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During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that
mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and
initiate the mechanisms leading to the increase in plasmodesmal permeability. Although
the current view on the role of the viral MPs was primarily formed through studies on
tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the
intercellular movement of MPs independent of genomic viral RNA (vRNA), this
characteristic may induce favorable conditions ahead of the infection front for the
accelerated movement of the vRNA (i.e. the MP plays a role as a “conditioner” of viral
intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA
early in infection, (b) the Pd opening and the MP transfer to neighboring cells without
formation of the viral replication complex (VRC), and (c) the MP-mediated movement of
VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV
MP as a “conditioner” of enhanced intercellular virus movement. In addition, we will
discuss the mechanism by which TMV MP opens Pd for extraordinary transport of
macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd
leading to their dilatation, recent findings indicate that MPs exert their influence indirectly
by modulating Pd external and structural macromolecules such as callose and Pd-
associated proteins. In explaining this phenomenon, we will propose a mechanism for
TMV MP functioning as a conditioner for virus movement.

Keywords: tobamovirus movement protein, tobacco mosaic virus, plasmodesmata gating, plasmodesmata-
associated proteins, plasmodesmal localization signal, b-1,3-glucanase, pectin methylesterase, synaptotagmin A
INTRODUCTION

Since viral molecules are too large for passive transport through plasmodesmata (Pd) by diffusion, viral
genomes during evolution acquired genes encoding specific proteins that can induce plasmodesmal
dilation. This phenomenon was first described through fundamental studies using tobacco mosaic virus
(TMV), the first discovered filtrate infectious agent (Ivanowski, 1892; Beijerinck, 1898; Lechevalier, 1972;
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Komarova et al., 2011; Dorokhov et al., 2018b). TMV spread
through the plant begins with penetration into a single cell of the
leaf, followed by virion stripping and the synthesis of nonstructural
viral proteins in the cell (Wu et al., 1994; Wu and Shaw, 1996;
Nelson and van Bel, 1998). This step is necessary for the formation
of the nucleoprotein progeny that move within the cell to the Pd and
then through the Pd to the neighboring cells (Waigmann et al.,
2004; Niehl and Heinlein, 2011; Ueki and Citovsky, 2011).
Successful systemic infection of a plant with TMV requires three
processes that repeat over time: initial accumulation and formation
of transport form in invaded cells, intercellular movement, and
systemic transport (Waigmann et al., 2004; Liu and Nelson, 2013;
Heinlein, 2015; Ishibashi and Ishikawa, 2016; Dorokhov et al.,
2018b). Biologically, the movement of viruses from cell to cell is a
prelude to the massive systemic invasion of the entire host plant,
which begins when the viral material reaches the vascular system of
the host. TMV evolutionarily acquired the ability to quickly reach
the phloem for its movement into the upper sink leaves or to roots,
dependent on leaf position (Samuel, 1934; Cheng et al., 2000; Liu
and Nelson, 2013). A contemporary view of intercellular transport
of viruses grew from the concept of a viral “transport protein”
(Atabekov and Dorokhov, 1984), “translocation protein” (Leonard
and Zaitlin, 1982), or “movement protein” (MP) (Atabekov and
Dorokhov, 1984; Deom et al., 1987). The hypothesis that a
nonstructural TMV-encoded 30 kDa protein can facilitate viral
spread (Atabekov and Morozov, 1979) was soon confirmed by the
study of and use of information from the temperature-sensitive cell-
to-cell movement mutant Ls1 (Leonard and Zaitlin, 1982; Taliansky
et al., 1982; Deom et al., 1987; Meshi et al., 1987). Two mechanisms
were initially proposed to explain the function of the MP (Atabekov
and Dorokhov, 1984). In the first mechanism, Pd, originally closed
to the virus, are modified by MP and become permeable to viral
genetic material. Thus, the MP functions to open, or gate, Pd. The
second mechanism suggested that MP did not affect Pd but rather
stimulated cellular mechanisms to overcome the resistance of plant
cells to the virus and allow intercellular spread. Studies of TMV and
other viruses reported the basic properties of MP, including the
ability to (a) increase plasmodesmal permeability for translocation
of viral complexes, (b) localize to and move through Pd, and (c)
bind RNA (Tilsner et al., 2014; Waigmann et al., 2004; Ueki and
Citovsky, 2014; Heinlein, 2015; Navarro et al., 2019; Reagan and
Burch-Smith, 2020).

However, the mechanisms of viral MP function have not
been fully elucidated. Of particular interest is the self-
movement property of TMV MP. MP can move into Pd,
increase their size exclusion limit (SEL) (i.e. gate Pd), and
travel to neighboring cells (Crawford and Zambryski, 2001;
Kotlizky et al., 2001; Burch-Smith and Zambryski, 2010). Also,
in accordance with the diffusion model of cell-to-cell spread
(Guenoune-Gelbart et al., 2008; Epel, 2009), TMV MP forms a
large complex that binds both the ER and viral RNA and can
passively diffuse through Pd. However, additionally MP’s
ability to move independently from viral RNA (vRNA) can
serve as the basis for the mechanism of cell conditioning and
the creation of a favorable environment ahead of the infection
Frontiers in Plant Science | www.frontiersin.org 2
front for the accelerated movement of genomic vRNA
(Kawakami et al., 2004).

Here, we assess findings that support the concept that the
MP creates a conducive environment for viral infection by
conditioning cells for infection in advance of the viral
genomic RNA.
MP IS TRANSIENTLY SYNTHESIZED IN
THE EARLY STAGES OF A PRODUCTIVE
INFECTION

TMV moves rapidly between cells, needing 16–18 h (Nilsson-
Tillgren et al., 1969) to reach the vascular tissue for systemic
infection of the host. Particular viral proteins should therefore be
synthesized rapidly to provide this spread and the MP would be
such a candidate. In support of this view, one can cite the results
of experiments obtained more than 20 years ago that describe
the spread of infection of TMV expressing a fusion protein MP-
GFP. Even as MP-GFP fusion protein, the MP retained its
independent movement and contributed to the development
and expansion of infection, including the necrosis phenotype,
by the TMV encoding MP-GFP (Heinlein et al., 1995; Epel et al.,
1996; Oparka et al., 1996; Padgett et al., 1996; Boyko et al., 2000).
The TMV-based vectors used in these experiments differed
significantly in the amount of MP produced, as was shown in
protoplasts (Szécsi et al., 1999). However, the size of the infection
focus was independent of the amount of synthesized MP-GFP.
This finding indicated that low and transient levels of MP-GFP
were essential at the leading edge of an expanding focus of
infection. Indeed, in support of the latter assumption, TMVMP-
GFP could open Pd only at the leading edge of a focus of
infection and did not show this ability at the later stages of
infection at the focus center even though MP-GFP was still
present in those Pd (Oparka et al., 1997).

Experiments studying the growing edge of the infection focus
are also interesting because the behavior of MP-GFP was
different from the behavior of the recombinant MP produced
in E. coli, which appeared in cells distant from the injected cell
after microinjection (Waigmann et al., 1994). Experiments in
which DNA encoding MP-GFP was delivered into cells using
low-pressure microprojectile bombardment without injuring
the leaf (Crawford and Zambryski, 2000; Crawford and
Zambryski, 2001) or MP-2xGFP-encoding plasmid delivered
via agroinfiltration (Burch-Smith and Zambryski, 2010)
demonstrated that TMV MP, similar to the cucumber mosaic
virus 3a MP (Itaya et al., 1997) or the tomato spotted wilt virus
NSm MP (Huang et al., 2020), showed autonomy from other
viral factors, i.e., could independently move to neighboring cells
in the absence of viral RNA, but remained relatively close to the
initial cell with the introduced MP-encoding DNA. MP-GFP
trafficked to an average of eight (Crawford and Zambryski, 2000)
or nine (Crawford and Zambryski, 2001) cells adjacent to the
bombarded cell. However, the distance of such movement from the
June 2020 | Volume 11 | Article 959
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transfected cell was noticeably less than that after microinjection
with E. coli-produced MP (Waigmann et al., 1994), which could be
explained by the inability of bacterially synthesized MP to be
phosphorylated (Padgett et al., 1996). If we imagine that in the
leading edge of expanding TMV infection sites the synthesized
MP-GFP moves independently of the viral RNA into neighboring
cells, the introduction of incisions as close as 50 µm, i.e., within one
epidermal cell diameter (as was performed in the study by Oparka
et al., 1997), could accidentally cut off cells already containing MP-
GFP that were not fluorescent yet at the time of surgery because
immature GFP needs time for proper folding of the fluorophore
(Cubitt et al., 1995). The absence of visible fluorescence on the
opposite side of the incision 24 h after the incision could be due
to the “dissolution” of MP-GFP, i.e., the decrease in its
concentration in every next cell where it moves. The same
effect of the gradient reduction of the fluorescence intensity
from the primary transfected cell to the second and third order
of cells was observed, for example, in experiments in which a
plasmid encoding MP-GFP was introduced into individual
cells, and GFP fluorescence faded with the distance from the
plasmid-containing cell (Burch-Smith and Zambryski, 2010).
Thus, although studies of the growing focus of infection
(Oparka et al., 1997) did not allow authors to conclude that
MP-GFP can move into cells of the growing edge of the focus
ahead of viral RNA, experiments with the introduction of a leaf
incision in front of the edge of the focus did not fully exclude
this possibility.

Given the ability of MP to move independently from cell to
cell, it can be hypothesized that MP-GFP, ahead of the front of
the viral RNA spread, moves to neighboring healthy cells and
creates favorable conditions for the development of infection.
The idea of cell “conditioning” or “predisposing” (Kawakami
et al., 2004) came from studies showing that TMV MP is
produced in protoplasts within 5–8 h post infection (hpi)
(Watanabe et al., 1984; Más and Beachy, 1999). Real-time
monitoring of the spread of infection in tobacco leaves
inoculated with transcripts of the TMV-based construct
encoding MP-GFP (Padgett et al., 1996; Szécsi et al., 1999)
showed that in epidermal cells in the vicinity of the initially
infected cell, one can detect viral replication complex (VRC)-
like structures as early as 18–20 hpi. Then, after an additional 2–
4 h, VRCs can be detected in distant cells (tertiary cells),
followed by a repeat of this process. In primary infected cells,
the cycle is reduced by approximately 4 h, and when the virus is
transported between the 2nd and 3rd cells, it is reduced from 3.5
to 1.7 h (Kawakami et al., 2004). Notably, these calculations
were made using a vector encoding fused MP-GFP protein, the
synthesis of which is significantly suppressed due to a decrease
in the “strength” of the subgenomic (sg) promoter directing
MP-GFP sgRNA synthesis (Epel et al., 1996; Padgett et al., 1996;
Szécsi et al., 1999).

All the above-mentioned considerations of the mechanisms
of early synthesis of MP are based on its synthesis from a
dicistronic intermediate length RNA-2 called sgRNA I2
(Bruening et al., 1976; Higgins et al., 1976; Beachy and Zaitlin,
1977; Goelet et al., 1982). However, another mechanism for the
Frontiers in Plant Science | www.frontiersin.org 3
early synthesis of MP, in addition to subgenomic mRNA, has
long been known (Skulachev et al., 1999; Dorokhov et al., 2002;
Komarova et al., 2003; Dorokhov et al., 2006; Dorokhov et al.,
2017). This mechanism involves the direct binding of ribosomes
on the 75-nt sequence of the internal ribosome entry site (IRES)
as part of the TMV U1 (IRESMP,75

U1) genomic RNA (Skulachev
et al., 1999). A similar element called IRESMP,75

CR has been
detected in the RNA of crucifer-infecting tobamovirus (crTMV)
(Dorokhov et al., 1993; Dorokhov et al., 1994; Skulachev et al.,
1999). The important role of IRES was demonstrated in the
movement-deficient TMV U1-KK6 mutant lacking IRESMP,75

U1

(Lehto et al., 1990). IRESMP,75
CR insertion restored the

intercellular movement of the obtained variant, called TMV
U1-K86 (Zvereva et al., 2004). These experiments indicated the
fundamental possibility of MP synthesis not only from subgenomic
RNA but also directly from genomic RNA (Figure 1). It would
seem plausible that direct synthesis of MP from genomic RNA
would likely be an even faster way to produceMP early in infection,
perhaps working together with the subgenomic RNA to achieve
this outcome.
DOES THE PLASMODESMAL
LOCALIZATION SIGNAL (PLS) DIRECT MP
TO PD USING ER-MEDIATED
TRAFFICKING?

The discovery of a specific sequence that is responsible for MP
targeting to Pd and designated the plasmodesmal localization signal
(PLS) widened our understanding of MP function (Yuan et al.,
2016; Yuan et al., 2017; Yuan et al., 2018; Liu et al., 2020). The TMV
MPPLS is the first example of a PLS in plant virusMPs; however, its
properties are similar to PLSs previously found in cellular
transcription factors KN1(Kim et al., 2005) and Dof (Chen et al.,
2013). The TMVMP PLS resides in the N-terminal 50 amino acids
(aa) (Yuan et al., 2016). The PLS alone, when fused with CFP, is
delivered to Pd, as shown by its localization in the plasma
membrane in the plasmolysis test, while the whole MP is
localized in the Pd cavity and remains associated with the cell
wall after plasmolysis. As the PLS-CFP does not go to the Pd cavity,
it cannot completely replace the function of the full MP. In support
of other portions of the MP having function to target the Pd, MP
lacking the PLS has other amino acids (61 to 80 and from 147 to
170) that help direct it to the Pd but in a less efficient manner and
not to the next cells (Yuan et al., 2016; Liu et al., 2020). Analysis of
cellular factors involved in interactions with MP PLS revealed its
ability to bind plant synaptotagmin A (SYTA) (Yuan et al., 2018).
SYTA is localized to the plasma membrane (PM), concentrated
around Pd and recognized as a tethering factor of ER–PM contact
sites (Uchiyama et al., 2014; Levy et al., 2015; Yuan et al., 2018;
Ishikawa et al., 2020; Liu et al., 2020).

The results identifying the PLS and its ability to reach the Pd,
possibly through interaction with SYTA, do not yet incorporate
the known ER-actin network involvement in the intracellular
delivery of MP to Pd. In general, the ability of MP to interact with
June 2020 | Volume 11 | Article 959
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ER was noted more than 30 years ago, and the first studies on
infected leaves showed the ability of MP synthesized in the cell to
bind ER membranes so tightly that only high concentrations of
NaCl or urea or nonionic detergents could detach it (Reichel and
Beachy, 1998). It was concluded that MP behaves as an
integral ER membrane protein and that the MP affinity for the
ER membrane is largely hydrophobic (Reichel and Beachy,
1998). The first topological model developed after research on
recombinant MP synthesized in E. coli suggested that TMV MP
is an integral membrane protein with the N- and C-termini
exposed to the cytoplasm and the opposite short loop to the ER
lumen. According to that model, MP contains two a-helical
transmembrane segments, a trypsin-resistant core domain plus
18 aa at the C-terminus of the monomer rapidly removed by
trypsin (Brill et al., 2000; Brill et al., 2004; Fujiki et al., 2006).
However, the study of MP synthesized in planta (Peiró et al.,
2014) did not confirm the above-mentioned model of MP as an
integral membrane protein. According to the model proposed by
Peiró et al. (2014), the hydrophilic 50-aa PLS does not interact
with ER membranes. Thus, by what mechanism or mechanisms
does PLS lacking the signatures of ER-interacting protein
nevertheless appear in Pd as shown by PLS fusions with
fluorescent proteins?
Frontiers in Plant Science | www.frontiersin.org 4
We hypothesize that the Golgi apparatus (GA) and cellular
secretion mechanisms are involved in this process. However,
opposite results have been reported. Studies with brefeldin A at
low concentrations (10 mg/ml) (Tagami and Watanabe, 2007)
and inhibition of the COP II transport system using a dominant
negative GTPase mutant protein, Sar1, did not prevent sustained
intracellular MP spread (Genovés et al., 2010). The recently
discovered property of the TMV MP PLS to bind SYTA and the
role of this interaction in delivery of the MP to the Pd requires
further study. The relationship of the MP with SYTA during
endosome recycling also requires further study (Lewis and
Lazarowitz, 2010).
POSSIBLE MECHANISMS OF CELL
CONDITIONING TO FACILITATE THE
INTERCELLULAR SPREAD OF INFECTION

The TMV MP belongs to a small group of viral MPs that can
increase Pd SEL; however, there is no evidence showing their
direct effect on Pd components, leading to Pd dilation (Reagan
and Burch-Smith, 2020). Recent data indicate that MPs exert
FIGURE 1 | Schematic representation of the role of MP in the development of TMV infection. TMV virions enter the cell through damage to the cell wall (1) and start
uncoating (2). The released viral genomic RNA is translated both in a 5′-end-dependent manner (resulting in replicase formation) and via the internal ribosome entry
site (IRES) to produce MP (3). Due to its self-movement ability, MP passes to neighboring cells (3a) and “conditions” them for more effective viral infection (3b). The
synthesized replicase transcribes viral genomic RNA and produces subgenomic RNAs (4). Further MP synthesis is mainly a result of I2 sgRNA translation (5).
June 2020 | Volume 11 | Article 959
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their influence indirectly by interacting with factors that then
influence Pd conformation, such as callose (Amsbury et al., 2017)
and Pd-associated proteins (PdAPs) (Dorokhov et al., 2019).
Unlike many PdAPs, callose has been convincingly shown to
negatively regulate the Pd aperture (Levy et al., 2007a; Zavaliev
et al., 2011; Wu et al., 2018).

One can imagine that the first synthesized MP molecules
modify levels of pre-existing cellular components such as callose,
which are known to control Pd gating under various physiological
conditions (Crawford and Zambryski, 2001; Stonebloom et al.,
2012; Grison et al., 2019) and in response to stressful effects
(O’Lexy et al., 2018; Grison et al., 2019).

Studies showing how callose may be modified by other
proteins and how TMV infection utilizes and/or affects
the expression of these proteins have been recently reviewed
(Dorokhov et al., 2019). The callose content at the Pd is largely
determined by the activity of b-1,3-glucanase (BGs). In turn,
TMV infection affects most BGs at the transcriptional level (Levy
et al., 2007b). Therefore, while turnip vein clearing virus did not
affect AtBG_ppap transcription, the transcription of an AtBG2-
encoding gene was enhanced (Zavaliev et al., 2013). The
introduction of the tobacco GLU I gene encoding BG into the
TMV genome led to an increase in the local lesion size, which
Frontiers in Plant Science | www.frontiersin.org 5
confirms the role of BG as a callose-hydrolyzing enzyme in the
cell-to-cell movement of viruses (Bucher et al., 2001).

It must also be borne in mind that mechanical trauma and
damage to the cell wall, which are a prerequisite for the virus to
enter cells, causes the immediate release of methanol generated by
both pre-existing in the cell wall pectin methylesterase (PME) and
newly synthesized one (Dorokhov et al., 2012). Methanol vapors
activate methanol-inducible genes (MIGs), including BG and
non-cell-autonomous pathway protein (NCAPP), which in turn
stimulate intracellular trafficking and create favorable conditions
for viral infection (Dorokhov et al., 2018a), especially at the early
stages. While the synthesis of BG promotes the removal of callose
as a plasmodesmal sphincter, NCAPP is a cellular factor that
participates in PME/methanol regulation (Sheshukova et al.,
2017) and is indispensable for MP functioning (Lee et al., 2003;
Lucas et al., 2009).

In addition to the nonspecific conditioning by the mechanisms
involved in the response of a plant to trauma and the specific
conditioning of cells neighboring the initially infected cell
through actions on structures within or proteins that affect
the Pd, the MP may influence Pd more indirectly by modulating
host protein synthesis. Since MP was shown to have RNA-
binding properties (Citovsky et al., 1990) and to inhibit its own
FIGURE 2 | Possible mechanisms of cell conditioning by nonviral factors induced by cell wall trauma and the specific effects of virus-directed MP, leading to the
creation of favorable conditions for the intercellular spread of infection. Cell wall damage (1) results in the activation of pre-existing PME (2a) as well as PME
expression (2b), leading to the increased release of gaseous methanol (3). Methanol-induced genes (MIGs), including b-1,3-glucanase (BG) and NCAPP, are
stimulated by methanol (4). MIG induction activates intercellular transport increasing the Pd SEL: BG degrades callose around Pd (4a), and NCAPP is believed to be
indispensable for MP functioning. TMV penetrates into the cell through damage to the cell wall, starts to replicate, and forms viral replication complexes (VRCs) on
ER membranes (5). MP translated from genomic and subgenomic vRNAs is delivered to the Pd in a tight connection with ER membranes (6a) and possibly via the
Golgi apparatus in a PME-mediated manner (6b). As MP colocalizes with SYTA in the VRC and Pd, the mechanisms of SYTA transport to the Pd may influence MP
delivery. MP may participate in the displacement of negative regulators from the Pd structure and the activation of positive regulators (e.g., SYTA). (7) Moving
independently of the genomic viral RNA to the neighboring cells MP increases Pd SEL and creates favorable conditions for the intercellular spread of infection.
June 2020 | Volume 11 | Article 959
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mRNA translation in vitro (Karpova et al., 1997; Karpova et al.,
1999), we suggest that MP may interact with both viral and
cellular mRNAs translated on ER-linked polyribosomes and
participate in the inhibition of translation of messengers
encoding proteins involved in the stress response and
regulation of plasmodesmal permeability (Dorokhov et al.,
2019; Ganusova and Burch-Smith, 2019).

Thus, against the background of events caused by cell wall
damage, MP might affect Pd gating by interfering with callose
metabolism and PdAPs-mediated modification of the host Pd
machinery. Figure 2 summarizes the nonviral factors induced by
cell wall trauma and the specific effects of virus-directed MP,
leading to the creation of favorable conditions for the intercellular
spread of infection.
CONCLUSION

To summarize what is known about the TMVMP, this protein is
capable of

a. forming a stable vRNP complex binding single-stranded RNA
in a sequence nonspecific manner;

b. targeting to and docking at Pd through the plasmodesmal
localization signal;

c. self-movement and increasing Pd permeability by influencing
the host Pd machinery possibly by interacting with specific
cellular components that affect PdAPs or mRNA translation;

d. performing Pd gating at the leading edge of the virus infection
focus.

Thus, both in a primary infected cell and in neighboring
healthy cells, MP may act as a specific “conditioner”, since such
preliminary activity is possible only in the cells of a host plant
Frontiers in Plant Science | www.frontiersin.org 6
susceptible to TMV. Specific conditioning mechanisms may
include MP interaction with BG, NCAPP, mRNA or other
factors to open Pd in advance of vRNA.
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