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The phytohormone Abscisic acid (ABA) regulates plant growth, development, and
responses to abiotic stresses, including senescence, seed germination, cold stress and
drought. Several kinds of researches indicate that exogenous ABA can enhance
artemisinin content in A. annua. Some transcription factors related to ABA signaling are
identified to increase artemisinin accumulation through activating the artemisinin synthase
genes. However, no prior study on ABA transporter has been performed in A. annua.
Here, we identified a pleiotropic drug resistance (PDR) transporter gene AaPDR4/
AaABCG40 from A. annua. AaABCG40 was expressed mainly in roots, leaves, buds,
and trichomes. GUS activity is primarily observed in roots and the vascular tissues of
young leaves in proAaABCG40: GUS transgenic A. annua plants. When AaABCG40 was
transferred into yeast AD12345678, yeasts expressing AaABCG40 accumulated more
ABA than the control. The AaABCG40 overexpressing plants showed higher artemisinin
content and stronger drought tolerance. Besides, the expression of CYP71AV1 in OE-
AaABCG40 plants showed more sensitivity to exogenous ABA than that in both wild-type
and iAaABCG40 plants. According to these results, they strongly suggest that
AaABCG40 is involved in ABA transport in A. annua.

Keywords: Artemisia annua, artemisinin, pleiotropic drug resistance (PDR) transporter, drought tolerance,
abscisic acid
INTRODUCTION

Artemisinin, isolated from the traditional Chinese medicine A. annua, is extensively used for the
treatment of malaria (Weathers et al., 2006). Artemisinin Combination Therapies (ACTs) are
presently recommended by WHO (World Health Organization) as the preferred drug to fight the
malaria (World Health Organization, 2017). Considerable effort has been expended to determine
the artemisinin biosynthetic pathway (Figure S1). The mevalonate (MVA) pathway and the
methylerythritol phosphate (MEP) pathway produce the precursors isopentenyl diphosphate
(IPP) and its isomer dimethylallyl diphosphate (DMAPP) (Vranová et al., 2013). Farnesyl
diphosphate synthase (FPS) catalyzes IPP and DMAPP to synthesize farnesyl diphosphate (FPP)
(Schramek et al., 2010). After that, amorpha-4, 11-diene synthase (ADS) catalyzes the cyclization
.org June 2020 | Volume 11 | Article 9501
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reaction using FPP as the substrate to synthesize amorpha-4, 11-
diene (Bouwmeester et al., 1999; Mercke et al., 2000). Then
amorpha-4, 11-diene is oxidized to artemisinic alcohol, and
further catalyzed into artemisinic aldehyde by the cytochrome
P450 monooxygenase (CYP71AV1) (Ro et al., 2006; Teoh et al.,
2006). Artemisinic aldehyde D11 (13) reductase (DBR2)
catalyzes artemisinic aldehyde to form dihydroartemisinic
aldehyde (Zhang et al., 2008). Then dihydroartemisinic
aldehyde is converted into the direct precursor of artemisinin,
dihydroartemisinic acid (DHAA), catalyzed by aldehyde
dehydrogenase (ALDH1) (Teoh et al., 2009). Subsequently,
artemisinin is synthesized via a nonenzymatic reaction (Brown
and Sy, 2004). Alternatively, CYP71AV1 and ALDH1 catalyze
the artemisinic aldehyde to form artemisinic acid (Ro et al., 2006;
Teoh et al., 2009). Artemisinic acid synthesized arteannuin B via
a nonenzymatic photo-oxidized reaction (Brown and Sy, 2007).
In addition, artemisinin biosynthesis occurs in the glandular
trichomes of A. annua, containing two stalk, two basal, and three
pairs of secretory cells (Duke and Paul, 1993; Olsson et al., 2009).

The limited supply of artemisinin which is due to its low
content (0.1%-1.0% dry weight) in A. annua has urged its
production improvement through developing a new kind of A.
annua plant with higher content of artemisinin (Tang et al.,
2014). It is well-known that the artemisinin content is enhanced
by the treatment of exogenous ABA (Abscisic acid) in A. annua
(Jing et al., 2009). The phytohormone ABA is a phytohormone
with the sesquiterpene structure, that plays important roles in
several biological processes, such as senescence, seed
germination, and root elongation, as well as responses to cold
stress, drought and salt (Finkelstein et al., 2002; Zhu, 2002; De
Smet et al., 2006; Bi et al., 2017; Sun et al., 2018). More studies
showed that ABA was mainly synthesized in leaves (Hartung
et al., 2002). McAdam et al. propose that the decline in leaf water
status causes ABA biosynthesis, that regulates the stomatal
closure. Then ABA is transported from the leaves to the roots
to promote root growth (McAdam et al., 2016a; McAdam et al.,
2016b). The biosynthesis of ABA was also autonomously
occurred in guard cells and triggered stomatal closure (Endo
et al., 2008; Bauer et al., 2013). In the past several decades,
research on ABA has focused on the mechanism of ABA
regulating artemisinin biosynthesis in A. annua (Zhang et al.,
2013; Zhang et al., 2015; Zhong et al., 2018). Several studies
indicated that ABA transporter is crucial for the ABA function
(Taylor et al., 2000; Boursiac et al., 2013; Zhang et al., 2014).
However, the molecular basis of ABA transport is currently
unknown in A. annua.

Several ABA transporters in plants have been recently reported,
some of which belong to ATP-binding-cassette (ABC) transporter
family. ABC transporters are one of the biggest protein families in
plants, which act as ATP-driven transporters for a wide range of
substrates, including terpenoids, lipids, vitamins, organic acids, and
ions (Theodoulou, 2000; Lee et al., 2005; Sugiyama et al., 2006; Kang
et al., 2010; Fu et al., 2017). In plants, ABC transporters are divided
into eight subfamilies (Verrier et al., 2008). In particular, the
pleiotropic drug resistance (PDR) transporters are the essential
branch of the ABCG subfamily (Rea, 2007). In Arabidopsis,
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AtPDR12/AtABCG40, a member of PDR subfamily of ABC
transporters, mediated cellular ABA uptake and involved in the
detoxification of Pb2+ (Lee et al., 2005; Kang et al., 2010).
Subsequently, AtABCG25 was isolated from Arabidopsis and
encoded an ABCG subfamily transporter. These results suggested
that AtABCG25 functioned as an exporter of ABA and also
controlled the intercellular ABA signaling in Arabidopsis
(Kuromori et al., 2010). AtABCG22, an ABCG transporter closely
related to AtABCG25, was identified to be associated with stomatal
regulation in Arabidopsis and considered as a candidate ABA
transporter, the functions of which have not been demonstrated
in the ABA signaling and biosynthesis pathways (Kuromori et al.,
2011). In the process of ABA signaling, AtABCG25 acts as a
mediator in exporting ABA from vascular tissues, while
AtPDR12/AtABCG40 plays a role in importing ABA into guard
cells (Kang et al., 2010; Kuromori et al., 2010). Simultaneously,
AtDTX50 encoded a Multidrug and Toxic Compound Extrusion
(MATE) protein, which was identified and found to be expressed in
both guard cells and vascular tissues of Arabidopsis thaliana. When
AtDTX50 was expressed in both Escherichia coli and Xenopus
oocyte, it functioned as an ABA efflux transporter (Zhang et al.,
2014). In addition, the function of an NRT1.2 in the nitrate
transporter (AIT1) as a regulator is to control the ABA pool size
at the primary site of ABA synthesis (Kanno et al., 2012). Here, we
report that a PDR transporter AaPDR4/AaABCG40 was cloned
from A. annua. AaABCG40 was involved in ABA transport.
Overexpressing AaABCG40 could enhance artemisinin content
and drought tolerance.
EXPERIMENTAL PROCEDURES

Plant Materials
A. annua seeds (Huhao 1) obtained from Chongqing province,
were developed by our group in Shanghai. Plants were grown
under a 16/8 h light/dark photoperiod at 25°C in the greenhouse.
Tobacco (Nicotiana benthamiana) was grown under the same
conditions as A. annua (Shen et al., 2016).

Isolation and Characterization of
AaABCG40
ABC transporter proteins were identified by using the HMM
model (PF00005.27) from Pfam (http://pfam.xfam.org/) for
searching against A. annua protein databases and reduced
sequence redundancy by CD-HIT (Shen et al., 2018). A. annua
ABC transporters were analyzed using the Conserved Domain
Database (CDD) (Çakır and Kılıçkaya, 2013). The phylogenetic
tree analysis was performed using MEGA7 via the neighbor-
joining method, and the bootstrap analysis was performed using
1000 replicates (Kumar et al., 2016). The ABC transporter
protein sequences from A. annua were aligned with ClustalX.
The Heatmap was generated using the MultiExperiment Viewer
(MeV). The full-length of AaABCG40 sequence was predicted
from the A. annua genome database. 500 ng total RNA isolated
from the leaves of A. annua was used to synthesize cDNA, and
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the full-length of AaABCG40 was amplified using the specific
primers (Table S1).

Real-Time Quantitative PCR
To check the expression level of the putative genes, total RNA
was extracted using the RNeasy Kit (Qiagen, Germany). Fresh
leaves, roots, and aerial tissues of 5-month-old A. annua were
collected at various developmental stages and grounded to
powder in liquid nitrogen with mortar and pestle (Fu et al.,
2017). Before cDNA synthesis, DNase (DNase I Kit, Takara,
Japan) treatment was applied to digest the genomic DNA.
Subsequently, cDNA was reverse transcribed using a reverse
transcription kit (Promega, USA). RT-qPCR was carried out
using the Roche Lightcycler ® 96 (Roche, Mannheim, Germany)
with Fast Start Universal SYBR Green Master Mix (Roche
Diagnostics, Germany) as described previously (He et al.,
2017). qRT-PCR was performed in three independent
experimental replicates. Calculation of the relative expression
level was performed using the 2-DDct method (Livak and
Schmittgen, 2001). Table S1 summarizes the primers.

Construction and Transformation of A.
annua
To construct the RNAi lines, the 300 bp non-conservative
domain coding sequence of AaABCG40 cDNA was cloned in
pENTR gateway cloning vector and further inserted into
pHELLSGATE12 via LR recombination reaction (Invitrogen,
Carlsbad, CA, USA). Alternatively, the AaABCG40 open
reading frame was inserted into pHB-GFP overexpression
vector. Both overexpressed and knocked down vectors were
transformed into A. annua using Agrobacterium-mediated
transformation (Agrobacterium tumefaciens strain EHA105).
Empty pHB-GFP and pHELLSGATE12 were used as negative
controls. After 3-4 months the transgenic lines were shifted to
pots and transferred to the greenhouse.

Subcellular Localization of AaABCG40
The recombinant plasmid (pHB-AaABCG40-GFP) was
transferred into A. tumefaciens strain GV3101 for Nicotiana
benthamiana leaves transient expression (Voinnet et al., 2003).
The fusion protein AaABCG40-GFP and PIP1-mCherry protein
locate at the plasma membrane were injected into tobacco leaf
together to confirm the localization of AaABCG40 (Siefritz et al.,
2002). After 2-3 days, the GFP fluorescence could be observed
using Leica TCS SP5-II confocal laser microscopy (Leica,
Wetzlar, Germany).

Molecular Cloning of AaABCG40 Promoter
and Promoter-GUS Fusions in Transgenic
A. annua
The promoter ofAaABCG40was predicted fromA. annua genomic
databases (Shen et al., 2018). The promoter region of AaABCG40
was amplified with AaABCG40-specific primers using the genomic
DNA of the A. annua leaves as the template (Table S1). The
promoter region was amplified containing PstI and BamHI
restriction sites and inserted into pCAMBIA1391Z vector.
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Subsequently, the recombinant plasmid (pCAMBIA1391Z-
proAaABCG40-GUS) was transferred into A. tumefaciens strain
EHA105 for the plant transformation. All the primers mentioned in
this experiment are listed in Table S1. Histochemical staining for
GUS activity in transgenic plants was performed according to
previous protocol (Jefferson, 1987).

Artemisinin Content Analysis by HPLC-
ELSD
To measure the artemisinin content of both overexpressed and
RNAi line, fresh leaves were collected and stored at 45°C for 48 h,
dried leaves were powdered, and 0.1 g/sample was extracted
twice with 1 ml methanol and disrupted by an ultrasonic
processor (Shanghai Zhisun Instrument Co. Ltd model JYD-
650) at 40°C and 55 Hz for 30 min. Centrifuging at 12,000 rpm
for 10 min, the supernatant was collected and moved to a new
2 ml tube. The above steps were carried out one more time to
maximize the total extraction. The samples were then passed
through a nitrocellulose 0.25 mm pore size Sartorious ®

membrane. The samples were then injected into a Waters
Alliance 2695 HPLC system coupled with a Waters 2420 ELSD
detector (Milford, MA, USA) using pure artemisinin as standard
(sigma). The HPLC condition was as described previously (Chen
et al., 2012). Three biological repeats were applied for
each sample.

Measurement of ABA Concentration
The ABA concentration was measured using a Phytodetek ABA
enzyme immunoassay test kit (Elisa, Agdia, Elkhart, USA). Fresh
leaves were ground into powder in liquid nitrogen. Then 100 mg
powder of each sample was extracted with 8 ml solution (80%
methanol, 100 mg/L butylated hydroxytoluene, and 0.5 g/L citric
acid monohydrate), and stirred overnight at 4°C in the dark. The
culture was centrifuged at 12,000 rpm for 10 min at 4°C.
Subsequently, the supernatant was collected in a new tube and
dried. The residue was dissolved in 100 ml methanol and 900 ml
of TBS buffer (50 mM Tris, 0.1 mM MgCl2·6H2O, 0.15 M NaCl,
pH 7.8) and analyzed as described previously (Zhang
et al., 2014).

Functional Analysis of AaABCG40 in Yeast
Cells
The CDS of AaABCG40 was inserted into the SpelI and PstI sites
of pDR196. AtPDR12 was cloned and inserted into the SpelI and
PstI sites of pDR196 vector as the positive control. The
recombinant plasmids (pDR196-AaABCG40 and pDR196-
AtPDR12) were respectively introduced into the strain
AD12345678 using the lithium acetate method. The yeast
transformant was incubated in 50 ml Synthetic Dextrose (SD)
medium (-uracil) at 29°C with shaking at 180 rpm until OD600

reached at 1.0, subsequently suspended using 50 ml half-strength
SD medium (-uracil) containing 50 mM ABA (Sigma-Aldrich).
The cells were cultivated with shaking at 180 rpm at 29°C and
collected by centrifuging at the indicated times, respectively. The
cells were washed twice using the sterilized water, and followed
by disrupted in methanol for 15 min at 30 Hz using acid-washed
June 2020 | Volume 11 | Article 950
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glass beads (Yu and De Luca, 2013). The supernatants were
collected and filtered for ABA contents analysis. Three biological
repeats were applied for each sample.

Abscisic Acid Treatment and Drought
Treatment
For hormone treatments, 100 mM ABA was used, whereas water
with 1% of ethanol was used as a mock treatment. The cutting
seedlings of OE-AaABCG40 transgenic plants, iAaABCG40
transgenic plants, and wild-type A. annua plants were sprayed
with 100 ml ABA (100 mM), respectively, followed by sampling at
0, 1, 3, 6, 9, and 12 h for RNA extraction to analyze the gene
expression. Two-month-old cutting seedlings of OE-AaABCG40
transgenic plants, iAaABCG40 transgenic plants, and wild-type
A. annua plants were cultivated in pots and watered well in the
growth chamber under a 16-h light/8-h dark cycle at 25°C for a
week. Then the water supply was absolutely stopped. For drought
treatment, water was withheld for a period of 14 days. After 14
days, the condition of all the plants was observed and recorded.
The water loss was performed according to previous study
(Zhang et al., 2014).
RESULTS

Isolation and Characterization
of AaABCG40
ABA treatment enhanced the artemisinin content through
increasing the expression of artemisinin biosynthetic genes
(Jing et al., 2009). In Arabidopsis, ABA transporter AtPDR12,
belonging to PDR subfamily, was strongly expressed in root
(Kang et al., 2010). Therefore, we want to clone and identify ABA
transporter. We identified 93 ABC transporter proteins from A.
annua by HMM research using Pfam mold (PF00005.27). Then
these sequences of ABC proteins were analyzed using the
Conserved Domain Database of NCBI. Identified ABC
transports were aligned using ClustalW program, and the
phylogenetic analysis was generated to classify them into
different subfamilies. Eight PDR transporters were screened
from A. annua (Figure S2). The Heatmap analysis showed
that a PDR transporter gene (Aannua00284S063360) was
predominately expressed in root (Figure S3). Therefore, this
PDR transporter was further examined as the candidate
transporter, that might be involved in ABA transport. The full-
length cDNA of Aannua00284S063360 was cloned and assigned
as AaPDR4/AaABCG40. AaABCG40 is 4299 bp and encodes a
protein of 1432 amino acids. The phylogenetic tree analysis with
AaABCG40 and other PDR transporters, including Arabidopsis
PDR transporters, AaPDR3, NpPDR1, NtPDR1, and SpTUR2
was performed, showing that AaABCG40 was similar to that of
PDR proteins (AtPDR12, AaPDR3, NpPDR1, NtPDR1, and
SpTUR2) involved in terpene transport (Van Den Brûle et al.,
2002; Stukkens et al., 2005; Kang et al., 2010; Crouzet et al., 2013;
Fu et al., 2017) (Figure 1A). AaABCG40 belongs to the full-
length size PDR subfamily and contains two nucleotide-binding
domains (NBD) and two transmembrane domains (TMD)
Frontiers in Plant Science | www.frontiersin.org 4
(Figure 1B). Compared to the conserved domain of known
PDR transporters involved in terpene transport, it exhibited
the high conservation in plants (Figure 1C).

Expression Patterns of AaABCG40 Gene in
A. annua
To analyze the expression pattern of AaABCG40, the different
tissues were collected for RNA extraction from A. annua. RT-
qPCR results showed that AaABCG40 highly expressed in both
trichomes and roots, and poorly in old leaves (Figure 1D).
Subsequently, the AaABCG40 expression patterns in leaves at
different developmental stages were analyzed. The highest
expression level in the youngest leaf (leaf 0) was observed,
following a rapid reduction with the leaves aging (Figure 1E).

To further analyze the expression pattern of AaABCG40 in A.
annua, the predicted promoter sequence from the genome database
was cloned and inserted into the vector pCAMBIA1391Z carrying
GUS reporter gene. The recombinant plasmid was further
introduced into A. annua plants. The GUS staining was mainly
active in the vascular tissues of leaves and roots in transgenic plants,
following with high expression in trichomes (Figure 2). Similarly,
GUS staining was primarily restricted to the hypocotyls, roots, and
vascular veins of leaves in the pAtABCG25-GUS transgenic plants
(Kuromori et al., 2010). It was also observed that the GUS signals of
the pAtABCG40-GUS transgenic plants was predominantly active in
roots and the leaves of young plantlets (Kang et al., 2010).

AaABCG40 Was a Plasma Membrane-
Localized Protein
To determine the subcellular localization of AaABCG40 protein,
we performed a construct that produced the green fluorescent
protein (GFP) fused to the C-terminal domain of AaABCG40
under control of the CaMV35S promoter. Subsequently, the
AaABCG40-GFP recombinant plasmid was transiently co-
expressed in tobacco leaves together with the reported plasma
membrane marker PIP1 (Siefritz et al., 2002). Subcellular
localization of the AaABCG40-GFP fusion protein was
observed in plasma membrane with PIP1-mCherry (Figure 3).
The results showed that AaABCG40 was a plasma membrane-
localized protein, implying that AaABCG40 functioned as a
transport through the cellular membrane.

Overexpression of AaABCG40 Increases
Artemisinin Biosynthesis
To further explore the function of AaABCG40, 35S::AaABCG40
transgenic A. annua lines were generated. In the AaABCG40-
overexpressing transgenic plants, the transcript levels of
AaABCG40 were markedly increased to 2.6-4.7 folds compared
with the WT (Figure 4A). Therefore, we selected three
independent lines for further analysis. The artemisinin content
was measured from three independent transgenic plants by
HPLC. According to our data, 35S:: AaABCG40 transgenic A.
annua lines tested produced about 1.54-2.03-fold artemisinin
content than the control (Figure 4B). RT-qPCR results showed
that the expression of the artemisinin biosynthetic enzyme genes
ADS, CYP71AV1, DBR2, and ALDH1 was increased to 2.3-2.5-,
June 2020 | Volume 11 | Article 950
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2.8-4.6-, 1.9-2.9-, and 2.2-3.5-fold in OE-AaABCG40-2, 11, 26
transgenic plants, respectively (Figure 4C).

To further analyze the function of AaABCG40, we
downregulated the AaABCG40 expression in A. annua.
Investigation of AaABCG40 transcript levels by RT-qPCR
showed that the AaABCG40 expression was significantly
decreased in AaABCG40-RNAi lines. Three independent
transgenic lines (iAaABCG40-12, 13, 23) exhibiting a 54%-68%
reduction of AaABCG40 transcript levels were chosen for the
further experiments (Figure 4D). In order to analyze whether
other ABCG genes are affected or not, the expression levels of
ABCG transporter genes from A. annua, which have high
homology with AaABCG40, were analyzed by qRT-PCR. These
results showed that the expression of ABCG subfamily genes of
the transgenic plants had no significant difference with those of
both wild type and empty vector plants (Figure S4). The content
of artemisinin was slightly decreased, and the lowest artemisinin
content was merely decreased by 17.4% of the control (Figure 4E).
RT-qPCR results showed the transcript levels of CYP71AV1 and
DBR2 were generally reduced to 44%-80% and 76%-77% of the
control, while the transcript levels of ADS and ALDH1 were not
significantly downregulated (Figure 4F). Taken together, these data
demonstrated that the change of the substrate content transported
Frontiers in Plant Science | www.frontiersin.org 5
by AaABCG40 enhanced the artemisinin accumulation through
activating the expression of the artemisinin synthase genes in
A. annua.

AaABCG40 Was an ABA Influx in Yeast
Strain AD1-8
In higher plants, ABA is synthesized in leaves, and
accumulated in guard cells and vascular tissues, which is
then transported to other tissues (Cheng et al., 2002; Koiwai
et al., 2004; Endo et al., 2008). In Arabidopsis, AtABCG40/
AtPDR12 localized at plasma membrane was identified to
function as ABA transporter (Kang et al., 2010). AaABCG40
cloned from A. annua had the closest evolutionary
relationship to AtPDR12, and also the similar expression
pattern with AtPDR12, which suggested that AaABCG40
might have a similar function in A. annua. Besides, ABA
treatment enhanced the artemisinin accumulation through
activating the expression of the synthase genes in artemisinin
biosynthesis (Jing et al., 2009). Therefore, we expressed
AaABCG40 cDNA in a heterologous system, the yeast
mutant strain AD12345678 (Decottignies et al., 1998). The
recombinant plasmid (pDR196-AtPDR12) was introduced
into the strain AD12345678 as the positive control. The
A
B

C

D
E

FIGURE 1 | Sequence analysis of AaABCG40. (A) Phylogenetic analysis of AaABCG40 from A. annua and some known PDR transporters from Arabidopsis, A.
annua AaPDR3, N. plumbaginifolia NpPDR1, N. tabacum NtPDR1, and S. polyrrhiza SpTUR2. The tree presented here is a neighbor-joining tree based on amino
acid sequence alignment. (B) The structure of AaABCG40 was predicted by scanning the deduced amino acid sequence. NBD and TMD indicate the predicted
location of NBDs and TMDs, respectively. (C) Multiple alignment of the conserved domain of known PDR transporters involved in terpene transport has the high
conservation in plants. The Walker A, Walker B and ABC signature motifs are shown with shading. The identical amino acid residues in are marked by asterisks.
(D) Relative expression of AaABCG40 in root, stem, old leaf, young leaf, bud, flower, shoot and trichome. (E) Relative expression of AaABCG40 in leaves of different
developmental ages of A. annua. ACTIN was used as internal control. The error bars represent the means ± SD (standard deviation) from three biological replicates.
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yeas t ce l l s o f AaABCG40 t rans formant , AtPDR12
transformant and the control (transformed with the empty
vector pDR196) were incubated in half-strength SD medium
containing 50 mM ABA, respectively, and the intracellular
contents were determined. Yeast-expressing AaABCG40
exhibited higher ABA content, with 1.7-4.8 folds of that
detected in the control at the same time point (Figure 5).
And the positive control (AtPDR12 transformant) also
accumulated more ABA than that of empty vector control
(Figure 5). The yeast cells expressing AaABCG40 showed
more efficiency in ABA uptake and took up ABA faster than
Frontiers in Plant Science | www.frontiersin.org 6
the control. These results indicate that AaABCG40 was an
ABA transporter in yeast.

Overexpression of AaABCG40 and Its
Effects on ABA Regulating the Artemisinin
Biosynthesis
In A. annua, the artemisinin content was enhanced with ABA
treatment through promoting the expression level of the
artemisinin biosynthetic genes (Jing et al., 2009). Great
progress has been made to reveal the molecular mechanism on
ABA regulation of the artemisinin biosynthesis. Previously,
FIGURE 2 | AaABCG40 is mainly expressed in trichomes and roots. The expression of the pro AaABCG40-GUS was observed in (A) the first leaf, (B) the second
leaf, (C) trichomes and vascular tissue of young leaf, (D) the ninth leaf, (E) stem and (F) the lateral root. GST: glandular secretory trichome; TST, T-shaped trichome.
A

B

FIGURE 3 | The subcellular localization of AaABCG40. (A) Localization of 35S: GFP in tobacco leaves. (B) AaABCG40 protein co-localized with plasma membrane
integral protein PIP1 on the plasma membrane of tobacco leaves determined through confocal microscopy. Bars = 40 mm.
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AabZIP1 was identified from A. annua and proved to activate
ADS and CYP71AV1 expressions by binding to their promoters
(Zhang et al., 2015). In addition, AaABF3 was reported to
positively regulate the artemisinin biosynthesis through directly
binding to ALDH1 promoter (Zhong et al., 2018). To further
identify the function of AaABCG40 in A. annua, the OE-
AaABCG40-26, iAaABCG40-12 and wild type cutting seedlings
were prepared to be treated by exogenous ABA. Subsequently,
the transcription level of CYP71AV1 was measured by RT-qPCR.
The results showed that the transcription level of CYP71AV1
increased rapidly after the ABA treatment and peaked at 6 h, the
expression of CYP71AV1 in wild type increased 1.83-fold
(Figure S5). The CYP71AV1 transcription level in OE-
AaABCG40-26 increased 2.27-fold at 6 h, while the CYP71AV1
transcription level in iAaABCG40-12 increased 1.58-fold at 6 h
(Figure S5), suggesting that CYP71AV1 in OE-AaABCG40
plants showed more sensitive to exogenously ABA than that in
both wild-type and iAaABCG40 plants. Taken together,
AaABCG40 might be involved in ABA transport in A. annua.

AaABCG40-Overexpression Plants
Showed More Tolerant to Drought
in A. annua
The phytohormone ABA participates in many physiological
processes, such as photosynthesis, abiotic stress, seed
germination and stomatal regulation (Savouré et al., 1997;
Zhou et al., 2006; Cutler et al., 2010; Kim et al., 2012). In
Frontiers in Plant Science | www.frontiersin.org 7
particular, drought improves ABA biosynthesis and results in
the closure of stomata in plants (Zhang et al., 2001; Shinozaki
and Yamaguchi-shinozaki, 2007). As described above,
AaABCG40 functioned as ABA importer might be involved in
drought-stress response in A. annua. We prepared the OE-
AaABCG40-26, iAaABCG40-12 and wild type cutting seedlings
to test the ability of tolerance to drought. We found that leaves of
the OE-AaABCG40 plant wilted more slowly than those of the
control under drought stress (Figure 6). And iAaABCG40-12
transgenic plants exhibited more rapid wilting than those of the
control (Figure S6). Taken together, these results indicated that
overexpression of AaABCG40 significantly improved drought
tolerance in A. annua.
DISCUSSION

AaABCG40 Was Involved in ABA Transport
ABA plays an important role in responses to environmental
changes, such as drought stress, the regulation of stomatal guard-
cell and seed germination. In plants, ABA is predominantly
synthesized in vascular tissues, and delivered to the stomatal
guard-cell (Hartung et al., 2002; Koiwai et al., 2004; Weathers
et al., 2006; Endo et al., 2008). Many molecules involved in ABA
transport have been identified. In Arabidopsis, pleiotropic drug
resistance transporter PDR12 (AtPDR12)/AtABCG40 was
reported to act as ABA importer (Kang et al., 2010). AtPDR12
A B C

D E F

FIGURE 4 | Comparative analyses of AaABCG40 gene expression and artemisinin analyses in wild type (WT), plants transformed with the empty vector (EV),
AaABCG40-overexpression and AaABCG40-RNAi plants. (A) Relative expression of AaABCG40 in WT, EV and AaABCG40-overexpression transgenic A. annua
lines. (B) The contents of artemisinin in WT, EV, and AaABCG40-overexpression transgenic A. annua lines. (C) Relative expression of AaADS, AaCYP71AV1,
AaDBR2, and AaALDH1 in WT, EV and AaABCG40-overexpression transgenic A. annua lines. (D) Relative expression of AaABCG40 in WT, EV, and AaABCG40-
RNAi transgenic A. annua lines. (E) The contents of artemisinin in WT, EV, and AaABCG40-RNAi transgenic A. annua lines. (F) Relative expression of AaADS,
AaCYP71AV1, AaDBR2, and AaALDH1 in WT, EV, and AaABCG40-RNAi transgenic A. annua lines. All data represent the means ± SD of three replicates. **P < 0.0
5, *P < 0.01, student’s t-test.
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was mainly expressed in the young leaves, and also in primary
and lateral roots. When AtABCG40 was expressed in both
YMM12 yeast and tobacco BY2 cells, the results indicated that
AtABCG40 functioned as ABA transporter. Besides, atabcg40
mutants wilted faster than those of control and exhibited a
strongly delayed response to ABA.

Here, we characterized a PDR transporter AaPDR4/
AaABCG40 from A. annua. RT-qPCR showed that AaABCG40
was mainly expressed in trichomes, young leaves and roots
(Figure 1D). Notably, the GUS staining also exhibited that
AaABCG40 was active in the vascular tissues of leaves,
trichomes, stems, and roots (Figure 2). Interestingly, ABA is
predominantly produced in the vascular tissues (Cheng et al.,
2002; Koiwai et al., 2004; Endo et al., 2008). If AaABCG40 acted
as a carrier for the delivery of ABA into cells, it would be
localized to plasma membrane in plants. AaABCG40 fused
GFP protein was localized to plasma membrane with the
marker protein in tobacco (Figure 3), indicating that
AaABCG40 had the ability to transport ABA into the cells. In
conclusion, we hypothesis that AaABCG40 located at the plasma
membrane is important factor in the ABA transport. A
heterologous yeast expression system is a useful method for
identifying the function of transporters (Morita et al., 2009; Yu
and De Luca, 2013; Fu et al., 2017). To assess whether AaABCG40
functions as an ABA transporter or not, AaABCG40 cDNA was
expressed in the yeast strain AD12345678. The results showed
that yeast expressing AaABCG40 consistently accumulated more
ABA than controls containing the empty vector along the same
time course (Figure 5). In addition, when OE-AaABCG40-26,
iAaABCG40-12 and wild type cutting seedlings were treated by
exogenous ABA, OE-AaABCG40 plant showed more sensitive to
exogenously ABA (Figure 4). Besides, we analyzed ABA content
in the transgenic lines using an ABA ELISA kit. The results
Frontiers in Plant Science | www.frontiersin.org 8
revealed that leaves of AaABCG40-overexpression transgenic A.
annua plants contained a higher level of ABA than wild type
(Figure S7). On the contrary, ABA content in leaves of
AaABCG40-RNAi transgenic A. annua plants was reduced,
compared with wild type (Figure S7).

In our investigation, these data preferentially suggest that
AaABCG40 would be involved in ABA transport based on four
findings: i) the amino acid sequence of AaABCG40 belonging to
the full-length size PDR subfamily, contains two NBDs
(nucleotide-binding domains) and two TMDs (transmembrane
domains) (Figure 1B), ii) AaABCG40 is localized to plasma
membrane and active in trichomes, the vascular tissues of leaves
and roots, where ABA is mainly biosynthesized (Figures 2 and
3), iii) when AaABCG40 was transferred into yeast AD1-8, yeast
expressing AaABCG40 could accumulate ABA faster than
controls containing the empty vector (Figure 5), iiii) the
AaABCG40-overexpression transgenic plant showed a higher
expression of CYP71AV1 with the exogenous ABA treatment
(Figure S5). Taken together, these results indicated that
AaABCG40 was involved in ABA transport.
Effects of AaABCG40 on ABA Regulating
the Artemisinin Biosynthesis
To identify the function of AaABCG40, we generated
AaABCG40-RNAi and AaABCG40-overexpression transgenic
A. annua plants. The artemisinin contents of the leaves in
AaABCG40 overexpressing and AaABCG40 RNAi transgenic
lines measured by HPLC were significantly higher and lower,
respectively, than that of wild type plants (Figures 4B, E). As we
know, exogenous ABA treatment enhances artemisinin
accumulation in A. annua (Jing et al., 2009). Overexpression of
an ABA receptor gene AaPYL9 also observably enhanced the
artemisinin production in A. annua (Zhang et al., 2013). Besides,
AabZIP1 and AaABF3 involved in ABA signaling were reported
to posit ively regulate the artemisinin biosynthesis .
Overexpression of AabZIP1 and AaABF3 respectively increased
the artemisinin contents, while reducing the expression of
AabZIP1 and AaABF3 respectively resulted in a decrease in
artemisinin contents (Zhang et al., 2015; Zhong et al., 2018).
We analyzed the expression level of AabZIP1 and AaABF3 in
AaABCG40-RNAi and AaABCG40-overexpression transgenic A.
annua plants. The results showed that the expression of both
AaZIP1 and AaABF3 were reduced in AaABCG40 RNAi lines,
while overexpressing AaABCG40 significantly increased the
transcript levels of AaZIP1 and AaABF3 in AaABCG40-
overexpression transgenic lines (Figure S8). RT-qPCR analysis
also showed that the expressions of ADS, CYP71AV1, DBR2, and
ALDH1 were increased in AaABCG40-overexpression transgenic
lines (Figure 4C). And we also noticed that the transcript level of
ADS and ALDH1 were not downregulated in AaABCG40-RNAi
transgenic lines (Figure 4F). In plants, several ABA transporters
are synergistically responsible for ABA transport. ABA content
in leaves of AaABCG40-RNAi transgenic A. annua plants was
slightly lower than that in the wild type plants. Moreover, the
artemisinin biosynthesis has the very complex regulatory
FIGURE 5 | Time-dependent uptake of ABA by AD1-8 yeast cells expressing
AaABCG40 and transformed with the empty vector (EV). Yeast was
incubated in half-strength SD medium containing 50 mM ABA at pH 5.9. The
error bars represent the means ± SD from three biological replicates. The
recombinant plasmid (pDR196-AtPDR12) was introduced into the strain
AD12345678 as the positive control.
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network. Previous research indicated that both biotic factors and
abiotic factors observably influence the artemisinin biosynthesis
in A. annua. According to these results, we speculated that
overexpressing AaABCG40 increased ABA accumulation,
which activated the expression of the transcription factor genes
in ABA signaling pathway to promote the artemisinin
biosynthesis in AaABCG40-overexpression transgenic lines.

AaABCG40 Modulates Drought Tolerance
ABA is rapidly accumulated when plants are exposed to drought
stress (Leung and Giraudat, 1998). If AaABCG40 functioned as
ABA importer, AaABCG40 would be involved in drought-stress
response in plants. We detected the ability of drought resistance
using OE-AaABCG40-26, iAaABCG40-12, and wild type cutting
seedlings. As expected, the leaves of OE-AaABCG40-26 seedlings
wilted more slowly than those of wild type (Figure 6). In
addition, the next generation of iAaABCG40-12 and OE-
AaABCG40-26 transgenic plants were analyzed the ability of
drought resistance and the water loss. The seeds of iAaABCG40-
12, OE-AaABCG40-26 transgenic plant and wild-type A. annua
plants were cultivated in pots and watered well in the growth
chamber under a 16-h light/8-h dark cycle at 25°C for 1 month.
Then the water supply was absolutely stopped. For drought
treatment, water was withheld for a period of 20 days. As
Frontiers in Plant Science | www.frontiersin.org 9
Figure S9 shown, the seedlings of OE-AaABCG40-26 transgenic
plants wilted more slowly and also lost water more slowly than
wild type and iAaABCG40-12 seedlings. These results suggested
that the leaves of OE- AaABCG40-26 seedlings accumulated
more ABA than those of wild type, and repression the expression
of AaABCG40 impaired the ability of rapid response to
drought stress.
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