotypes for
high water and N efficiency.

MATERIALS AND METHODS

Germplasm and Experimental Design
Three cultivars Zhongmai 895, Aikang 58, and Zhoumai 18
were used to evaluate the accuracy of UAV-based multispectral
imagery to predict effectiveness of water and N-fertilizer dosage
as well as the potential of genotypes for their uptake efficiencies.
These cultivars were released in the Yellow and Huai River
Valleys Winter Wheat Region of China over the last decades. The
study panel have been known as most prominent varieties for
drought resistance and yield potential across the cultivated area
by performing differently in stay-green during extreme drought
and high temperatures.

Two field trials (water and nitrogen) were conducted at
two sites i.e., Anyang (37.3943◦N, 126.9568◦E) and Xinxiang
(35.3037◦N, 113.9268◦E) in Henan province during 2016–2018.
Both trials were consisted of two types of experimental plots
(a) destructive sampling plots following CIMMYT manual and
(b) non-destructive phenotyping plots using UAV platform
across the treatments (Figure 1). Randomized complete
blocks with three replications each for destructive and UAV
based phenotyping were used to minimize the probability
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FIGURE 1 | Trial locations, experimental design and UAV platform for phenotyping of water and N use efficiencies.

of experimental error. Each experimental plot consisted of
6 rows of 9 m in length, 1.5 m in width, and with 0.2 m
inter-row spacing. Seeds were planted with a seedling rate of
270 seedlings/m2 at both sites. In water use efficiency trial, each
replication comprised four water levels, viz. zero (control) T0 = 0,
T1 = 60 mm, T2 = 120 mm, and T3 = 180 mm at both sites
(Figure 1). Nutrients level for water treatments was maintained
at the optimal level. While N use efficiency experiment was
also consisted of four levels of N for each three replications viz.
zero (control) T0 = 0, T1 = 120 kg ha−1, T2 = 180 kg ha−1,
and T3 = 240 kg ha−1. Harvesting was done through combine
harvester after full maturity to estimate grain yield.

UAV-Based Platform and Flight
Campaigns
A Mavic Pro (SZ DJI Technology Co., Shenzhen, China)
carrying sequoia 4.0 multi-spectral sensor (Micasense Parrot,
Seattle, WA, United States)1 was used for multispectral imagery
over the trials. Mavic pro can fly with slow speed and low
altitude for 18 min. Multispectral sensor consists of 4 spectral
bands (green, red, red-edge and nir) and a sunshine sensor

1https://www.micasense.com/parrotsequoia/

connected with multi-spectral sensor was installed on the
top of UAV to measure environmental irradiation and post-
calibrate reflectance. A standardization of band values before and
after flight was done through a calibration board with known
reflectance. Altizure DJI version 3.6.02 was used to design the
flight mission over the trials. All the flights were conducted at
30 m altitude with 2.5 m/s speed, maintaining 85% forward and
side overlaps among images. Average ground sample distance
of sensor was recorded 2.5 cm. UAV-based multispectral data
were collected at heading, flowering and three times at early, mid
and late grain filling stages. Data captured at early to late grain
filling were averaged to get overall status of genotypes at maturity
stage (Table 1).

Image Processing and Data Extraction
All images captured from Sequoia contained accurate geo-
referencing due to its built-in GPS device. GPS information was
accurate enough to generate dense point cloud for good quality
orthomosaic. Pix4D mapper (Version 1.4, PIX4d, Lausanne,
Switzerland)3 was used for orthomosaic generation. The key

2https://www.altizure.com
3https://pix4d.com/
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TABLE 1 | Multi-spectral indices, their function and data acquisition schedule for both experiments.

Traits Equation Function

RNDVI Red normalized difference vegetation index RNDVI = (RNIR - Rred)/(RNIR + Rred) N contents, Biomass

GNDVI Green normalized difference vegetation index GNDVI = (RNIR - Rgreen)/(RNIR + Rgreen) Green biomass, Chlorophyll

NDRE Normalized difference red-edge index NDRE = (RNIR - Rred-edge)/(RNIR + Rred-edge) Greenness

RECI Red-edge chlorophyll index NDRE = (RNIR/Rred-edge)-1 Chlorophyll contents

NGRDI Normalized green red difference index NGRDI = (Rgreen – Rred)/(Rgreen + Rred) Yellowing

Schedule

Stage No. of flights Data calculation Ground data

Heading (H) (ZS-56) 3 Average (H) Dry biomass (m−1)

Flowering (F) (ZS-66) 3 Average (F) Dry biomass (m−1)

Early grain filling (EGF) (ZS-74) 3 Average of grain filling stages Dry biomass (m−1), Grain yield

Mid grain filling (MGF) (ZS-84) 3

Late grain gilling (LGF) (ZS-90) 3

steps of the orthomosaic generation using Pix4D mapper
comprised camera alignment, geo-referencing, building point
clouds and orthomosaic generation as previously reported
(Hassan et al., 2018a,b). QGIS was used for image segmentation
to extract the useful information of each plot. For this, polygon
shapes were generated with a specific plot ID defining the
particular germplasm (Haghighattalab et al., 2016). Spectral
values were analyzed using combined orthomosaic TIFF images
contain four different bands and polygon shape files in IDL
(Version 8.6, Harris, Geospatial Solutions, Inc. Reston, CO,
Australia, United States). Reflectance calibration was done
using calibrated reflectance panel with known reflectance
values provided by Micasense (Micasense Parrot, Seattle, WA,
United States). Multispectral images of reflectance panel were
captured before and after each flight to calibrate the reflectance
maps of each stage.

Estimation of Multi-Spectral Vegetation
Indices
Five multispectral traits i.e., red normalized difference vegetation
index (RNDVI), green normalized difference vegetation index
(GNDVI), normalized difference red-edge (NDRE), red-edge
chlorophyll index (RECI), and normalized green red difference
index (NGRDI) were also calculated which mainly surrogate to
canopy physiological traits including green biomass, chlorophyll
level and photosynthesis (Table 1). These indices were calculated
from reflectance captured during multi-spectral imagery through
Sequoia 4.0 sensor. The calculated multispectral traits were
evaluated for non-destructive assessment of water and nitrogen
use efficiency by considering cost-effective replacement of
traditional destructive indicator such as biomass, N-contents and
chlorophyll level under different water and N supply.

Estimation of Soil Moisture, N Contents,
Biomass and Yield Related Traits
The volumetric soil water content of the planting zone was
measured for every 10 cm section of soil, down to 160 cm using
a CNC503D neutron moisture meter (Super Energy. Nuclear

Technology Ltd., Beijing, China). The water content of the soil
surface of around 20 cm was also measured using the oven-drying
method to minimize the error probability in calculating the
WUE. Soil was oven-dried at 105◦C until a consistent weight, and
then pre-and post-drying weights were compared to determine
the water content. This measurement was repeated after all
irrigation treatments and major precipitation events. Both
methods (volumetric measurements and oven-drying) were used
to measure total soil moisture as described by Ma et al. (2016).

For soil N content, soil sampling was done from each subplot
at the depth of 0–20, 20–40, 40–60, 60–80, and 80–100 cm for
the estimation of before sowing soil N contents. Samples were
digested, and modified Kjeldahl method was used to determine
total N contents in soil samples as described in Bremner and
Mulvaney (1982). For plant N contents at flowering and maturity,
samples from each subplot was taken by cutting 20 fertile shoots
at ground level. Then, shoots were divided into leaves, straw,
sheath at flowering and grains at maturity. Total N content
was calculated from above mention methodology. Dry biomass
was calculated at heading, flowering and maturity stages by
destructive method, while yield related traits including spike
number (SN), thousand grain weight (TGW), and grain yield
(GY) were calculated as described in Gao et al. (2017).

WUE and NUE Measurement and
Statistical Analysis
Water use efficiency (WUE) from grain yield and dry biomass
were calculated using following formulas by Zhang et al. (2007),

WUE.GY = GY/ET

and
WUE.BM = BM/ET

Where, GY is grain yield, Y (kg · ha−1) is genotypes grain yield,
BM (kg · ha−1) is dry biomass at maturity and ET (mm) is the
evapotranspiration during the winter wheat growing seasons. ET
was estimated as follows (Eberbach and Pala, 2005).

ET = I+ P-R-D-1S
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Where, I (mm) is the irrigation water amount; P (mm) is
precipitation, which was measured at the on-site weather station
using a standard rain gauge given in Supplementary Table S1; R
(mm) is the surface runoff, which was assumed as non-significant
since concrete slabs were placed around each plot; D (mm) is
the downward flux below the crop root zone, which was defined
as insignificant since soil moisture measurements indicated that
drainage at the sites were negligible; and 1S (mm) is the change
in water storage in the soil profile that is exploited by crop roots
(initial soil water content minus soil water content at the end of
the growing season).

NUE efficiency was measured using following formulas as
demonstrated in Haile et al. (2012),

NUE.GY = GDWf − GDWc/Ns

and
NUE.NC = Ntf −Ntc/Ns

Whereas, GDWf is grain dry weight in fertilized treatment,
GDWc is grain dry weight under control treatment while Ns
means total N supply in a particular treatment. Ntf indicates
total N content in above ground plant sample in fertilized
treatment and Ntc means N concentration in plant sample in
control treatment.

Pearson correlation and linear regression between the traits
were calculated to check relationship and prediction. Significance
variation test at P < 0.05 and performance of genotypes for
traits under different water and N treatments were determined
by analysis of variance (ANOVA) using R package (R Core Team,
2016). While repeatability of UAV based data was also calculated
to ensure the accuracy by following the formula reported in
Sehgal et al. (2015).

RESULTS

Correlations of UAV-Based Traits With
Indicators of Water Status and WUE
All multispectral traits i.e., red normalized difference vegetation
index (RNDVI), green normalized difference vegetation index
(GNDVI), normalized difference red-edge (NDRE), red-edge
chlorophyll index (RECI), and normalized green red difference
index (NGRDI) mainly surrogate to green biomass, water content
and chlorophyll level of plants were positively correlated with
manually measured indicators of water status i.e., biomass,
temporally at heading (r = 0.17 to 0.87), flowering (r = 0.15
to 0.77) and maturity (r = 0.15 to 0.90) in control and all
water-supply treatments (Figure 2). Weak to strong correlations
between UAV-based multispectral traits with thousand grain
weight (TGW) (r = 0.14 to 0.84), and moderate to high with grain
yield (GY) (r = 0.27 to 0.65) were observed across the treatments
at mid to late grain filling stage. Plant height showed positive
correlations (r = 0.17 to 0.81) with RNDVI, GNDVI, NDRE, and
RECI in T0, T1 and T2. Water use efficiency calculated from
GY (WUE.GY) was strongly correlated with RNDVI (r = 0.51
to 0.65), GNDVI (r = 0.47 to 0.64), NDRE (r = 0.53 to 0.65),
RECI (r = 0.40 to 0.66), and NGRDI (r = 0.56 to 0.64). While

water use efficiency estimated from biomass (WUE.BM) also
exhibited similar trend in correlation with RNDVI (r = 0.36
to 0.67), GNDVI (r = 0.34 to 0.69), NDRE (r = 0.38 to 0.76),
RECI (r = 0.15 to 0.56), and NGRDI (r = 0.46 to 0.90) across
the water-supply treatments. Correlations between multispectral
traits and WUE.BM were slightly lower in T3 compared to T1
and T2 treatments. UAV-based multispectral traits were also
positively associated with both NUE at heading (r = 0.10 to 0.82)
and flowering (r = 0.25 to 0.85) (Figure 2). Weak but positive
correlations were also observed between ground based WUE
indicator (biomass) and WUE.GY ranging from r = 0.23 to 0.50 at
mid to late grain filling stage across the water-supply treatments.

UAV-Based Prediction of WUE and
Variations in Genotypes
Significant variations (P < 0.05) among the genotypes and
in multispectral traits at mid to late grain filling stage were
calculated, with high repeatability ranging from 0.78 to 0.89
(Table 2). In our results, similar trend in variation among
WUE and multispectral traits at mid to late grain filling
stage were observed that was influencing the GY. Variation
results were also validated through ground based destructive
measurements (Table 2).

Linear regression model was fitted to forecast both WUE.BM
and WUE.GY through UAV-based multispectral traits (Figure 3).
Results showed high R2 values for RNDVI (R2 = 0.65 to 0.83),
GNDVI (R2 = 0.60 to 0.84), NDRE (R2 = 0.58 to 0.80), RECI
(R2 = 0.60 to 0.80) and NGRDI (R2 = 0.69 to 0.89) in predicting
both WUE at mid to late grain filling stage, while average root
mean square errors (RMSE) ranged from 0.002 to 0.04. NGRDI
traits was found better with higher coefficients of determination
values in predicting both WUE.BM (R2 = 0.69 in T1, R2 = 0.75 in
T2 and R2 = 0.89 in T3) and WUE.GY (R2 = 0.86 in T1, R2 = 0.83
in T2 and R2 = 0.80 in T3) with low average RMSE 0.02 and 0.03.
Whereas, UAV-based traits also predicted significant differences
(P < 0.05) between the water treatments and locations. In
Figure 4, fluctuation in dynamic trend of multispectral traits
values in all four treatments high for Zhongmai 895 compare
to other two genotypes. Dynamic curves showed low level in
multispectral traits at mid to late grain filling stage under control
treatment. Zhongmai 895 also performed high in both WUE
under water-supply treatments, but there was no significant
difference in WUE and GY between T2 and T3 (Table 2).

Correlations of UAV-Based Traits With
Ground Indicators of N-Status and NUE
In Figure 5, UAV-based five multispectral traits were positively
correlated with N-contents ranging from r = 0.27 to 0.84
at flowering and r = 0.27 to 0.97 at maturity in in all
N-supply treatments. NGRDI showed quite low correlations
with N-contents at both flowering and maturity in T2 and T3
compared with T0 and T1 where r-values were high ranging
from 0.81 to 0.89 (Figure 5). A consistently moderate to high
correlations of multispectral traits with TGW ranging from
r = 0.23 to 0.86 and GY r = 0.49 to 0.86 were noticed at
the maturity stage. There were negative to positive correlations
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FIGURE 2 | Correlation map between traits under four water treatments across the two experimental sites. Red and yellow colors indicating intensity of r values from
positive to negative. T, treatment; H, heading; F, flowering; M.LGF, mid to late grain filling; GNDVI, green normalized difference vegetation index; NDRE, Normalized
difference red-edge; RECI, red-edge chlorophyll index; NGRDI, normalized green red difference index; TGW, thousand grain weight; DBH, dry biomass at heading;
DBF, dry biomass at flowering; DBM, dry biomass at maturity; SN, spike number per; GY.plot, grain yield per plot; WUE.GY and BM, water use efficiency calculated
from grain yield and biomass.

(r = −0.26 to 0.46) between plant height, multispectral traits
and N-contents across the treatments. NUE.NC calculated from
nitrogen contents of plant samples at maturity was correlated
with all five remotely sensed multispectral traits at r = 0.23 to
0.97, while GY based nitrogen use efficiency (NUE.GY) at r = 0.47
to 0.87 across the treatments. Similar correlations trend ranging
from r = 0.23 to 0.90 were also observed between ground based
NUE indicator (N-contents) and NUE.NC in T2 and T3, and with
NUE.GY ranging from r = 0.27 to 0.99 at maturity stage across

the treatments (Figure 5). Significantly low to strong correlations
were also detected between NUE and UAV-based multispectral
traits at heading (r = 0.38 to 0.82) and flowering (r = 0.14 to 0.89).

UAV-Based Prediction of NUE and
Variations in Genotypes
High coefficients of determination were identified between UAV-
based traits and NUE calculated from nitrogen content of plant
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TABLE 2 | Significance test and repeatability of traits for three cultivars under four water treatments and two locations.

Traits Cultivars Treatments Locations Data repeatability

C895 C58 C18 T0 T1 T2 T3 Xinxiang Anyang Xinxiang Anyang

RNDVI.H 0.63a 0.62a 0.60b 0.54d 0.61c 0.65b 0.67a 0.61a 0.63a 0.79 0.81
GNDVI.H 0.53a 0.50b 0.48c 0.44d 0.51c 0.53b 0.55a 0.49b 0.53a 0.86 0.84
NDRE.H 0.23a 0.19b 0.17c 0.14c 0.20b 0.21b 0.23a 0.29a 0.20b 0.85 0.87
RECI.H 0.60a 0.53b 0.44c 0.33c 0.53b 0.56b 0.68a 0.83a 0.82a 0.78 0.86
NGRDI.H 0.19a 0.18b 0.17c 0.15d 0.162c 0.20b 0.21a 0.20a 0.16b 0.8 0.78
RNDVI.F 0.58a 0.56b 0.55b 0.48c 0.55b 0.60b 0.61a 0.58a 0.54b 0.78 0.79
GNDVI.F 0.47a 0.44b 0.43b 0.38d 0.44c 0.47b 0.49a 0.46a 0.43a 0.84 0.83
NDRE.F 0.23a 0.19b 0.17c 0.143d 0.19c 0.22b 0.24a 0.29a 0.14b 0.85 0.89
RECI.F 0.59a 0.52b 0.47c 0.33d 0.49c 0.58b 0.69a 0.74a 0.62b 0.78 0.72
NGRDI.F 0.17a 0.16b 0.15c 0.12c 0.15b 0.18a 0.18a 0.16a 0.16b 0.89 0.85
RNDVI.M-L 0.36a 0.35a 0.31b 0.20c 0.31b 0.44a 0.44a 0.45a 0.33b 0.87 0.86
GNDVI.M-L 0.35a 0.33b 0.30c 0.24c 0.33cb 0.38a 0.39a 0.36a 0.29b 0.79 0.89
NDRE.M-L 0.163a 0.12b 0.11b 0.084c 0.12b 0.164a 0.169a 0.16a 0.10b 0.86 0.87
RECI.M-L 0.28a 0.23b 0.20c 0.10c 0.21b 0.33a 0.34a 0.42a 0.35b 0.88 0.87
NGRDI.M-L 0.12a 0.10b 0.09c 0.04c 0.078b 0.15a 0.15a 0.12a 0.09b 0.87 0.83
DBH (g/m) 136.47b 140.28a 139.67a 112.95d 126.29c 142.05b 173.93a 118.31b 159.30a 0.79 0.83
DBF (g/m) 205.12a 198.13b 197.71b 170.710c 184.97b 219.34a 220.93a 189.76b 208.21a 0.8 0.78
DBM (g/m) 282.38a 270.67b 270.15b 185.05c 238.11b 334.93a 339.51a 322.98a 295.82b 0.83 0.79
SN 23.74b 27.53a 27.00a 22.01b 28.30a 26.89a 27.164a 26.244a 25.94b 0.78 0.78
PH (cm) 72.138a 70.21b 70.43b 70.73a 70.54a 70.77a 71.67a 70.96a 70.89a 0.86 0.88
TGW (g) 50.38a 44.12c 45.59b 45.30c 46.47b 47.12ab 47.89a 49.16a 44.23b 0.79 0.78
GY Kg/plot 7.23a 7.17a 6.36b 4.53c 5.79b 6.71a 6.95a 6.36a 5.59b 0.8 0.79
WUE.BM Kg/hec/mm 55.17a 52.52b 52.42b – 51.19c 61.13b 62.87ab 71.32a 55.42b 0.82 0.81
WUE.GY Kg/hec/mm 1.59a 1.58a 1.50b – 1.57b 1.61a 1.65a 1.92a 1.54b 0.83 0.8

Alphabets are indicating significance differences at P > 0.05 level. C895; Zhongmai 895, C58; Aikang 58 and C18; Zhoumai18. T, treatment; H, heading; F, flowering;
M.LGF, mid to late grain filling; GNDVI, green normalized difference vegetation index; NDRE, Normalized difference red-edge; RECI, red-edge chlorophyll index; NGRDI,
normalized green red difference index; TGW, thousand grain weight; DBH, dry biomass at heading; DBF, dry biomass at flowering; DBM, dry biomass at maturity; SN,
spike number per; GY, grain yield; WUE.GY and BM, water use efficiency calculated from grain yield and biomass.

samples (NUE.NC) and GY (NUE.GY) with low RMSE ranging
from 0.004 to 0.04 across the N-supply treatments (Figure 6).
Strong R2 values of RNDVI (R2 = 0.64 to 0.94), GNDVI (R2 = 0.64
to 0.89), NDRE (R2 = 0.73 to 84), RECI (R2 = 0.66 to 0.86
and NGRDI (R2 = 0.65 to 0.90) with NUE.NC and NUE.GY
predicted significant variations (P < 0.05) among genotypes at
mid to late grain filling stage with high repeatability ranging from
0.80 to 0.91 (Table 3). RNDVI was high in predicting NUE.NC
in T1 (R2 = 0.72), T2 (R2 = 0.89), and T3 (R2 = 0.94), while
NDRE was also found consistent in forecasting both NUE.NC
with high R2 = 0.75 in T1, R2 = 0.73 in T2, R2 = 0.74 in T3 and
NUE.GY by R2 = 0.84 in T1, R2 = 0.75 in T2 and T3 with RMSE
of 0.004 to 0.005.

Traditionally validated indicators of N-status such as
N-contents in plant body significantly varied among the three
genotypes (P < 0.05) at mid to late grain filling stage in all
N-supply treatments (Table 3). Similar trend was observed for
UAV-based remotely sensed traits, illustrating the variations
in NUE and fluctuations in GY among the genotypes and
differences between the treatments. Multispectral traits were
found significantly higher at flowering and mid to late grain
filling stage in Zhongmai 895 compared to other genotypes
across the treatments (Table 3 and Figure 7). T2 was the
most resourceful in both water and N-supply treatment for
resource-effective GY. High curves points for multispectral traits
indicated greater N-content, chlorophyll level under water and

N-supply, which mean high NUE. Whereas, declining curves of
UAV-based traits showed their low level in control treatment at
mid to late grain filling stage.

Results showed that Zhongmai 895 was elite in NUE.GY
compared to Aikang 58 and Zhoumai 18, but in NUE.NC both
Zhongmai 895 and Aikang 58 were equally high under T1 and
T2 (Figure 8). Whereas, GY of Zhongmai 895 was also higher
across the water and N supply treatments compared to control
treatment where no yield difference was observed among the
three genotypes.

DISCUSSION

Potential of UAV-Based Multispectral
Traits to Assess Water and N Use
Efficiencies
Manual phenotyping is time consuming, expensive and error
prone, and should be replaced by advanced, rapid and accurate
technology to assess dynamic biomass and N status to describe
WUE and NUE (Zhang and Zhou, 2019). Therefore, it is
important to establish usefulness of UAV-based remote sensing
over the traditional phenotyping approaches. Previously, some
studies have predicted physiological status such as senescence
rate and grain yield effectively through UAV-based multispectral
data in wheat (Duan et al., 2017; Hassan et al., 2018a,b).
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FIGURE 3 | Coefficients of determination results between multispectral traits (A) RNDVI, (B) GNDVI, (C) NDRE, (D) RECI, and (E) NGRDI and WUE calculated from
biomass (WUE.BM) and estimated from grain yield (WUE.GY) under water-supply treatments.
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FIGURE 4 | Seasonal trend in multispectral traits and comparison of genotypes under water treatments. Error bars are showing standard deviation. *C895,
Zhongmai 895; C58, Aikang 58; C18, Zhoumai18.

In our study, strong correlations of UAV-based multispectral
traits with traditionally measured indicators of water (biomass)
and N status (N contents) in all treatments had validated
the UAV-based data for accurate assessments of WUE and
NUE (Figures 2, 5). Whereas, higher correlations of UAV-
based multispectral traits with WUE and NUE compared to
ground-based destructive data had proven its superiority. Similar
trend in correlations of multispectral traits, WUE and NUE
with GY also indicated the practicality of UAV for selection
in wheat breeding. Moreover, high prediction results of UAV-
based multispectral traits ranging from R2 = 0.58 to 0.94
with low RMSE for WUE and NUE using linear regression
model, had also exhibited that UAV remote sensing could be
capable in detecting within season water and N utilization
efficiencies of plant efficiently (Figures 3, 6). Therefore,
addition of UAV-based non-destructive phenotyping platform
to large breeding programs could be better replacement of
traditional approaches and helpful to reduce the cost of labor
and time in assessing biomass, N contents and resource
efficiencies in wheat.

Comparison of Multispectral Traits in
Response to Water and N-Supply
Visible sign of efficient supply of water and N-fertilizer are
high greenness, chlorophyll and N level in plant body. Spectral

bands have strong relationship with physiological indicators of
nutrient’s status such as green cover, chlorophyll, N contents (Li
et al., 2018) and can demonstrate the water stress severity and
N status in plants (Wang et al., 2013; Zheng et al., 2018). But
due to different features of spectral bands, some limitations have
been reported in precise physiological information at particular
growth stages (Hatfield et al., 2008). For example, it is reported
that red band is more reliable at pre-maturation stages due to
saturation issues in detecting high chlorophyll level after canopy
closure. Therefore, it makes difficult to sense minor variations
in spectral indicators of plants physiology. Near infrared (NIR)
band is strongest in detecting long range of variations in green
biomass and N-status. While reflectance in the green and the
red-edge bands ranges are also sensitive to the whole range of
variations in chlorophyll and green biomass (Hatfield et al., 2008;
Li et al., 2018).

In water trial, multispectral traits derived from NIR, red
and green bands (RNDVI, GNDVI and NGRDI) had shown
strong relationship with temporally measured biomass, WUE
and GY. Especially NGRDI has shown low to high correlations
(r = 0.27 to 0.90) with WUE and determined the significant
(P < 0.05) variations among three wheat genotypes at mid to
late grain filling stage in water-supply treatments (T1, T2, and
T3) (Figure 2 and Table 2). Whereas, high repeatability of UAV-
based multispectral traits indicated that these traits could be
reliable for prediction of WUE (Table 2). Similar correlation
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FIGURE 5 | Correlation map between traits under four nitrogen treatments across the two experimental sites. Red and yellow colors indicating intensity of r values
from positive to negative. T, treatment; H, heading; F, flowering; M.LGF, mid to late grain filling; GNDVI, green normalized difference vegetation index; NDRE,
Normalized difference red-edge; RECI, red-edge chlorophyll index; NGRDI, normalized green red difference index; TGW, thousand grain weight; DBH, dry biomass
at heading; DBF, dry biomass at flowering; DBM, dry biomass at maturity; SN, spike number per; GY.plot, grain yield per plot; NUE.GY and NC, water use efficiency
calculated from grain yield and nitrogen contents.

results of RNDVI and NGRDI have also been reported for
efficient prediction of biomass and GY under different water
and N conditions (Duan et al., 2017; Hassan et al., 2018b).
Low correlations with GY in control treatment (T0) might
be due to saturation in red band after early canopy closure
under drought severity, while low greenness could also cause

low reflectance of green band. Under normal condition, healthy
plant showed high reflectance of NIR band, and low red and
re-edge bands. Whereas, green, red and red-edge bands showed
high reflectance as compare to NIR under water stress. NGDRI
was derived from subtracting red from the green band, which
means calculating the fraction of reflected red band from the
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FIGURE 6 | Coefficient of determination results between multispectral traits (A) RNDVI, (B) GNDVI, (C) NDRE, (D) RECI, and (E) NGRDI and NUE calculated from
plant nitrogen contents NUE.NC and estimated from grain yield NUE.GY under N-supply treatments.
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TABLE 3 | Significance test and repeatability of traits for three cultivars under four N treatments and two locations.

Traits Cultivars Treatments Locations Data repeatability

C18 C58 C895 T0 T1 T2 T3 Xinxiang Anyang Xinxiang Anyang

RNDVI.H 0.64b 0.67a 0.68a 0.59c 0.65b 0.67b 0.74a 0.66a 0.67a 0.91 0.91

GNDVI.H 0.54b 0.57a 0.59a 0.50c 0.55b 0.58b 0.64a 0.56a 0.59a 0.86 0.84

NDRE.H 0.17b 0.24b 0.26a 0.19c 0.20c 0.24b 0.27a 0.22a 0.23a 0.85 0.89

RECI.H 0.52b 0.58a 0.60a 0.52b 0.53b 0.59a 0.60a 0.56a 0.58a 0.8 0.82

NGRDI.H 0.18ab 0.19a 0.20a 0.16c 0.17c 0.20b 0.24a 0.19a 0.21a 0.8 0.81

RNDVI.F 0.54ab 0.56a 0.57a 0.49c 0.55b 0.59a 0.61a 0.55a 0.6a 0.83 0.79

GNDVI.F 0.43b 0.45a 0.47a 0.37c 0.44b 0.49a 0.51a 0.45b 0.53a 0.84 0.83

NDRE.F 0.15b 0.19a 0.20a 0.10c 0.16b 0.20a 0.21a 0.18b 0.22a 0.85 0.9

RECI.F 0.31b 0.39a 0.42a 0.27c 0.33b 0.43a 0.44a 0.37b 0.41a 0.8 0.87

NGRDI.F 0.15ab 0.16a 0.16a 0.14c 0.17b 0.19a 0.19a 0.15b 0.22a 0.83 0.91

RNDVI.M-L 0.29c 0.32b 0.37a 0.26c 0.31b 0.36a 0.39a 0.32a 0.35a 0.9 0.86

GNDVI.M-L 0.24bc 0.27b 0.31a 0.23c 0.26b 0.30a 0.31a 0.273a 0.28a 0.91 0.85

NDRE.M-L 0.05bc 0.07ab 0.09a 0.03c 0.09b 0.11a 0.13a 0.07a 0.1a 0.82 0.81

RECI.M-L 0.12c 0.19b 0.23a 0.10c 0.17b 0.21a 0.23a 0.18a 0.2a 0.85 0.91

NGRDI.M-L 0.10bc 0.11b 0.13a 0.09c 0.16b 0.18a 0.19a 0.11a 0.13a 0.83 0.8

NC.F (mg) 201.73b 210.52a 216.94a 195.16c 205.58b 216.96a 215.89a 209.73a 208.8a 0.8 0.87

NC.M (mg) 45.90c 51.56b 57.32a 40.00d 47.88c 56.15ab 62.36a 51.59a 53.56a 0.8 0.8

PH (cm) 66.50a 66.28 67.41a 66.66a 64.78a 66.70a 68.78a 66.72a 69.45a 0.9 0.83

SN 32.89a 33.06a 32.76a 32.41a 34.33a 33.387a 31.48a 32.90a 33.23a 0.86 0.87

TGW (g) 48.06b 47.89b 53.20a 46.66c 49.21ab 51.20a 53.81a 49.71a 50.4a 0.85 0.93

GY (Kg/plot) 11.00b 11.39b 12.40a 10.11c 11.0b 11.88a 11.91a 11.59a 11.9a 0.78 0.86

NUE.NC (kghec−1) 50.71c 63.61b 71.36a – 53.54b 67.28a 69.86a 61.89a 63.56a 0.83 0.81

NUE.GY (mg1g −1 sample/ KgN) 3.24c 4.86b 5.73a – 3.50c 4.81ab 5.50a 4.61a 4.9a 0.9 0.88

Alphabets are indicating significance differences at P > 0.05 level. C895; Zhongmai 895, C58; Aikang 58 and C18; Zhoumai18. T, treatment; H, heading; F, flowering;
M.LGF, mid to late grain filling; GNDVI, green normalized difference vegetation index; NDRE, Normalized difference red-edge; RECI, red-edge chlorophyll index; NGRDI,
normalized green red difference index; TGW, thousand grain weight; SN, spike number per; GY, grain yield; NUE.GY and NC, water use efficiency calculated from grain
yield and nitrogen contents.

visible green band. This fractional information about the red
band could provide deep information about minor proportion of
yellowing in plants (Mutanga and Skidmore, 2004; Hatfield et al.,
2008). Therefore, NGDRI could be useful to detect greenness
and health of plants under normal growing condition. Whereas,
GNDVI derived from NIR and green band was highly correlated
(up to r = 0.70) with biomass, at heading to flowering stages
compared to mid to late grain filling stage, indicating that this
trait could predict the water status at pre-maturation stages
effectively. Moderate to strong correlations ranging from r = 0.33
to 0.82 of NDRE and RECI traits derived from NIR and red-
edge band with green biomass at particular stage and WUE were
also recorded efficient to detect variations among the genotypes
across the treatments (Figure 2 and Table 2). Red-edge band
has been reported to detect water stress severity because it could
cover wider range of chlorophyll level as compare to red band
(Sharma et al., 2015). Therefore, despite of similar trend in
correlation results, NDRE and RECI could be more reliable traits
compared to RNDVI and GNDVI to predict the biomass, WUE
and variations among the genotypes at mid to late grain filling
stage due to known advantage of red-edge band over red band
(Mutanga and Skidmore, 2004).

In N-supply experiment, moderate to strong correlations of
all multispectral traits with biomass, N-contents, NUE and GY

across the growth stages indicated that UAV-based phenotyping
can also be useful in selection of N-efficient genotypes and the
assessment of crop cultivation method. Despite the previous
finding that biomass varied greatly at early growth stages which
can mask the effect of N-supply (Haboudane et al., 2002), our
results had shown moderate to strong correlations ranging from
r = 0.27 to 0.84 and r = 0.27 to 0.97 between multispectral
traits and N-contents, respectively, at heading and flowering
stages. Moreover, Haboudane et al. (2002) had reported weak
capability of UAV-based spectral indices in assessing N-status
after heading because of structural constraints of canopy that
cause saturation in reflectance of bands (Haboudane et al., 2002).
But in our results, UAV-based multispectral traits showed high
ability to detect N-status and NUE at mid to late grain filling
stage with high r values [up to 0.97 (Figure 5)]. Interestingly,
RNDVI, GNDVI, NDRE, and RECI performed equally in
estimating N-contents and NUE at mid to late grain filling
stages. RNDVI and NDRE showed high correlations (up to 0.97)
with both NUE.NC and NUE.GY at mid to late grain filling
stage, because it has strong connection in detecting N-status
while reflectance of NIR band has been reported higher under
application N-fertilizer. Significant variations at (P < 0.05) among
the genotypes for N-contents and NUE were also successfully
assessed through variation in UAV-based multispectral traits
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FIGURE 7 | Seasonal fluctuation trend in multispectral traits and comparison of genotypes under N treatments. Error bars are showing standard deviation. *C895,
Zhongmai 895; C58, Aikang 58; C18, Zhoumai18.

effectively with high repeatability across the growth stages and
N treatments (Table 3). Whereas, similar correlation trends
among destructive measurements of N-content and multispectral
traits for NUE, TGW, and GY indicated that UAV based non-
destructive sensing could be a cost-effective replacement.

In conclusion, NGDRI was more water-sensitive under water
efficient conditions, while NDRE and RECI were drought
sensitive under water-deficient conditions. Whereas, RNDVI,
GNDVI, NDRE, and RECI showed equally better sensitivity
to assess NUE across the growth cycle. Especially, RNDVI
and NDRE were consistent in forecasting variations for both
NUE.NC and NUE.GY.

Significance of UAV-Based Prediction of
WUE and NUE for Genotypic Selection
Destructive assessment regarding efficiency of water and
N-fertilizer application for different genotypes and evaluation
of cultivation approaches have remained a bottleneck for
resourceful improvement of crop yield (Boschetti et al., 2014;
Zheng et al., 2018). It is due to laborious and error prone work
across the season in case large number of genotypes which
might mislead the agriculturist during selection. Previously, few
studies have been conducted in detecting water and nutrient
status of plant using non-destructive remote sensing from both

ground and aerial platforms (Haile et al., 2012; Li et al., 2018;
Zheng et al., 2018; Zhang and Zhou, 2019). But there is no
report on practical application of aerial platform to predict the
WUE and NUE for evaluating variations in genotypes under
different water and N-supply levels. This study had predicted
significant variations successfully among the genotypes for water
and N uptake efficiencies and their impact on grain yield through
UAV-based multispectral traits with high regression values of
R2 = 0.58 to 0.89 and R2 = 0.64 to 0.94, respectively, with low
root mean square error (Figures 3, 6). These results had proven
the usefulness of non-destructive aerial phenotyping compared
to ground-based assessments with high repeatability. Water and
N-fertilizer demand of different genotypes at particular growth
stages is varied. Therefore, prediction of slight fluctuation in
water and N-status and its impact on biomass development,
chlorophyll level through generating UAV-based multispectral
dataset could be helpful in accurate selection. In our results,
genotype Zhongmai 895 performed significantly better in WUE
and NUE for enhancement of GY at mid to late grain filling stages
as compared to other two genotypes across the treatments of both
experiments (Tables 2, 3). While at this stage, there was also high
level of multispectral traits for Zhongmai 895 which indicated
the usefulness of UAV-based phenotyping to predict WUE and
NUE (Figures 4, 7). Superiority of Zhongmai 895 for NUE can
also be validated by recently study Yang et al. (2020), which has
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FIGURE 8 | Comparison of genotypes for (A) WUE.GY, (B) WUE.BM, (C) GY under water treatments and (D) NUE.GY, (E) NUE.NC, (F) GY under N-supply
treatments. *C895, Zhongmai 895; C58, Aikang 58; C18, Zhoumai18.

reported seedling vigor of Zhongmai 895 cultivar under high N
condition. Therefore, these remotely sensed traits could be a rapid
and cost-effective replacement of traditional traits for precise
selection of genotypes.

Significance of UAV-Data for
Establishing Cultivation Strategy
Resourceful application of water and N-fertilizer is vital to limit
huge losses in important resources. For this, development of elite
cultivars and efficient supply of water and N-fertilizer could be
effective for required high yield from particular genotypes (Guo
et al., 2010). In china, availability of irrigation water is decreasing
(Zhang et al., 2007), while N resources are also predicted to
decrease in coming years (Chuan et al., 2016; Zhang et al., 2016).
Whereas, most of the cultivated lands in China is already been
reported highly nitrogenous (Chuan et al., 2016). Therefore,
appropriate application of water and N could help to cope
with these challenges. It is difficult to phenotype large sample
size through destructive measurement repeatedly under various
water and N-fertilizer regimes. A non-destructive approach in
assessing exact requirement for growth of particular genotypes
is important factor regarding potential achievement in crop
improvement. Our UAV-based results had shown that T1 and
T2 were resourceful for WUE and T2 for NUE compared to T3
(Figure 8). There was no significant difference between T2 and T3
in terms of both UAV and ground-based indicator of water and
N status as well as in WUE and NUE for GY. But genotypes had
shown significant differences in WUE and NUE under T3 in both

water and N-supply treatments. It means up-take efficiency of
water and N had increased up to T2 for significant enhancement
of GY, but T3 was not resourceful in both experiments. Zhongmai
895 was the most resource-efficient genotype across the water
and N-supply treatments (Figure 8 and Tables 2, 3). Our result
suggested that UAV-based multispectral data could be vital for
establishing cultivation strategies for crops.

CONCLUSION

In this study, we established that UAV-based remotely sensed
multispectral traits could predict the variations among the
genotypes for WUE, NUE and their impact on GY. We found
that NGDRI was an efficient multispectral trait to detect water
status under irrigated conditions, while NDRE and RECI under
drought stress. Whereas, RNDVI, GNDVI, NDRE, and RECI
were equally better to sense the crop growth in different irrigation
regimes in rapid manner. The RNDVI, GNDVI, NDRE, and
RECI were equally sensitive for NUE prediction. Especially,
RNDVI showed better prediction for NUE.NC, and NDRE was
constant in assessing both NUE.NC and NUE.GY. Our results
also suggested that T2 in irrigation (120 mm) and N-fertilization
(180 kg ha−1) trials was the most resource-efficient treatment for
all three genotypes, while Zhongmai 895 was elite in WUE and
NUE. In future, the inherent mechanism of crop water and N
uptake as well as crop morphological and structural properties,
coupled with UAV-based remote sensing, will be used to increase
the selection accuracy in large breeding programs.
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