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We hereby review the perception and responses to the stress hormone Abscisic acid
(ABA), along the trajectory of 500M years of plant evolution, whose understanding may
resolve how plants acquired this signaling pathway essential for the colonization of land.
ABA levels rise in response to abiotic stresses, coordinating physiological and metabolic
responses, helping plants survive stressful environments. In land plants, ABA signaling
cascade leads to growth arrest and large-scale changes in transcript levels, required for
coping with environmental stressors. This response is regulated by a PYRABACTIN
RESISTANCE 1-like (PYL)–PROTEIN PHOSPHATASE 2C (PP2C)–SNF1-RELATED
PROTEIN KINASE 2 (SnRK2) module, that initiates phosphor-activation of
transcription factors and ion channels. The enzymatic portions of this module
(phosphatase and kinase) are functionally conserved from streptophyte algae to
angiosperms, whereas the regulatory component –the PYL receptors, putatively
evolved in the common ancestor of Zygnematophyceae and embryophyte as a
constitutive, ABA-independent protein, further evolving into a ligand-activated
receptor at the embryophyta. This evolutionary process peaked with the appearance
of the strictly ABA-dependent subfamily III stress-triggered angiosperms' dimeric PYL
receptors. The emerging picture is that the ancestor of land plants and its predecessors
synthesized ABA, as its biosynthetic pathway is conserved between ancestral and
current day algae. Despite this ability, it was only the common ancestor of land plants
which acquired the hormonal-modulation of PYL activity by ABA. This raises several
questions regarding both ABA's function in ABA-non-responsive organisms, and the
evolutionary aspects of the ABA signal transduction pathway.

Keywords: abscisic acid, pyrabactin resistance 1 (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor
(RCAR), plant signaling, PP2C group A, SnRK2, plant evolution
INTRODUCTION

Understanding the evolution of Abscisic acid (ABA) signaling may resolve the puzzle of how plants
acquired a major stress signaling pathway that was essential for the colonization of land by ancestral
plants. Early land plants, are believed to have been derived from a single common aquatic algal ancestor
and had to cope with new challenges, unique to the terrestrial environment (see review by de Vries and
Archibald, 2018). Desiccation tolerance was a key adaptive trait for aquatic organisms transitioning to
terrestrial environment. This trait has been largely lost in vegetative tissues of trichophytes (see review by
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Cuming, 2019). Instead, angiosperm adaptation to land was
dependent on the ability to regulate the intake and loss of water
to the environment (see review by Anderegg, 2015). One major
mean by which angiosperms maintain their water balance is the
regulation of evapotranspiration via the stomata pores. A plant's
daily transpiration rhythm is regulated by many internal and
external factors, coordinating stomata aperture during its diurnal
cycle. The production of the phytohormone ABA in case of an
abiotic stress—overwrites transpiration rhythms and results in a
rapid closure of the stomata (see review by Brodribb and McAdam,
2017). In the absence of ABA, as in the case of auxotrophic ABA
mutants, the ability to close stomata in response to environmental
cues is impaired, and as a result, the ability to endure harmful
environments is compromised, ultimately deteriorating plant's
growth and development (Koornneef et al., 1982; Taylor et al.,
1988). Thus, ABA's regulation of land plant water balance is vital for
a sessile plant, whose surroundings are in constant change.

The hormone ABA acts through a conserved signal transduction
pathway. This pathway is comprised of a PYRABACTIN
RESISTANCE 1-Like (PYL)–PROTEIN PHOSPHATASE 2C
(PP2C) and SNF1-RELATED PROTEIN KINASE 2 (SnRK2).
The binding of ABA to a soluble PYL protein triggers a
conformational change that allows the receptors to bind and
inhibit the PP2C that normally represses ABA signaling (Melcher
et al., 2009; Miyazono et al., 2009; Nishimura et al., 2009; Park et al.,
2009; Yin et al., 2009; Melcher et al., 2010; Peterson et al., 2010).
This formation of PYL–ABA–PP2C complex, releases SnRK2 from
the otherwise inhibitory complex with PP2C, initiating
phosphorylation of transcription factors and ion channels,
involved in ABA output responses (Fujii et al., 2009; Umezawa
et al., 2009; see reviews by Hubbard et al., 2010;Weiner et al., 2010).
This review focuses on the physiological and biochemical
perception and responses to ABA, along the trajectory of five
hundred million years of plant evolution, from streptophyte algae
to angiosperms.
ABA “OUTPUT” RESPONSE IN ALGAE

The presence of ABA has been confirmed in many chlorophytes
and streptophyte algae species, yet the environment-induced
synthesis of ABA was demonstrated solely in few aquatic algae
species (Tietz and Kasprik, 1986; Hirsch et al., 1989; Hori et al.,
2014). ABA biosynthesis in the chlorophytes Draparnaldia
mutabilis and Dunahella parua is induced by salinity, whereas
it is seasonally accumulated in the streptophyte algae Chara
contraria (Sabbatini et al., 1987; Tietz et al., 1989; Hirsch et al.,
1989). Despite the evidences of ABA biosynthesis in these
aforementioned species, in the vast majority of explored algae,
no such significant cellular or physiological function was
documented (Hirsch et al., 1989; Tietz et al., 1989; Negin and
Moshelion, 2016). This is true even in cases where algae were
treated with high dosage of the phytohormone (Kobayashi et al.,
1997; Nagao et al., 2008; Sulochana and Arumugam, 2016).
Exceptions to note are the alterations of membrane properties
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of Nitella treated with ABA (Wanless et al., 1973; Ord et al.,
1977) and the ABA inhibition of Chara oospores germination
(Sederias and Colman, 2007). Despite these putative adaptive
responses to ABA, the effect on growth and other cellular
functions in these studies were triggered by the application of
high concentrations of ABA ranging from 40 to 500 mM, far from
endogenous physiological hormone levels (Ullrich and Kunz,
1984; Saradhi et al., 2000; Yoshida et al., 2003; Yoshida et al.,
2004). Thus, these extreme ABA concentrations, required to
elicit such responses, are prone to attribute to toxicity rather than
a putative activation of an ABA signaling cascade. Taken
together, little evidence manifests a clear physiological function
for ABA in chlorophyte and streptophyte algae, despite its
obvious presence of in both algae phyla.
ABA “OUTPUT” RESPONSES IN EARLY
DIVERGENT LAND PLANTS
(BRYOPHYTES, LYCOPHYTES, FERNS)

The presence of endogenous ABA, and the response to exogenous
ABA application, are well described in bryophytes, but less so in
lycophytes and ferns (see reviews by Hartung, 2010; Takezawa
et al., 2011; Brodribb and McAdam, 2017). In bryophytes, ectopic
ABA application and the genetic mimicking of ABA signaling
affects various developmental processes. In liverworts, exogenous
ABA inhibits gemma and thalli growth and the establishment and
maintenance of gemma dormancy of Marchantia polymorpha
(Tougane et al., 2010; Eklund et al., 2018). In mosses, ABA
elicits protonemal morphological changes. For example, in
Physcomitrella patens, ABA induces the formation of thick-
walled spherical “brood cell”, and it inhibits protonemal
differentiation into “leafy” gametophores (Takezawa et al., 2011).
The role of ABA in stress tolerance has also been demonstrated in
bryophytes. In M. polymorpha, the application of ABA improved
gemma survival rate following desiccation or freezing,
hypothetically resulting from an ABA-induced accumulation of
soluble sugars and intracellular rearrangement of vacuoles and
chloroplasts (Pence et al., 2005; Hatanaka and Sugawara, 2010;
Akter et al., 2014). In addition, the ABA-induced biosynthesis of
bisbibenzyls was hypothesized to improve UV irradiation
tolerance (Kageyama et al., 2015). Similarly, in a few moss
species (P. patens, Funaria hygrometrica, Atrichum undulatum
and Ditrichum cornubicum) the application of ABA had a positive
effect on tolerance to both desiccation and freezing (Takezawa
et al., 2011). This adaptation to stress was putatively attributed to
the accumulation of protective proteins such as the LATE
EMBRYOGENESIS ABUNDANT (LEA), and enzymes
associated with osmotic cellular adjustment (Khandelwal et al.,
2010; Shinde et al., 2012; Ghosh et al., 2016). Thus, a cellular
physiological response to ABA, associated with the adaptation to
abiotic stress is evidenced in the first plants habituating land.

The role of ABA in regulating stomata aperture, however,
remains ambiguous in earlier divergent plants. Stomata was an
“innovation” that facilitated plant terrestrial adaptation. It is
July 2020 | Volume 11 | Article 934
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generally present in most bryophyte plants except liverworts (see
review by Chater et al., 2017). It is thought that the major
function of bryophyte stomata was to allow spore capsule
desiccation, as the stomata-deficient PpSMF1 (SPEECHLESS,
MUTE and FAMA) mutant of P. patens retained water in its
sporangia (Chater et al., 2016). Neither ectopic ABA application,
nor the darkening of hornworts, triggered their stomata closure.
However, hornworts' stomata did respond to reduction in water
potential, emphasizing their potent responsiveness to
environmental cues (Pressel et al., 2018). The application of
100 µM of exogenous ABA did affect stomata aperture in both P.
patens and F. hygrometrica, however, when ABA signaling was
genetically blocked in P. patens, neither stomata aperture, nor
spore capsule dehydration phenotypes, were reported, suggesting
that the ectopically applied hormone levels might not mock on
endogenous ABA titrations (Chater et al., 2011; Shinozawa et al.,
2019). Taken together, further studies, involving genetic assays,
could better clarify the inductive role of ABA in regulating
stomata aperture in bryophytes.

In early vascular plants (lycophytes and ferns) there is an
active debate regarding the regulation of stomatal aperture by
ABA. Stomatal responses to ABA in these plants could be
measured only under specific environmental conditions,
suggesting a minor contribution of ABA to the regulation of
their aperture (Ruszala et al., 2011; Soni et al., 2012; Hõrak
et al., 2017). For example, Selaginella bryopteris stomata
displayed no response to ABA in non-stress conditions,
despite its response to ABA under the combination of high
temperatures (35 °C) and highly elevated vapor pressure
deficit (of 4.5kPa; Soni et al., 2012). A mild reduction in
stomata conductance in Athyrium fi l ix- femina and
Dryopteris filix-mas was recorded when treated with 10 mM
foliar ABA spraying, however, the authors reported that this
response was primarily dependent on cultivation methods
(Hõrak et al., 2017). Additional stomatal conductance
studies that were correlated with endogenous measurements
of ABA levels showed that leaf hydraulics was the
predominant factor that primarily regulated stomatal
aperture while neither endogenous, nor exogenous ABA,
triggered stomata closure in lycophytes and ferns (Brodribb
and McAdam, 2011; McAdam and Brodribb, 2012; McAdam
et al., 2016; Cardoso et al., 2019). Overall, due to the residual
effect of ABA on stomata closure in the aforementioned
studies, it seems that in bryophytes and early divergent
vascular plants (lycophytes and ferns), stomatal regulation is
primarily a hydraulics-driven process.
THE PP2C-SNRK2 SIGNALING MODULE
THROUGHOUT PLANT EVOLUTION

The module of the PP2C-SnRK2 phosphatase-kinase is highly
conserved throughout plant evolution, preceding the adoption
of a regulatory role for the ABA molecule (Tougane et al.,
Frontiers in Plant Science | www.frontiersin.org 3
2010; Chater et al., 2011; Hauser et al., 2011; Ruszala et al.,
2011; Komatsu et al., 2013; Lind et al., 2015; McAdam et al.,
2016; Shinozawa et al., 2019). The cellular signaling of ABA in
land plants initiates phosphorylation events mediated by a
conserved family of SnRK2 kinases. Vascular plant SnRK2s are
classified into three subclasses (Lind et al., 2015; McAdam
et al., 2016). Subclass III SnRK2s are pivotal for ABA signaling
in Arabidopsis, as in the absence of three such family
members, there was an absolute shutdown of ABA signaling
and response (Fujii and Zhu, 2009). The other SnRK2
subclasses play an important role in osmostress responses in
Arabidopsis (Fujii et al., 2011). Streptophyte algae and
bryophytes encode only subclass III SnRK2s, suggesting that
the latter might be the founding members of the family, while
the other two subclasses could have been a more recent
adaptation of vascular plants (Umezawa et al., 2010; Lind
et al., 2015).

An evolutionarily conserved function of subclass III SnRK2 in
ABA signaling from streptophyta through angiosperms was
demonstrated in multiple genetic studies (Chater et al., 2011;
Ruszala et al., 2011; Shinozawa et al., 2019). In the moss P. patens,
the deletion of PpSnRK2A/PpOST1 leads to a reduced stomatal
response to ectopic ABA, similar to a homologous single
Arabidopsis snrk2.6/ost1 mutant (Chater et al., 2011). P. patens
quadruple mutant (snrk2a/b/c/d) is ABA-insensitive, and it is
brood cell development-deficient, lacking both ABA-induced gene
expression and desiccation tolerance. Unfortunately, there was no
data available regarding the sporophyte ABA response of this
mutant, including its stomata response, nor its sporangium
dehydration. This strong P. patens insensitive phenotype was
similar to the Arabidopsis triple snrk2.2/2.3/2.6 mutant
(Shinozawa et al., 2019), displaying complete ABA insensitivity.
This conserved function of SnRK2 was further exemplified
by algae/angiosperm-moss cross-species complementation
(Shinozawa et al., 2019). The expression of either of
the Arabidopsis SnRK2.6 gene or the semi-terrestrial alga
Klebsormidium nitens KnOST1 gene complemented P. patens
snrk2 quadruple mutants (Shinozawa et al., 2019). The
expression of PpOST1 from P. patens or SmOST1 from the
lycophyte Selaginella moellendorffii in Arabidopsis snrk2.6/ost1
mutant partially rescued stomata ABA insensitivity phenotype
(Chater et al., 2011; Ruszala et al., 2011). Taken together, the
plant SnRK2s functional conservation likely preceded
land habituation.

Furthermore, the SnRK2 phosphorylation targets are also highly
conserved throughout plant evolution. The S-type anion channel
SLAC1 and ABRE/ABFs transcription factors are SnRK2 substrates
in Arabidopsis (Furihata et al., 2006; Fujii et al., 2007; Geiger et al.,
2009; Lee et al., 2009). SnRK2s from algae (K. nitens), liverworts (M.
polymorpha), moss (P. patens), lycophyte (S. moellendorffii) and fern
(Ceratopteris richardii) could activate Arabidopsis SLAC1 in
Xenopus laevis oocytes (Lind et al., 2015; McAdam et al., 2016).
However, these SnRK2s cannot activate their native SLACs,
suggesting that SnRK2-SLAC1 module for regulating stomata
aperture emerged after divergence of ferns and seed plants
July 2020 | Volume 11 | Article 934
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(Lind et al., 2015; McAdam et al., 2016). SnRK2 ortholog from K.
nitens, M. polymorpha and P. patens were capable of transducing
ABA-induced gene expression via bZIP transcription factor ABF2
in Arabidopsis protoplasts (Lind et al., 2015). For detailed ABRE/
ABFs evolution see Cuming (2019). In addition, PpSnRK2s from P.
patens and Arabidopsis SnRK2.6/OST1 phosphorylated in vitro the
same ABA-responsive phosphopeptides (Amagai et al., 2018). Thus,
not only is the kinase itself highly conserved, but also the cellular
targets of class III SnRK2 are highly conserved, both from algae
through angiosperms.

Both the positive and the negative regulatory proteins of the
SnRK2 kinase are, too, conserved throughout land plant evolution
(Lind et al., 2015; Saruhashi et al., 2015; Yasumura et al., 2015;
Stevenson et al., 2016; Lin et al., 2020; Takahashi et al., 2020). Post-
translational modifications and protein–protein interactions are the
two key regulation means of SnRK2 (Belin et al., 2006; Vlad et al.,
2009; Soon et al., 2012; Saruhashi et al., 2015; Stevenson et al., 2016;
Nguyen et al., 2019; Lin et al., 2020; Soma et al., 2020; Takahashi
et al., 2020). The activation of Arabidopsis SnRK2s requires
phosphorylation of key serine residues in kinase activation loop
(Ser171 and Ser175 for AtSnRK2.6/OST1; Vlad et al., 2010; Soon
et al., 2012). In the moss P. patens, the activation of SnRK2s is
mediated by an ABA Non-Responsive/ABA Responsive Kinase/
Constitutive Triple-Response-1-Like (ANR/ARK/CTR1L) protein
kinase, a member of B3 Raf-like kinases whose orthologues are
conserved in streptophyte algae, but considered lost in vascular
plants (Saruhashi et al., 2015; Yasumura et al., 2015; Stevenson et al.,
2016; Shinozawa et al., 2019). Recent studies indicated that B2, B3
and B4 groups, are also of the Raf-like kinases family, and are
essential for ABA-induced phosphorylation and activation of
SnRK2s in Arabidopsis (Lin et al., 2020; Takahashi et al., 2020).
Thus, this regulation by post-translational modification by Raf-like
kinases is too, likely conserved from the common ancestor of algae
to land plants.

Functional conservation is also the case for the negative PP2C
regulators of SnRK2. In Arabidopsis, PP2Cs interacts with
SnRK2s and inhibits the kinase activity as it dephosphorylates
key serine residues in the kinase activation loop, and physically
blocking the kinase catalytic site (Belin et al., 2006; Vlad et al.,
2009; Soon et al., 2012). In angiosperms, group A PP2C contains
multi-genes with redundant function (Leung et al., 1994; Meyer
et al., 1994; Leung et al., 1997; Rodriguez et al., 1998; Saez et al.,
2004; Schweighofer et al., 2004; Xue et al., 2008; Zhang et al.,
2018; Fujioka et al., 2019). High-order of loss-of-function
Arabidopsis mutant of PP2C displays an increase of ABA
sensitivity, and partially constitutive ABA response (Saez et al.,
2006; Rubio et al., 2009). Similarly, in the moss, two group A
PP2Cs are encoded by P. Patens genome, and the disruption of
PpABI1A gene results in up-regulation of ABA-induced gene
expression and enhanced freezing tolerance (Komatsu et al.,
2009). The double mutant ppabi1a/b plant shows constitutive
“brood cell” phenotype, a global activation of ABA-induced gene
expression, and an increase in general protein phosphorylation,
indicative of unchecked SnRK2 activity (Komatsu et al., 2013;
Amagai et al., 2018). Overexpression of MpABI1 in M.
Frontiers in Plant Science | www.frontiersin.org 4
polymorpha and P. patens resulted in an inhibition of ABA-
induced gene expression and reduction of sensitivity of ABA-
induced morphological changes (Tougane et al., 2010; Eklund
et al., 2018). Moreover, moss and liverwort PP2C phosphatases
inhibited SnRK2 activation of Arabidopsis SLAC1 expressed in
Xenopus oocyte (Lind et al., 2015). Albeit all genomes of
organisms from the green lineage (Chloroplastida) encode
group A PP2Cs (Hauser et al., 2011), little is known about the
biochemical interactions of these proteins with SnRK2s in algae.
Taken together, these data suggest that PP2C-SnRK2 regulation
module is conserved, possibly since the last common ancestor of
streptophytes. As aforementioned, since algae do not activate
signaling responses to ABA but they do actively transduce
downstream signaling components homologous to higher plants',
it is likely that the function of SnRK2, its regulatory components,
and its cellular targets, preceded that of ABA signaling.
THE EVOLUTION OF ABA RECEPTORS IN
LAND PLANTS

The regulatory unit controlling the aforementioned SnRK2-PP2C
module is the most recent evolutionarily among the apex of ABA-
signaling-transducing apparatuses. All land plants comprise ABA
receptors whose function is largely conserved (Park et al., 2009;
Ma et al., 2009; Gonzalez-Guzman et al., 2014; He et al., 2014; Pri-
Tal et al., 2017; Mega et al., 2019; Kai et al., 2019). Biochemically,
ABA is perceived by a family of Steroidogenic Acute Regulatory
Transfer (START)-domain protein receptor called PYRABACTIN
RESISTANCE 1/PYR1-LIKE/REGULATORY COMPONENTS
OF ABA RECEPTOR (PYR/PYL/RCAR) (Ma et al., 2009; Park
et al., 2009). Structure studies reveal a “gate-latch-lock”
mechanism that regulate receptor activity: ABA receptors have
an open ligand-binding pocket, flanked by twomobile b-loops: the
gate and latch. The binding of ABA in the pocket induces a closure
of the gate loop and forms a surface that enables the docking of the
PP2C co-receptor. A highly conserved tryptophan of PP2C inserts
into the “ABA pocket” to further stabilize the PYL-ABA-PP2C
ternary complex (Melcher et al., 2009; Miyazono et al., 2009; Yin
et al., 2009; Moreno-Alvero et al., 2017). This formation of the
ternary complex releases SnRK2 from PP2C inhibition as the PYL
and SnRK2 compete on the same PP2C interface (Soon
et al., 2012).

In angiosperms, PYL proteins are clustered into three
subfamilies, which differ in their affinity to ABA, and in their
oligomeric state, each comprised of multiple genes with a partially
redundant function. Subfamily III receptor forms a homodimer,
whereas subfamily I and II receptors are monomers (Miyazono
et al., 2009; Nishimura et al., 2009; Santiago et al., 2009; Szostkiewicz
et al., 2010; Hao et al., 2011; He et al., 2014). Mutations resulting in
monomer conformation increase the receptor's affinity to ABA and
to the PP2C (Dupeux et al., 2011; Hao et al., 2011). Monomeric
ABA receptors, in comparison to dimeric receptors, require lower
ABA concentration to elicit PP2C inhibition (Okamoto et al., 2013;
July 2020 | Volume 11 | Article 93
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Gonzalez-Guzman et al., 2014; Pri-Tal et al., 2017; Mega et al.,
2019). Based on in vitro data, some monomeric receptors have
“basal activity”, thereby able to interact and inhibit PP2C activity in
the absence of ABA (Hao et al., 2011; Mosquna et al., 2011; Sun
et al., 2019). In contrast, dimeric receptors have negligible basal
activity, as ABA is required for dimer dissociation (Dupeux et al.,
2011; Hao et al., 2011).

Bryophyte receptors are clustered distinctly from vascular
plants according to phylogenetic analyses (Weng et al., 2016;
Sun et al., 2019). Among vascular plant receptors, subfamily I
is phylogenetically closer to that of bryophytes, and subfamily
III likely diverged later, as it is unique to angiosperm (Hauser
et al., 2011; Weng et al., 2016; Sun et al., 2019). It has been
shown that land plant PYL receptors have evolutionarily
conserved function (Bowman et al., 2017; Jahan et al., 2019;
Shinozawa et al., 2019; Sun et al., 2019). In liverworts, single
receptor MpPYL1 knock-outM. polymorpha mutant abolished
ABA-induced growth inhibition and gene expression (Jahan
et al., 2019). The conserved function of MpPYL1 was further
confirmed by ABA binding ability, receptor-mediated PP2C
inhibition, the activation of ABA-induced gene expression, and
the cross-species complementation of Arabidopsis ABA-related
mutants compromise in either of biosynthetic-pathways or
PYL genes (Bowman et al., 2017; Jahan et al., 2019; Sun
et al., 2019). Similarly, ABA receptors from the moss P.
Patens and the lycophyte S. moellendorffii displayed both
PP2C inhibition and activation of ABA-induced gene
expression (Shinozawa et al., 2019; Sun et al., 2019). As the
essence of the function of the receptor is the binding to its
target, the PP2C interface, the conservation of these targets
might themselves have dictated receptor functional
conservation, as the SnRK2 and the receptor compete on the
very same interface in PP2C.
THE ALGAL ORIGIN OF ABA RECEPTORS

The majority of algae genomes do not encode PYL-like
proteins, but few species comprise PYL-like proteins, whose
conserved basal, ABA-independent PP2C inhibition activity,
suggests that the regulation of PP2C activity might be the
ancestral function of the PYL proteins (Sun et al., 2019).
Recent genomic and transcriptomic studies demonstrated
that some Zygnematophyceae algae genome encode PYL
homologous proteins (de Vries et al., 2018; Cheng et al.,
2019). Protein sequence analysis of these Zygnematophyceae
PYLs revealed amino acid differences in ABA-binding
residues, otherwise conserved in bona fide ABA receptors
(Sun et al., 2019). Biochemical and genetic complementation
assays, confirmed that Zygnema circumcarinatum PYL-like
protein (ZcPYL8) can elicit ABA signaling in Arabidopsis as it
possesses the ability to inhibit PP2C. Further analysis
demonstrated that this protein has basal, ABA-independent
PP2C inhibition activity, and it could not bind ABA (Sun
et al., 2019). Thus, the analysis of the algal PYL indicate that
Frontiers in Plant Science | www.frontiersin.org 5
ABA hormonal modulation via ligand activation was acquired
after the divergence of the ancestor of streptophyte algae from
the common ancestor of land plants (Sun et al., 2019).

Studies describe two intertwined trends in the evolutionof the
ABA receptors: the rise in gene number due to the increase in
genetic complexity; and the reduction in receptor ABA-
independent basal activity (Sun et al., 2019). We hereby focus
on the reduction in receptor basal activity as former reviews by
Umezawa et al. (2010) andHauser et al. (2011) explored the topic
of the increase in genetic complexity. The analysis of ABA-
independent receptor inhibition of PP2C by PYLs encoded
by early divergent plants, suggests a reduction in receptor
ABA-independent, constitutive basal activity, in favor of ABA-
dependent activity. For example, basal activity ofM. polymorpha
MpPYL1was around 50% phosphatase inhibition in the absence
of ABA. In comparison, three out of four receptors of S.
moellendorffii had only 15–30% such basal activity, while the
fourth SmPYL2was fullyABA-dependent (Sun et al., 2019). This
evolutionary process peaked with the appearance of the strictly
ABA-dependent subfamily III dimeric receptors, which are
limited to later divergent angiosperms. Lower basal activity
provides a broader range of response, and so is the contrary:
highbasal activitymasks thefine-tunedABA-triggered response.
The reduction of ABA-independent basal constitutive activity,
alongside the appearance of the dimeric receptors that dominate
the response in angiosperms, suggests that a dampening of the
basal activity of the receptorswas adriving force for the evolution
ofABAresponsiveness in landplantPYLs (Sunetal., 2019).Thus,
in angiosperms, dimeric PYL receptors have evolved, allowing
both “finer-tuning” response to variable levels of ABA, and
dominating the adaptive stress response of ABA (Park et al.,
2009;Okamotoet al., 2013;Pri-Tal et al., 2017;Vaidya et al., 2017;
Vaidya et al., 2019).
CONCLUSIONS AND OPEN QUESTIONS:
THE EVOLUTIONARY COURSE OF ABA
SIGNALING MODULE

The collective data from recent years allow us to draw a putative
picture of plant ABA signaling evolution (Figure 1). It is likely that
the common ancestor of Zygnematophyceae and embryophytes
possessed a PP2C-SnRK2module that was regulated by a PYL-like
protein (also reviewed by Fürst-Jansen et al., 2020). It is still
unknown how these organisms regulated the activity of the PYL-
like proteins, whether it was by transcriptional, translational or
post-translational modifications, or possibly, by allosteric
modulation of a yet unidentified hypothetical small molecule.
The origin of the PYL proteins is also currently unknown,
however, one hypothesis suggests that this ancestral START
domain protein was obtained from soil bacteria via horizontal
gene transfer (Cheng et al., 2019).

The ancestor of land plants and his predecessors synthesized
ABA, as its biosynthetic pathway is conserved between
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ancestral and current algae (Hauser et al., 2011; de Vries et al.,
2018). Despite this ability to produce ABA, it was only the
common ancestor of land plants whom acquired the
hormonally modulation of PYL activity by ABA (Sun et al.,
2019). This raises several questions regarding ABA's function in
ABA-non-responsive organisms, such as modern day algae, and
regarding evolutionary aspects of the ABA signal transduction
pathway, such as what made ABA in particular a successful
stress transducer?
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FIGURE 1 | The emerging evolutionary scenario of ABA signaling as described in this review. ABA biosynthesis and PP2C-SnRK2 signaling modules are present in
the streptophyte algae (e.g. Klebsormidiophyceae). A PYL protein with only basal, ABA-independent, PP2C-inhibition activity (in light brown) evolved in the common
ancestor of Zygnematophyceae and land plants. Along the course of evolution, the PYL protein of the last common ancestor of land plants (in yellow) gained the
ABA-dependent activity, thus recruited ABA into the preexisting signaling cascade. In angiosperms, the appearance of a new subfamily of dimeric PYLs (in red)
added another layer of regulation, facilitating ABA-mediated fine-tuning of abiotic stress signaling in plants. ABA molecule is presented as a Van der Waals spheres
model. The model was generated with Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
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