
Frontiers in Plant Science | www.frontiersin

Edited by:
Rodomiro Ortiz,

Swedish University of Agricultural
Sciences, Sweden

Reviewed by:
Hamid Khazaei,

University of Saskatchewan, Canada
Valerio Hoyos-Villegas,

McGill University, Canada

*Correspondence:
Bodo Raatz

B.Raatz@CGIAR.org

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 16 March 2020
Accepted: 18 June 2020
Published: 07 July 2020

Citation:
Keller B, Ariza-Suarez D, de la Hoz J,

Aparicio JS, Portilla-Benavides AE,
Buendia HF, Mayor VM, Studer B and
Raatz B (2020) Genomic Prediction of

Agronomic Traits in Common Bean
(Phaseolus vulgaris L.) Under

Environmental Stress.
Front. Plant Sci. 11:1001.

doi: 10.3389/fpls.2020.01001

ORIGINAL RESEARCH
published: 07 July 2020

doi: 10.3389/fpls.2020.01001
Genomic Prediction of Agronomic
Traits in Common Bean (Phaseolus
vulgaris L.) Under Environmental
Stress
Beat Keller1,2†, Daniel Ariza-Suarez1†, Juan de la Hoz1, Johan Steven Aparicio1,
Ana Elisabeth Portilla-Benavides1, Hector Fabio Buendia1, Victor Manuel Mayor1,
Bruno Studer2 and Bodo Raatz1*

1 Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia, 2 Molecular Plant
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In plant and animal breeding, genomic prediction models are established to select new
lines based on genomic data, without the need for laborious phenotyping. Prediction
models can be trained on recent or historic phenotypic data and increasingly available
genotypic data. This enables the adoption of genomic selection also in under-used
legume crops such as common bean. Beans are an important staple food in the tropics
and mainly grown by smallholders under limiting environmental conditions such as
drought or low soil fertility. Therefore, genotype-by-environment interactions (G × E) are
an important consideration when developing new bean varieties. However, G × E are often
not considered in genomic prediction models nor are these models implemented in
current bean breeding programs. Here we show the prediction abilities of four agronomic
traits in common bean under various environmental stresses based on twelve field trials.
The dataset includes 481 elite breeding lines characterized by 5,820 SNP markers.
Prediction abilities over all twelve trials ranged between 0.6 and 0.8 for yield and days to
maturity, respectively, predicting new lines into new seasons. In all four evaluated traits,
the prediction abilities reached about 50–80% of the maximum accuracies given by
phenotypic correlations and heritability. Predictions under drought and low phosphorus
stress were up to 10 and 20% improved when G × E were included in the model,
respectively. Our results demonstrate the potential of genomic selection to increase the
genetic gain in common bean breeding. Prediction abilities improved when more
phenotypic data was available and G × E could be accounted for. Furthermore, the
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developed models allowed us to predict genotypic performance under different
environmental stresses. This will be a key factor in the development of common bean
varieties adapted to future challenging conditions.
Keywords: genomic selection, genotype × environment interactions, common bean (Phaseolus vulgaris L.),
genome-wide association studies (GWAS), plant breeding, drought, low phosphorus stress
INTRODUCTION

Common bean (Phaseolus vulgaris L.) is an important protein
source for human nutrition contributing to food security in the
tropics (Broughton et al., 2003). Its affordable and nutrient-rich
grains provide protein and micronutrients such as iron and zinc
for millions of people in Latin America and eastern/southern
Africa, where consumption can reach up to 66 kg per capita
annually (Broughton et al., 2003; Blair, 2013). Bean breeding
aims to sustainably increase grain production under challenging
environmental conditions. An important breeding target is the
resistance to biotic and abiotic stresses, such as diseases, drought
and low phosphorus (P) (Mukankusi et al., 2018; Assefa et al.,
2019). Drought incidences cause up to 70% yield loss (Asfaw
et al., 2012; Diaz et al., 2018). Low P and drought constrain bean
production in up to 50 and 70% of the area under cultivation,
respectively (Wortmann et al., 1998; Beebe et al., 2009).
Improving common beans for drought and low soil fertility
conditions is therefore of special importance for current
breeding programs (Buruchara et al., 2011; Beebe et al., 2013;
Mukankusi et al., 2018).

Many traits contribute to drought tolerance and a quantitative
breeding approach is required for successful selection (Beebe et al.,
2013). For example, early maturing bean lines could avoid
drought stress but this strategy potentially affects yield
negatively (Kamfwa et al., 2015; Polania et al., 2017). Another
strategy is to select for a bigger and deeper root system to increase
drought tolerance (Polania et al., 2017). However, increased root
biomass under low P conditions decreased shoot biomass (Nielsen
et al., 2001). Still, high yielding lines under drought usually
perform well under well-watered or low P stress conditions
(Beebe et al., 2008; Beebe et al., 2009; Beebe et al., 2013). This
indicates that the underlying traits, such as the efficiency of
photosynthate translocation to the seeds, may be favorable
under most stress conditions (Rao et al., 2017).

Several QTL for seed yield and associated traits have been
identified in common bean lines under drought and rain-fed
conditions (Mukeshimana et al., 2014; Trapp et al., 2015; Briñez
et al., 2017; Hoyos-Villegas et al., 2017; Diaz et al., 2018).
However, QTL in different studies differ in their position, and
their effects often vary between different years and locations. With
a few exceptions: A yield QTL at the lower end of chromosome
(Chr) 4 was repetitively found in six out of 15 field trials across
different locations under rain-fed conditions in a bi-parental
population (Diaz et al., 2018). Two QTL for seed yield on Chr 3
and Chr 9 were found under irrigated conditions (Kamfwa et al.,
2015) and under drought conditions (Mukeshimana et al., 2014).
Recently, several stable QTL were reported for seed shape and
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maturity traits but none for seed yield in an extensive analysis of
over 600 lines in four environments (Wu et al., 2020). QTL are
usually mapped in contrasting individuals for a particular trait.
However, mapping and introducing those favorable alleles into
breeding material is costly and time consuming. Most successful
examples of QTL mapping or genome-wide association studies
(GWAS) leading to marker development are for disease resistance
(Mukankusi et al., 2018; Gil et al., 2019; Nay et al., 2019). For more
complex agronomic traits, genetically determined by many genes,
marker-based introgression of a few QTL was not successful.

Genomic selection was developed to predict quantitative traits
that are expensive to phenotype and has been successfully applied
in animal and plant breeding (Crossa et al., 2017; Georges et al.,
2019). The ability to retrieve genomic-estimated breeding values
(GEBVs) of new lines reduces phenotyping costs and allows
increasing selection intensity in breeding populations. Further
benefits include the enrichment of positive alleles in early
generations and shortening of breeding cycles by crossing in
earlier generations based on the GEBVs (Lehermeier et al.,
2017b). In genomic selection, the phenotype is predicted from
all genetic markers together (Meuwissen et al., 2001). The
problem that number of observations << predictors can be
addressed by penalizing the model coefficients as in Ridge
regression (Endelman, 2011). The prediction ability (PA) of
such a model is dependent on the heritability of the trait,
polygenicity of the trait, the ability of markers to tag all
informative haplotypes (depending on population structure,
linkage disequilibrium and marker density) and the ability to
identify the genetic effect of the haplotypes in the population
(depending on population size, population structure, and minor
allele frequencies) (Kwong et al., 2017; Norman et al., 2018).
Several studies have successfully improved PA by adding QTLs as
fixed effects to the model. Some examples include field trials in
winter wheat (Sarinelli et al., 2019), in a maize panel (Bian and
Holland, 2017) and in rice (Spindel et al., 2016). In common bean,
a small prediction study including 80 cultivars and 377 molecular
markers was able to capture about 25% of the heritable variance in
grain yield (Barili et al., 2018). However, the efficacy and
usefulness that genomic selection offers for common bean
breeding still needs to be assessed in larger and more complete
studies that deal with realistic scenarios of the breeding schemes.

Genomic selection in plants must consider strong genotype
by environment interactions (G × E), as their effects are usually
stronger than in animal production. Season to season prediction
can be further improved when models are augmented with
environmental covariates (Technow et al., 2015; Oakey et al.,
2016). The detection and modelling of G × E was reported to
increase the prediction abilities in crop breeding lines up to 20%
July 2020 | Volume 11 | Article 1001
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(Heslot et al., 2014; Acosta-Pech et al., 2017). Such genomic
predictions (GPs) under different environments, however,
require large training data sets of the targeted populations
and environments.

This paper presents the results of applying GP methods to
common bean in the context of a breeding program. A panel of
elite Andean breeding lines was assessed for different agronomic
traits in two locations under drought, irrigated and low P
conditions in order to optimize model parameters, characterize
G × E effects and simulate breeding applications.
MATERIAL AND METHODS

Plant Material
The Andean elite bean breeding (Vivero Equipo Frijol, VEF) panel
from the International Center of Tropical Agriculture (CIAT) was
evaluated in twelve field trials across two locations in Colombia. The
whole set of trials contained 481 different lines. From these, 26 lines
are also in the Andean Diversity Panel (ADP) (Cichy et al., 2015).
Each trial contained between 156 and 345 lines. These lines were
tested in one to twelve trials according to the year of introduction to
the panel (Supplementary Figure 1). The complete list of lines in
the VEF panel is available online (see data availability statement
Keller et al., 2020). Additionally, data from a MAGIC population
described by Diaz et al. (2019) (manuscript submitted) was used as
comparison to the VEF panel regarding parameter optimization for
GP. This population was developed from eight elite Mesoamerican
founder breeding lines and, therefore, differs from the VEF
population in genetic characteristics and germplasm background.

Field Trials VEF
In total twelve field trials took place in Palmira, Colombia (3°29′′
N latitude, 76°21′′W longitude and an altitude of 965 m a.s.l.)
and in Darien, Colombia (3°53′′N latitude, 76°31′′W longitude,
altitude 1,500 m a.s.l.). The trials were carried out with an alpha-
lattice experimental design, with variable replicate numbers and
plot sizes (Supplementary Table 1). Eight trials in Palmira had
three repetitions, two trials in Darien and one trial in Palmira
had two repetitions. One trial in Darien was only partially
replicated (Dar16C_loP) with 20% of the plots having a second
replicate evenly distributed in the field. Field trials were labeled
with the location first, Pal for Palmira and Dar for Darien,
followed by the year and season, ‘A’ for the first and ‘C’ for the
third season, and an abbreviation for the treatment.

Field Conditions
Six out of the twelve trials were established under rain fed (to
obtain drought stress conditions, see Polania et al. (2017)) and
three trials under irrigated conditions in Palmira between 2013
and 2018. Additional three trials were carried out under different
levels of P in Darien in one season in 2016. Rain fed trials were
carried out during the third trimester of the year, when the
precipitation is usually low. These trials were irrigated up to 22
days after sowing, and rain fed only thereafter (see Supplementary
Figure 2 for weather data). Irrigated trials in Palmira were watered
Frontiers in Plant Science | www.frontiersin.org 3
during the complete growing season with up to one irrigation
event per week, representing 25 mm of rainfall.

The plot sizes were between 2 and 4.4 m2, depending on the
trial (Supplementary Table 1). The field in Darien was divided
into three different sections based on the soil P content resulting
in low P (loP), medium P (mdP) and high P (hiP) conditions
(Supplementary Table 2).

Crop Management
Standard field practices were applied over the plant growing
seasons across trials, including the application of fungicide seed
treatment and foliar insecticides when necessary.

Weather Data
Compact weather station (Lambrecht meteo GmbH, Göttingen,
Germany) equipped with precipitation and temperature sensors
was used to collect environmental data. The station is placed at
the CIAT station in Palmira about 1 km from the field.

Phenotyping VEF Panel
The number of days to flowering (DF) was measured from
planting to the day when 50% of the plants in the plot had at
least one open flower. Days to physiological maturity (DPM) was
measured as the number of days from planting until 50% of
plants had at least one pod losing its green pigmentation. Seed
weight (100SdW, g 100 seeds−1) was obtained from weighing 100
seeds. Yield (kg ha−1) was calculated based on the plot size and
corrected to a moisture content in the seed of 14%.

Analysis of Phenotypic Data
The spatial arrangement of plots in the field was used to assign
row and column coordinates in each trial. The phenotypic data
was analyzed using a combined two-stage approach. The first-
stage linear mixed model with spatial correction was fitted for
each trial separately. This model included random effects for
rows, columns and a bilinear polynomial and smoothing spline
using the functions ‘SpATS’ and ‘PSANOVA’ of the R package
SpATS (v1.0-9) (Rodrıǵuez-Álvarez et al., 2018). In addition, the
model incorporated a categorized number of harvested plants
per plot as a random effect factor. Observations with extreme
residuals were removed, in as many iterations until no residuals
beyond ±3 standard deviations were left. Best linear unbiased
estimators (BLUEs) and standard errors (SE) were obtained for
each line in every trial from this first-stage model. These BLUEs
were used for i) calculation of Pearson correlation coefficients to
describe the correlation between the different trials, ii) genomic
prediction of new lines into an observed environment (i.e. in an
observed trial), iii) prediction of new lines into a future season
and iv) carrying out GWAS separately for each trial.

A second-stage model was fitted to calculate BLUEs over all
trials using the ‘lm’ function of base R and the emmeans package
(Lenth, 2019) with the following equation:

y = trial + G� E + e (1)

where y is a vector offirst-stage BLUEs, trial is a fixed effect factor
for each of the twelve trials, G is a vector with each line, and E is a
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three-level factor indicating the conditions in Darien, the
drought and the irrigated trials in Palmira. The residual error
is ϵ with ϵ ∼ N(0, s2D(V)), where D(V) is a diagonal matrix with
diagonal elements equal to those SE derived by SpATS as
described in Möhring and Piepho (2009). The second-stage
BLUEs were used to i) obtain overall PAs, ii) to run GWAS
over all trials and over environmental conditions separately, and
iii) to get overall phenotypic correlations between traits.

Genotyping by Sequencing (GBS)
DNA was extracted as described by Lobaton et al. (2018) and
Perea et al. (2016). In short, leaf tissue from germinated seedlings
was frozen with liquid N2 and ground to a fine powder with
metal balls in a paint shaker. The DNA from this powder was
extracted with the Urea buffer-based mini prep extraction
protocol. The concentration of the product was estimated by
visualization in a 0.8% agarose gel after electrophoresis and
thereafter quantified with a NanoDrop 1000. The GBS library
was generated using ApeKI-based restriction digestion, following
the protocol of Elshire et al. (2011). DNA sequencing was
performed at the Cornell and HudsonAlpha sequencing
facilities on Illumina HiSeq machines. The GBS libraries were
sequenced using either single-end or paired-end sequencing with
read lengths ranging between 101 and 151 bp.

SNP Calling and Population Structure
SNP calling was carried out as described by Gil et al. (2019).
Briefly, the GBS reads were demultiplexed using NGSEP (v3.3.0)
(Tello et al., 2019). Adapters and low quality bases from the raw
sequencing data were trimmed using Trimmomatic (v0.36)
(Bolger et al., 2014), and the processed reads were aligned to the
reference genome of P. vulgaris G19833 v2.1. (Schmutz et al.,
2014) using Bowtie2 (v2.2.30) with default parameters (Langmead
and Salzberg, 2012). The variant calling process was performed
using NGSEP following recommended parameters for GBS data
(Perea et al., 2016). The merged genotypic matrix was filtered with
NGSEP for variants with a genotype quality above 40 for each
SNP, minor allele frequency (MAF) above 0.05, a maximum
observed heterozygosity of 0.05 per marker, and keeping only
biallelic single nucleotide variants. In addition, the variants located
in repetitive regions of the reference genome were removed, as
reported by Lobaton et al. (2018). The resulting filtered matrix
contained about 20% of missing genotype calls over all SNPs after
removing markers with less than 270 individuals genotyped per
variant. This data was imputed using Beagle v.5.0 (Browning et al.,
2018) providing the genetic map reported by Diaz et al. (2019) and
setting the effective population size to 100. This matrix was used to
assess the population structure in the panel by performing a
principal component analysis (PCA) as implemented in GAPIT
(Tang et al., 2016). The population structure was also evaluated by
calculating a distance matrix and then computing a neighbor-
joining tree with NGSEP (v3.3.0).

Genome-Wide Association Study (GWAS)
GAPIT was used with the recently developed BLINK algorithm
to carry out GWAS (Huang et al., 2019). BLINK improves the
Frontiers in Plant Science | www.frontiersin.org 4
power to detect true QTL by adding pseudo quantitative trait
nucleotides as covariates (Huang et al., 2019). In addition, the
first three PCA components were used to correct for population
structure. The threshold for significant marker-trait association
was defined according to the false discovery rate calculated with
the brainwaver R package (Achard, 2012). GWAS was carried
out using the first-stage BLUEs obtained from each trial’s SpATS
model, and the second-stage BLUEs from Equation (1), obtained
for every environmental condition (Palmira-drought, Palmira-
irrigated and Darien) and over all trials.

Genomic Prediction
Predictions were calculated using the BGLR package in R (Pérez
and de los Campos, 2014). The number of Markov Chain
Monte–Carlo iterations per model run was 10,000 with the
first 5,000 as burn-in.

Prediction of New Lines
The basic equation to account for additive genetic effects was:

y = Z1Gu1 + ϵ (2)

where y is a vector of phenotypes, G is the SNP matrix with
each marker in one column, u1 is the random effect of the SNP
markers, where u1 ~ N(0, I su

2). Z1 is a design matrix
connecting phenotypes and lines and ϵ is the random error,
where ϵ ~ N(0, I sϵ

2). This model is referred to as the marker
model. It was used to calculate GEBVs for each trait and trial
independently, using first-stage BLUEs; and overall GEBVs for
each trait, using second-stage BLUEs as true breeding values
(TBVs). Using the SNP matrix results instead of the genomic
relationship matrix (GGT/p, where p is the number of markers)
allows to select SNP markers directly for further breeding
purposes (Endelman, 2011).

Prediction of New Lines Accounting for G × E
The equation to account for G × E was:

y = S1a + E1b + Z1Gu1 + Z2Gu2 + ϵ (3)

where y is a vector of first-stage BLUEs, a is the fixed effect of the
season design matrix S1, b is the fixed effect of the environmental
design matrix E1, u2 is the slope of the SNP marker effect, where
u2 ~ N(0, IE ⊗ I su

2) and⊗ denotes the Kronecker product. Z2 is
a design matrix connecting phenotypes, lines and environments.
Z1 and u1 are defined as described above. IE is the diagonal
matrix for the levels of environmental factor E. Different levels
for E were constructed:

• The trials in Darien (with different P conditions in the soil),
the drought trials in Palmira, and the irrigated trials in
Palmira were considered as three distinct environments
(Darien, Palmira drought, Palmira irrigated). The resulting
model was called Marker * Env model.

• The trials with drought and low P conditions were considered
as a stressed environment. The remaining trials were
considered as a non-stress environment. The resulting
model was called Marker * Stress model.
July 2020 | Volume 11 | Article 1001

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Keller et al. Genomic Prediction in Common Bean
Prediction of New Lines Accounting for G × E and
QTL Effects
Significant SNP markers from the GWAS using second-stage
BLUEs for all trials were included additionally in the Marker *
Env model as fixed effects. This model was named QTL model. The
equation to account formultiple environments andQTL effects was:

y = S1a + E1b + Q1c + Z1Gu1 + Z2Gu2 + ϵ (4)

where y is a vector of first-stage BLUEs, c is the vector of fixed
effects for the significant QTL based on the Bonferroni corrected
p value at 0.05 significance level. Hereby, QTL analysis was
carried out on adjusted genotypic values as described in the
section GWAS without adding principal components. Q1 is the
design matrix for the identified QTL.

Parameter Optimization for Genomic
Prediction
In order to optimize PAs, three different settings were tested
using i) different modeling algorithms, ii) different amounts of
SNP markers, iii) different proportions of training and validation
sets. The overall second-stage BLUEs obtained from Equation (1)
and the SNP matrix of the VEF lines were used for predictions
according to Equation (2). In addition, the phenotypic and
genotypic data from the MAGIC population of common bean
was included in this test as a contrasting population.

The first setting tested different priors for parametric linear
regressions on the genetic markers including i) a Gaussian
(Bayesian ridge regression), ii) scaled-t (BayesA) or iii) double-
exponential priors (Bayesian Lasso); two-component mixtures
with a point of mass at zero with either iv) a Gaussian (BayesC)
or v) a scaled-t slab (BayesB). In addition, Bayesian Reproducing
Kernel Hilbert Spaces (RKHS) regressions were tested fitting vi) a
GBLUP model providing a kinship matrix and vii) a single
Gaussian kernel RKHS model with fixed bandwidth parameter.
The second setting tested a reduced set of markers that was
chosen either randomly or based on a MAF and linkage
disequilibrium (LD) criteria. The marker filtering based on LD
was done using the command ‘indep-pairwise’ of PLINK
(v1.90b6.9) pruning markers above the LD threshold in 50 kbp
windows (Chang et al., 2015). The step-size parameter was 5 kbp
and the LD r² thresholds were 0.3, 0.5, 0.7, 0.9 and 0.95. The last
setting tested for variable proportions of the training population,
ranging from 5 to 95%. All these settings were tested with 100
fold random cross-validation for each trait separately.

Modeling Optimization for Genomic
Prediction
For modeling optimization, Bayesian ridge regression was
chosen to solve the linear model. Predictions were done using
randomly 70% of the lines as the training set and 30% as the
validation set. The validation set was either from the same
season as the training set (new line in observed season) or it was
different from the seasons in the training set (new lines in a
future season). In the latter case, 30% of the lines were taken as
the validation set and thus were removed from all the remaining
seasons in the training set. The PA is expressed as Pearson
Frontiers in Plant Science | www.frontiersin.org 5
correlation coefficients between GEBVs and TBVs. The cross
validation was repeated 100 times.

Cross-Validation of New Lines in the Observed
Season
Predictions of new lines were done using Equation (2) within
each trial separately and overall trials based on first- and second-
stage BLUEs, respectively. New lines means that these
individuals had no observation in the training set.

Cross-Validation of New Lines in Future Season for
Model Comparison
New lines were predicted into a future season based on the
remaining lines in the remaining seasons. This means that the
new individuals and the predicted future season had no
observations in the training set. All different models described
were calculated using Equations (3) and (4).

Cross-Validation of New Lines in Future Seasons
While Cumulatively Adding Data
Predictions of new lines in future seasons were based on trials that
were chronologically done before the predicted trial. Additionally,
future seasons described seasons whose observations were not used
in the training set, i.e., the future season was predicted based on all
the remaining seasons (regardless of the chronological order). The
first scenario aims to mimic a breeding program where data
accumulates over the seasons that are used to predict new lines in
future seasons. The second aims to compare the prediction for new
lines in future, unobserved seasons when the training set has always
the same amount of seasons, i.e., all but the one season which is to
be predicted. The Marker * Env model described in Equation (3)
was used for these predictions. The 100-fold cross-validation was
done as described above. Second-stage BLUEs of phenotypes in the
training set were calculated using Equation (1) in order to
determine the phenotypic correlations with the predicted season.

Heritability
Genomic heritability was calculated using post mean genetic
variance according to De los Campos et al. (2015) and
Lehermeier et al. (2017b). Genomic heritability takes the
variance explained by the genomic markers as genetic variance
instead of the variance explained by the lines (as in the
conventional calculation of heritability) (De los Campos et al.,
2015). The extended approach of Lehermeier et al. (2017a)
averages the variance of the GEBVs within the thinned
Markov chain Monte Carlo. The number of iterations was
10,000 with the first 5,000 as burn-in without partition of
training and validation set. The remaining 5,000 iterations
were thinned by factor 10. Then the genetic variance (variance
of the GEBVs) and error variance was divided by the genetic
variance in all of these iterations and averaged.

The broad-sense heritability was calculated using the function
‘getHeritability’ provided in the SpATS package, which uses the
nominal and effective dimensions of the genotypic term when it
is fitted as a random effects factor (Oakey et al., 2006; Rodrıǵuez-
Álvarez et al., 2018). Broad-sense heritability was calculated for
each trial separately and for all trials together.
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RESULTS

Phenotypic Evaluation of Field Trials
Twelve field trials were carried out in two locations to evaluate
agronomic traits, under irrigated and drought conditions in
Palmira and under different P conditions in Darien. Between
156 and 345 lines were evaluated in each trial (Supplementary
Figure 1). The measured traits, 100SdW, DF, DPM and seed
yield, showed strong season-to-season variation (Figure 1). The
variation between seasons and locations was associated with
the different climatic conditions (Supplementary Figure 2).
Particularly, DF and DPM were delayed in the higher altitude
location Darien compared to Palmira (Figure 1). The 100SdW
was generally lower under rainfed conditions and the three
lowest yielding trials were observed under rain fed conditions,
indicating drought stress. However, total precipitation during a
trial showed only a weak correlation with yield, suggesting
significant factors other than drought constraining yield
(Supplementary Figure 3).

Phenotypic correlations between trials were positive for all
traits (Supplementary Figure 4). Most correlations between trials
on the same location were highly significant with higher
coefficients in DF (between 0.25 and 0.87) than yield (between
0.22 and 0.72). These values were lower comparing trials from
different locations for DF (between 0.13 and 0.65) or yield (0.2 and
0.36). Broad-sense heritabilities were high for DF (0.55 to 0.97),
Frontiers in Plant Science | www.frontiersin.org 6
DPM (0.66 to 0.93) and 100SdW (0.81 to 0.95) and lower for yield
(0.45 to 0.85). The trial with the lowest yield heritability in
Palmira, Pal14C_drt, was affected by a virus infection, leading to
increased variation and lower phenotypic correlations with other
trials. There was no clear pattern of trait correlations between
drought and irrigated conditions (Supplementary Figure 4). The
correlation of DF and DPM with seed yield over all trials was
slightly negative (Supplementary Figure 5). In summary, the
heritabilities were rather consistent among traits and no extreme
G × E effects were observed across the twelve trials.

Genotypic Results
In total, 5,820 high-quality SNP markers were called in the 487
lines of the VEF panel. The missing genotype calls were set to 20%
before imputation. After removing markers with identical calls
within the population, 4,962 markers remained. A low population
structure was visible in the VEF panel (Figure 2). The first two
PCA axes explained 16% of the variance in the SNP data. A few
samples in Figure 2A were located slightly distant from the main
cloud of points, which likely contain a higher level of admixture
with the Mesoamerican genepool. However, no defined clusters
were visible in the distribution of samples in the two-dimensional
space. Similarly, the neighbor-joining tree shows small clusters
with no clear pattern of group differentiation (Figure 2B). Taken
together, these results indicate a moderately low population
structure as expected from a panel of breeding lines.
FIGURE 1 | Phenotypic variability of 100 seed weight (100SdW), days to flowering (DF), days to physiological maturity (DPM), and seed yield evaluated in up to
twelve field trials. The trials were carried out between 2013, first planting season ‘A’ and 2018 third season ‘C’ under drought, irrigated and different phosphorus (P)
conditions in Darien (Dar) and Palmira (Pal), Colombia. In total, 481 common bean lines were evaluated (between 156 and 345 lines per trial). Best linear unbiased
estimators (BLUEs) were obtained for each trait and trial, adjusting for spatial effects in the field in a first-stage analysis. In addition, weighted BLUEs were calculated
over all trials in a second-stage analysis.
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QTL Mapping
The GWAS was conducted on the whole population in order to
identify QTL in this elite breeding panel within and across trials
and conditions. Several QTL were identified for all evaluated
traits when using second-stage BLUEs over all twelve trials
(Figure 3). Major QTL were identified at the end of Chr 1 at
49.7 megabase pair (Mbp) and the beginning of Chr 2 at 4.6 Mbp
for DF and 100SdW, respectively. Interestingly, another QTL at
Chr 2 at 46.4 Mbp was found repeatedly for DF, DPM and seed
yield (Supplementary Table 3). Furthermore, an additional yield
QTL to Chr 7 was mapped between 38 and 39.5 Mbp.

In the following, GWAS were conducted using second-stage
BLUEs for the different environmental conditions (Supplementary
Figure 6). One QTL at the beginning of Chr 2 between 1.4 and
4.7 Mbp was identified for 10SdW and DF under all three
environmental conditions. The QTL at the end of Chr 2 was
detected again for seed yield under all three environmental
conditions between 46.2 and 46.6 Mbp. Regarding DF, a QTL on
Chr 1 was detected under irrigated conditions in Palmira and in the
location Darien between 42.5 and 44.6 Mbp, while under drought
conditions in Palmira a major QTL on Chr 9 at 29.9 Mbp
was identified.

To investigate QTL stability among the twelve trial
conditions, GWAS was conducted for each trial independently
using first-stage BLUEs (Supplementary Figure 7). The detected
QTL were rather inconsistent among the different trials: the most
stable QTL was detected for DF on Chr 2 at around 4.2 Mbp in
five out of the twelve trials.

Optimization of Genomic Prediction
Parameters
To identify optimal GP settings, the effect of several parameters
on the PA were evaluated in the Andean VEF panel and
compared to the Mesoamerican MAGIC population (Diaz
et al., 2019). The MAGIC population was developed by
Frontiers in Plant Science | www.frontiersin.org 7
intercrossing eight Mesoamerican breeding lines, resulting in a
lower population structure (Supplementary Figure 8). For the
first test, different parametric models were evaluated for the four
traits. The tested algorithms generally performed very similar
(Supplementary Figure 9). The RKHS algorithm slightly
outperformed the other algorithms in several traits, apart from
DF in the MAGIC population. However, it does not return SNP
marker effects. Therefore, for the remaining analyses, Bayesian
ridge regression was chosen.

The effect of marker density on PA was tested by a reduction
of the original number of markers either randomly, based on LD
or based on MAF (Figure 4, Supplementary Figure 10). Models
using marker sets with a higher MAF threshold (0.1) had a
decreased maximum PA while the marker sets with the smallest
MAF filter (0.01) showed best performance. Reducing markers
based on LD showed that the number of markers could be
reduced to 1,000 without losing PA. In the VEF panel, marker
reduction based on LD was more successful compared to random
marker reduction, increasing PAs up to 4%. However, the same
strategy produced rather unfavorable effects on PAs (up to −2%)
for the MAGIC population. In general, there was no clear
detrimental effect of larger marker numbers on PAs, even if
the markers were of lower quality. The more markers were used
the better were the PAs for all traits.

Partitioning between training and validation set showed an
optimum at around 70:30% (Supplementary Figure 11). A
training set of less than 30% strongly reduces PA due to an
insufficiently sized training set that results in overfitting of the
model. Similarly, a training set >80% leads to large variation
between cross validations due to an excessively small validation
set that is not robust when some outliers are present.
Interestingly, the larger MAGIC population showed a similar
behavior even though it would be expected that a larger number
of individuals would reach a plateau in PA with a smaller
training set percentage.
A B

FIGURE 2 | Assessment of population structure for the VEF population including 481 common bean lines with 5,820 SNP markers: (A) The principal component
analysis shows the location of each genotype defined by the eigenvectors of the first and second principal components. (B) The unrooted neighbor-joining tree
indicates the absence of a clear differentiation pattern between lines. The length of the lines in the tree shows the simple matching distance.
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Genomic Prediction Abilities for
Agronomic Traits
Genomic PAs for each trial and across all trials were calculated.
PAs differed between trials and traits and followed the broad-
sense and genomic heritability (Figure 5). PAs within trials
reached in general 50 to 80% of the genomic heritability, both
for complex traits as yield and more simple traits like DF.
Average PAs for yield ranged between 0.25 and 0.6, whereas
the remaining traits reached higher values up to 0.8. The
missing heritability, which is the difference between the
broad-sense and genomic heritability, seemed to be highest
in the 100SdW trait.

PAs were similar between drought and irrigated conditions in
Palmira. Beyond differences in heritabilities, there was no strong
trend indicating that certain seasons show better PAs than
others. The trials in Darien, which only had two replicates, had
in general lower PAs. The low P trial resulted in similar PAs as
Frontiers in Plant Science | www.frontiersin.org 8
the higher P trials, regardless that this trial was only partially
replicated. Because of the few partial replicates, the broad-sense
heritability was not calculated for this trial. In summary, the PAs
were dependent on the trait heritability of each trial.

Across all seasons, PAs for new lines based on the BLUEs
reached 0.8 for DPM and 0.6 for seed yield (Figure 5). The SNP
marker effects obtained from the BRR model over all seasons are
shown in Supplementary Figure 12.

Prediction Abilities Between Trials—
Prediction Model Improvement With G × E
and QTL Co-Factors
PAs for new lines in future seasons (whose data was not used to
generate the prediction model) depend strongly on the
environmental conditions present in such future seasons. The
modeling of G × E accounts for specific responses of lines to
environmental conditions. This could improve PAs for new
A B

FIGURE 3 | Genome-wide association study for in total 481 common bean lines using second-stage best linear unbiased estimators (BLUEs) across twelve trials for
the traits 100 seed weight (100SdW), days to flowering (DF), days to physiological maturity (DPM), and seed yield. (A) The Manhattan plots show the significance of
associations of every SNP marker for each trait calculated using the BLINK algorithm, implemented in GAPIT. The vertical line indicates a common QTL for DF, DPM
and seed yield. The horizontal line shows the false discovery rate (p = 0.05) to identify significant associations. (B) Q–Q plots show the distribution of the negative
logarithm of expected and observed p values.
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lines in a new season when a trial with similar environmental
conditions is present in the training set. Including G × E factors
in the GP model improved PAs especially under drought
conditions (Figure 6). For example, the Marker * Env model
increased PAs for DF and seed yield in most of the drought
trials. Particularly, PAs for yield increased between 3 and 10%
based on the mean of the 100-fold cross-validation, except in
Pal13C_drt where PAs decreased slightly. Interestingly, in the
low P trial, prediction for seed yield could be improved by 22%
when including stress interaction from the Marker * Stress
model. This model was trained on all the remaining trials
including the genotypic interaction under drought conditions.
It indicates that adding drought specific effects in the model
improves PA for low P conditions. The variance explained by
the G × E terms reached 24% in yield when using lines as in
Equation (1) (Supplementary Figure 13A). It was below 5%
for all traits and both tested models when lines were
represented by the molecular markers as in Equation (3)
(Supplementary Figure 13B). As a second potential model
improvement, SNP markers associated with QTL were added as
fixed effects to the genomic model (QTL model). However, this
did not result in improved PAs and the selected QTL on the
training set varied often (Supplementary Figure 14). In
summary, an increase of PAs for future seasons was observed
for trials under abiotic stress conditions by taking into account
GxE but not QTL effects.
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Prediction Ability With Increasing Data—
Building a Cumulative Prediction Model
Over Consecutive Years
In order to simulate processes in a breeding program, new lines
were predicted in a new season based on the training set of
accumulated data from prior seasons (Figure 7). A breeding
program could make use of collected data to develop prediction
models over several years, i.e., the training set consists of all data
acquired cumulatively up to the new predicted season. As a
comparison for optimal prediction of a particular season, we used
the investigated season as the validation set and all remaining
seasons as training data (including those before and after the
analyzed season). In the cumulative sequence, the first trials were
predicted with lower accuracy. The PA increased in general when
more data was accumulated over the years reaching values close to
the genomic heritability after around three seasons (Figure 7,
colored boxplots). The trials in the new location Darien with no
previous data available were predicted with low accuracy. In these
trials, the phenotypic correlation of the new trial with the training
set was significantly smaller than the genomic heritability
indicating insufficient training data for this location and specific
G × E effects. The more data was available from a similar
environment the better were the genotypic predictions in a
certain season. In consequence, PAs were generally higher when
using all the remaining data instead of only the preceding data
(Figure 7, black boxplots). The phenotypic correlation between
FIGURE 4 | Genomic prediction abilities of seed yield in response to the number of utilized markers evaluated in the VEF and the MAGIC populations. The markers
used for prediction were chosen either randomly (the white line and its gray stripe show the average prediction ability and its corresponding standard deviation) or
based on LD and MAF parameters (colored ranges, the middle point and its error bar represent the average prediction ability and its standard deviation). The
distribution of values in this plot corresponds to 100-fold cross validations with 70:30 training:validation population partitioning.
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the training set and a future season as validation set constitutes the
limit for the PA. This represents the accuracy of a breeder’s ability
to predict the outcome of a future trial without genotypic
information. With more data available, predictions reached
accuracies close to phenotypic correlation.
DISCUSSION

We carried out the most extensive analysis of GP in common
bean so far using data of elite breeding lines of the CIAT breeding
program. PAs of four traits under different environments
increased with more data available and reached usually 50–
80% of the genomic heritability. Predictions differed between
traits and reached best accuracies in DF (Figure 5). The genetic
architecture of DF is comparatively simple and has been
modelled before (Bhakta et al., 2017; Wallach et al., 2018).
However, also complex traits such as yield reached good PAs,
e.g. between 0.3 and 0.6 in our study. Barili et al. (2018) achieved
lower PAs for grain yield in common bean, however, based on a
much smaller dataset containing 80 lines. In chickpea, the PA for
seed yield, DF, DPM and 100SdW were similar as in our study,
i.e. about 0.5 for seed yield predicting new lines in observed trials
Frontiers in Plant Science | www.frontiersin.org 10
(Roorkiwal et al., 2016). These results show that genomic
prediction of simple and complex traits is promising for
implementation in the bean breeding program.

Prediction of New Lines
Across Environments
Predictions improve with more available data, which increases trait
heritability and allows to model G × E (Spindel andMcCouch, 2016).
About 17% better accuracy was reported for maize yield over twelve
years when G × E on a big range of 58 environments were included
(Acosta-Pech et al., 2017). Another study found an increase in PA of
11% for height in barley when G × E was accounted for (Oakey et al.,
2016). In our dataset, themodeling of G × E increased the PAs of new
lines across seasons up to 10% under drought conditions (Figure 6).
Similarly, in chickpea, G × E did slightly improve predictions for
agronomic traits in future seasons (Roorkiwal et al., 2018). In a
historical wheat dataset G × E did not improve PA (Dawson et al.,
2013). PAs generally increased when more data was available in the
training set (Figure 7). PAs came close to the phenotypic correlations
between trials when all twelve trials were considered as the training
set. Previous reports suggested working with less replicates in more
environments to account better for G × E, especially in the early
selection process (Cooper et al., 2014; Bustos-Korts et al., 2016).
FIGURE 5 | Genomic prediction abilities evaluated separately for each of the twelve trials as well as over all seasons in a total of 481 lines. The 100 seed weight
(100SdW), days to flowering (DF), days to physiological maturity (DPM), and seed yield were evaluated between 2013 and 2018 in season ‘A’ or ‘C’, under drought,
irrigated and different soil phosphorus (P) conditions in Darien (Dar) and Palmira (Pal), Colombia. The model predictions were based on 4,962 SNP markers using
Bayesian ridge regression. In the overall predictions, new lines were predicted based on the second-stage best linear unbiased estimators (BLUEs) obtained from all
the trials. Black dots and triangles indicate broad-sense and genomic heritability, respectively.
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Similarly, PAs of the low P trial in Darien with only partial replicates
were comparable to the higher P treatments with two replicates.
Phosphorus and drought tolerance are genetically linked (Beebe et al.,
2008). Thus, these traits can potentially contribute to predicting each
other. However, these results need validation with more locations to
confirm that the G × E are indeed similar. Including G × E via
genotypic responses to, e.g., heat or precipitation, could be a
promising step in order to further improve PAs (Heslot et al., 2014;
Millet et al., 2019). In conclusion, a continuous prediction model
over the years provided increasing PAs suitable for breeding
applications. Even though the modelled effect of G × E was minor,
it allows more accurate selection of superior individuals for specific
environmental conditions.

QTL Mapping and Genomic Prediction
Molecular markers associated with major QTL for different traits
are already developed and used in the CIAT breeding program
(Diaz et al., 2018; Gil et al., 2019). In the current study, QTL for
DF were mapped to Chr 1 between 42.5 and 49.7 Mbp (Figure
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3). Within this region, the PvTFL1y flowering gene was identified
on Chr 1 at 44,855,370 bp (Kwak et al., 2012). PvTFL1y was
reported to explain 66% in vegetative growth and 19% for the
rate of plant production (González et al., 2016). Associations
close to this gene were also found in another Andean diversity
panel (Cichy et al., 2015). The identified QTL for DF under
drought conditions on Chr 9 at about 29 Mbp did not match the
position reported in earlier studies (at about 14 Mbp) (de
Campos et al., 2011). In this study, GWAS was not successful
in identifying major QTLs, which were stable over many trials
(Supplementary Figure 7). This was expected for complex traits,
which show strong influence by G × E. Therefore, e.g., the QTL
for seed yield found in a diverse germplasm set of Kamfwa et al.
(2015) could not be confirmed in our study. In contrast, new
lines across seasons were well predicted using GP models.
Therefore, selection of single markers does not appear
promising for complex traits, whereas GP provides good
predictions of phenotypic data based on all available
genetic markers.
FIGURE 6 | Genomic prediction abilities for new lines in new seasons compared for different models using 100 fold cross validation. Different genotype ×
environment interactions were considered to improve the basic SNP marker model among different traits: Modeling the effects of drought and irrigated conditions in
Palmira and the location effect of Palmira separately (Marker * Env model), the stress effect for drought and low P conditions (Marker * Stress model) or the Marker *
Env with fixed QTL effects (QTL model). The 100 seed weight (100SdW), days to flowering (DF), days to physiological maturity (DPM), and seed yield were evaluated
in up to twelve trials. The trials were carried out between 2013 first planting season ‘A’ and 2018 third season ‘C’ under drought, irrigated and different phosphorus
(P) conditions in Darien (Dar) and Palmira (Pal), Colombia.
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GPmodels have been reported to improve PA when significant
GWAS-identified markers were incorporated as fixed effects (Bian
and Holland, 2017). This strategy works well when the traits are
highly heritable and QTL with major effects are detectable (Bian
and Holland, 2017; Sarinelli et al., 2019). However, Rice and Lipka
(2019) reported that the inclusion of fixed effect QTL negatively
affected GP model accuracy. In our panel, no improvement was
observed probably because the QTL were not stable over the
different trials (Supplementary Figure 7).

Parameters and Algorithms
GPs can be optimized regarding training population and
algorithms. In our study, the training population size was optimal
when using between 50 and 80% of the population. In general, the
larger the training population the greater the prediction potential
(Spindel and McCouch, 2016; Sarinelli et al., 2019). Overfitting by
using too many markers in the model was not observed in our
study. The PA generally saturated after around 1,000 markers,
adding more markers did not negatively affect PA (Figure 4,
Supplementary Figure 10). Regarding the different algorithms,
most performed similarly as shown in previous studies
(Roorkiwal et al., 2016; Bellot et al., 2018). In chickpea, the same
traits as in our study were similarly predicted with 3,000 markers
using Bayesian priors and random forest (Roorkiwal et al., 2016).
Other studies found that different algorithms including deep neural
networks performed differently based on the trait (Blondel et al.,
Frontiers in Plant Science | www.frontiersin.org 12
2015; Azodi et al., 2019). In such cases, the combination of results
predicted by different algorithms (ensemble predictions) may
maximize the prediction performance (Azodi et al., 2019). Based
on our study, RKHS would be suggested for selection purposes as it
is fast and performs well, while Bayesian ridge regression is
suggested if marker effect values are desired. Based on the
observation that more markers and different models did not
increase PA, we conclude that precise and reliable phenotypic
data is currently the principal bottleneck of GP, which is tightly
linked to experimental design settings like trial size, number of
replicates or trial locations.
CONCLUSION

GPwas evaluated in common bean using twelve field trials with elite
Andean breeding lines, testing several models and parameters to
identify the optimal model settings. New lines were predicted with
PAs of up to 0.6 for yield over all environments and trials, which is
close to the estimated heritability. This suggests GP as a powerful
tool for selection in breeding programs. Genomic selection can be
employed to increase genetic gain through early-generation
selection or by replacing costly and time-consuming phenotyping.
Based on the marker effects, genomic mating strategies can be
further developed to select best possible parents for new crosses
(Lehermeier et al., 2017a; Allier et al., 2019). The inclusion of G × E
FIGURE 7 | Genomic prediction abilities for seed yield in a breeding program using chronological data accumulated up to the predicted season (colored boxplots),
and data over all seasons (black boxplots) to predict new lines in new seasons using 100 fold cross validation. In total 4,962 markers were fitted using Bayesian
ridge regression and the Marker * Env model (see Material and Methods). In total, twelve trials between 2013 first planting season ‘A’ and 2018 third season ‘C’
under drought, irrigated and different phosphorus conditions in Darien (Dar) and Palmira (Pal), Colombia were evaluated.
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interactions allows specifically selecting for stress tolerant lines to
maintain food security under changing climatic conditions.
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Pérez, P., and de los Campos, G. (2014). Genome-Wide Regression and Prediction
with the BGLR Statistical Package. Genetics 198, 483. doi: 10.1534/
genetics.114.164442

Perea, C., De La Hoz, J. F., Cruz, D. F., Lobaton, J. D., Izquierdo, P., Quintero, J. C.,
et al. (2016). Bioinformatic analysis of genotype by sequencing (GBS) data with
NGSEP. BMC Genomics 17, 498. doi: 10.1186/s12864-016-2827-7

Polania, J., Rao, I. M., Cajiao, C., Grajales, M., Rivera, M., Velasquez, F., et al.
(2017). Shoot and Root Traits Contribute to Drought Resistance in
Recombinant Inbred Lines of MD 23–24 × SEA 5 of Common Bean. Front.
Plant Sci. 8 (296), 1–18. doi: 10.3389/fpls.2017.00296

Rao, I. M., Beebe, S. E., Polania, J., Grajales, M., Cajiao, C., Ricaurte, J., et al. (2017).
Evidence for genotypic differences among elite lines of common bean in the
ability to remobilize photosynthate to increase yield under drought. J. Agric.
Sci. 155, 857–875. doi: 10.1017/S0021859616000915

Rice, B., and Lipka, A. E. (2019). Evaluation of RR-BLUP Genomic Selection Models
that Incorporate Peak Genome-Wide Association Study Signals in Maize and
Sorghum. Plant Genome 12 (1), 1–14. doi: 10.3835/plantgenome2018.07.0052
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