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Aluminum (Al) toxicity is the primary limiting factor that affects crop yields in acid soil.
However, the genes that contribute to the Al tolerance process in maize are still poorly
understood. Previous studies have predicted that ZmAT6 is a novel protein which could
be upregulated under Al stress condition. Here, we found that ZmAT6 is expressed in
many tissues and organs and can be dramatically induced by Al in both the roots and
shoots but particularly in the shoots. The overexpression of ZmAT6 in maize and
Arabidopsis plants increased their root growth and reduced the accumulation of Al,
suggesting the contribution of ZmAT6 to Al tolerance. Moreover, the ZmAT6 transgenic
maize plants had lower contents of malondialdehyde and reactive oxygen species (ROS),
but much higher proline content and even lower Evans blue absorption in the roots
compared with the wild type. Furthermore, the activity of several enzymes of the
antioxidant system, such as peroxidase (POD), superoxide dismutase (SOD), catalase
(CAT), and ascorbate peroxidase (APX), increased in ZmAT6 transgenic maize plants,
particularly SOD. Consistently, the expression of ZmSOD in transgenic maize was
predominant upregulated by Al stress. Taken together, these findings revealed that
ZmAT6 could at least partially confer enhanced tolerance to Al toxicity by scavenging
ROS in maize.

Keywords: aluminum toxicity, ZmAT6, maize, reactive oxygen species, antioxidant
INTRODUCTION

Acidic soils refer to soil with pH ≤ 5.5, occupying almost 30% of the arable soil and 50% of the
potential cultivated land (von Uexküll and Mutert, 1995). Aluminum (Al), the third abundant
element in the earth’s crust, can be converted into soluble and toxic Al3+ which is the major limiting
factor for plants’ growth in acidic soil (Kochian et al., 2004). Aluminum toxicity could rapidly
inhibit the elongation of the root system even in a micromolar concentration, then affect the
absorption of water and nutrients, and eventually resulting in the decline of crop yield (Kinraide,
1990; Ma and Furukawa, 2003; Kochian et al., 2004). Improving the physiological and genetic
tolerance to Al in crops has long been a challenging problem for researchers.
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To cope with Al stress, plants have evolved a series of aluminum
resistant mechanisms. The primary Al-tolerance mechanisms in
plants refer to the exclusion tolerance and internal tolerance
(Kochian, 1995; Ma et al., 1997; Ma, 2000; Daspute et al., 2017).
The common feature of the Al exclusion mechanisms is to prevent
Al from entering the root apex by the excretion of detoxified
organic acids (OAs) and Pi ligands to the apoplast or rhizosphere.
The internal tolerance mechanism refers to the sequestration of Al
into vacuoles and its detoxification by chelation (Ma, 2000; Zheng
and Yang, 2005). Both mechanisms are controlled by the
expression of a series of genes. In recent decades, many genes
related to Al tolerance have been identified, such as organic acid
transporter genes (ALMTs and MATEs) (Hoekenga et al., 2006;
Furukawa et al., 2007; Liu et al., 2013), antioxidative stress-related
genes (Wu et al., 2017), also including those encoding aluminum
transporter (Nramps and ABC transporter, aquaporins) (Huang
et al., 2012; Li et al., 2014; Kochian et al., 2015; Lu et al., 2017;
Wang et al., 2017), enzymes related to cell wall polysaccharide
metabolism (XTHs) (Zhu et al., 2012; Zhu et al., 2014), and
transcription factor (STOP, WRKY, ASR, NAC) (Iuchi et al.,
2007; Ding et al., 2013; Arenhart et al., 2016; Li et al., 2018; Lou
et al., 2019).

Previous studies have reported that one of an important
component of the plant’s reaction to toxic levels of Al is
oxidative stress, because Al3+ can induce the increase of active
reactive oxygen species (ROS) and lipid peroxidase related
enzyme activities in plants such as soybean, Arabidopsis,
wheat, and maize (Cakmak and Horst, 1991; Keith et al., 1998;
Giannakoula et al., 2010; Xu et al., 2012; Sun et al., 2017). In
other words, the exposure of plants to an excessive amount of Al
usually leads to the overproduction of ROS (Yamamoto et al.,
2001; Exley, 2004) and lipid peroxidation, resulting in dysfunctional
organelles, serious cell damage, and even cell death (Yamamoto
et al., 2003; Šimonovičová et al., 2004; Kochian et al., 2005). The
major source of ROS in Al stressed plants is the activated plasma
membrane NAPDH oxidase which can lead to the production of
O2

·− and H2O2 (Sagi and Fluhr, 2001). Al3+ can quickly cross the
plasmamembrane and activate the Fenton reaction in the cytoplasm
which increases the content of ROS in cells (Taylor et al., 2000).

To protect the plants from Al-triggered oxidative stress, they
have evolved two defense ways, including enzyme-catalyzed
antioxidant system and non-enzymatic system, to decrease
ROS production, detoxify ROS, and stimulate the recovery from
ROS-induced damages (Ahmad et al., 2010; Chowra et al., 2017;
Daspute et al., 2017). The enzyme-catalyzed antioxidant system
mainly improve the activity of antioxidant enzymes which include
peroxidase (POD), superoxide dismutase (SOD), catalase (CAT),
and ascorbate peroxidase (APX) (Ezaki et al., 2013), or increase the
expression level of antioxidant enzyme genes (Irany et al., 2018).
While the non-enzymatic antioxidants are ascorbate (AsA) and
glutathione (GSH) (Xu et al., 2012). Ectopic overexpression of wheat
WMnSOD1 and alternative oxidase gene improved Al tolerance in
transgenic Brassica napus plants and tobacco cells, respectively
(Basu et al., 2001; Panda et al., 2013). Transgenic Arabidopsis
plants, which overexpressed three glutathione S-transferase genes
and two peroxidase genes of tobacco, were endowed with strong
Frontiers in Plant Science | www.frontiersin.org 2
aluminum tolerance (Ezaki et al., 2000). Besides, it was also reported
some upstream gene, such as OsPIN2, and PEPC and PPDK, which
are in positive control of the expression of antioxidant enzyme gene,
could also enhance the tolerance of transgenic rice plants to Al
toxicity via reducing the production of ROS, improving the activity
ROS-scavenging enzyme, and weakening lipid peroxidation (Wu
et al., 2014; Zhang et al., 2018). Additionally, it was also believed that
the synthesis of cysteine-rich proteins can reduce the production of
ROS. Fortunately, one of this protein had been identified as an Al
tolerance gene that regulated the transcription by STOP1-like
protein (ART1) in rice (Xia et al., 2013).

ZmAT6 (aluminum tolerance 6) gene, which encodes an
unknown protein and is upregulated by Al stress, was
identified from gene chip data in our previous study (Xu et al.,
2017). In this study, we aimed to investigate the role that ZmAT6
played during Al stress. The Al tolerance-related phenotype of
ZmAT6 was assessed in transgenic maize plants and Arabidopsis,
as well as various indices of Al tolerance. The mechanism
underlining the involvement of ROS scavenging in the ZmAT6-
mediated antagonization of Al toxicity was explored.
MATERIALS AND METHODS

Plant Materials and Growth Conditions
The Al-tolerant maize inbred line 178, which has a high value of
relative root growth (RRG = 45%) in our previous study (Xu
et al., 2017), was used in this study. The seeds of 178 were first
sterilized with 75% (w/v) alcohol for 2 min, then with 2% (w/v)
NaOCl for 8 min, and finally germinated in quartz sand for 7 d
under 28°C, 60% relative humidity and a photoperiod of 16 h/8 h
(light/dark) cycle. After germinating, the seedlings were transferred
to Hoagland’s solution (Hoagland and Arnon, 1950) and grown for
5 days to the three-leaf stage for further treatment. The nutrient
solution was adjusted to pH 5.8 with HCl and renewed every two
days. The greenhouse conditions were now set as 14 h/28°C and
10 h/22°C day–night cycle, 70% relative humidity and 300 mmol
m−2s−1 intense luminosity.
Sequence Characteristic Analysis
of ZmAT6
Multiple sequence alignment of ZmAT6 (GRMZM5G886177)
and its homologs was performed using DNAMAN (LynonBiosoft).
Promoter analysis was performed by PlantCARE (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/), and the
cis-elements are listed in Table S2.

Analysis of the Expression of ZmAT6 by Semi-Quantitative
RT-PCR and Real-Time PCR

The tissues and organs 10 days after pollination, including the
roots, stems, leaves, ears, tassels, and kernels, were collected from
178; the seedlings were treated with 0.5 mM CaCl2 solution (pH
4.2) at 28°C overnight before treatment with Al and then
transferred into the same solution containing additively 60 µM
AlCl3 (pH 4.2) and treated for 0, 6, 12, 24, 48, and 96 h. All the
tissues were immediately frozen in liquid nitrogen and stored at
July 2020 | Volume 11 | Article 1016
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−80°C. Semi-quantitative RT-PCR and real-time PCR were
carried out as previously described (Lin et al., 2014). Three
biological replicates were performed for each experiment. The
primers used for ZmAT6 were listed in Table S3.

Subcellular Location
The subcellular localization of the ZmAT6 protein was predicted
by the WoLF PSORT program (http://wolfpsort.org) (Horton
et al., 2007). Moreover, the full length CDS of theZmAT6 gene
was ligated to pCAMBIA2300 to establish the ZmAT6:GFP vector.

Overexpression of the ZmAT6 Gene in
Maize and Arabidopsis
The full length coding sequence of the ZmAT6 gene was
amplified and ligated to the CPB vector behind the cauliflower
mosaic virus 35S (CaMV35S) promoter to construct the p35S:
ZmAT6 vector. The p35S:ZmAT6 vector was transformed into
immature maize callus of 18-599 by an Agrobacterium-mediated
method (Huang et al., 2018) and into Arabidopsis by the
flowering dip method (Clough and Bent, 1998). The transgenic
plants of maize and Arabidopsis were confirmed by PCR
amplification and harvested individually. The homozygous
seeds of T4 generation were used for future experiments.

Assessment of the Plant Growth, Relative
Root Growth, and Al Content
The seedlings of the transgenic maize and wild type (WT) 18-599
were transferred to Hoagland’s solution with or without 200 mM
AlCl3 (pH 4.2). After two weeks of culture, the fresh weights of
the underground part and the upper part of the ground were
measured separately.

The root lengths of the transgenic maize plants and wild type
were measured and treated as the initial length after pretreatment
with 0.5 mM CaCl2 for 12 h. The maize plants were exposed to 60
mMAlCl3 for 3 days, the final length of the root was recorded, and
the RRG was calculated (Sasaki et al., 2004; Sasaki et al., 2006).
The root tips (approximately 1 cm) were collected and measured
as previously described to determine the Al content (Osawa and
Matsumoto, 2001).

Measurement of Cell Membrane Integrity,
Lipid Peroxidation, and Proline Content
After treatment with 60 mM AlCl3 for 24 h, the roots of
transgenic maize plants and WT were immediately collected
and dyed as described by Baker and Mock (Baker and Mock,
1994). Lipid peroxidation was determined by measuring the
MDA content using the thiobarbituric acid method (Cakmak
and Horst, 1991). Free proline determination was assessed as
described by Bates (Bates et al., 1973).

Determination of ROS Related to
Aluminum Stress
After treatment with 60 mM AlCl3 for 24 h, the active oxygen
content was measured in the seedlings of transgenic maize and
WT (Jana and Choudhuri, 1982). The super oxygen free radical
Frontiers in Plant Science | www.frontiersin.org 3
(O2
·−) was measured by the hydroxylamine method (Elstner and

Heupel, 1976).

Antioxidant Enzyme Extractions, Activity
Assessment Assay, and Gene Expression
Detection
After Al treatment, roots were collected immediately, and 0.5 g of
the root sample was homogenized with 50 mM sodium phosphate
buffer (pH 7.0) containing 3 ml 1 mM ethylenediaminetetraacetic
acid (EDTA). Homogenates were then centrifuged at 4°C for
20 min at 15,365 g, and the supernatants were used to determine
the enzyme activity. The whole extraction procedure was carried
out at 4°C.

The activities of SOD, POD, CAT, and APX were determined
as previously described (Aebi, 1974; Giannopolitis and Ries,
1977; Nakano and Asada, 1981; Zheng and Huystee, 1992).

The relative expression of antioxidant enzyme genes in WT
and one of the maize transgenic line L5 (Figure S2) was detected
by RT-PCR, and the primers were listed in Table S3.

Statistical Analysis
All experiments were repeated at least three times, and data were
represented as the mean ± SD of the replicates. Student’s t tests at
p < 0.05 and 0.01 were performed to identify significant
differences between observation values using the SPSS21
software. The figures were drawn using the Origin 8.0 software
(Origin Lab Corporation, Northampton, MA, USA).
RESULTS

Cloning and Molecular Characteristics of
the ZmAT6 Sequence
Using gene specific primers, the complete CDS sequence of
ZmAT6 was isolated from the aluminum tolerance maize line
178. The 771 bp open reading frame (ORF) of ZmAT6 has three
exons and encodes a 27.79 kDa non-transmembrane protein with
a predicted pI of 5.80 (Figure S1, Table S1). Multiple sequence
alignment showed that ZmAT6 shared a higher similarity, up to
75.19%, with the rice homolog (Os01g0731600), higher than its
Arabidopsis counterpart (At1g78780) (51.56%) (Figure 1). In
addition, a promoter analysis of ZmAT6 revealed that it
included but was not limited to the binding sites GGN(T/g/a/C)
V(C/A/g)S(C/G) of ART1 (Table S2), the major transcriptional
factor that regulates the series of Al response genes in rice.
However, protein prediction did not reveal any particular
structure of ZmAT6.

Expression Pattern of ZmAT6 in Different
Organs and Under Al Treatment
To better understand the functions of ZmAT6, its expression
patterns in several organs, including roots, stems, leaves, ears,
tassels and kernels, at different growth stages were monitored
using semi-quantitative reverse transcription PCR (RT-PCR).
July 2020 | Volume 11 | Article 1016
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ZmAT6 was moderately expressed in all the organs with the
exception of its weak expression in ears (Figure 2A). Moreover,
to investigate the pattern of expression of ZmAT6 on Al
exposure, the mRNA abundance of ZmAT6 was monitored
further in roots and shoots under a time-course Al stress
treatment from 0 to 96 h. As shown in Figure 2B, the
transcription of ZmAT6 was dramatically upregulated after Al
treatment in the roots or the shoots. The Al-inducted expression
level of ZmAT6 was quite stable in the roots during the whole
process. Alternatively, ZmAT6 in the shoots exhibited a much
higher level of expression than in the roots. The mRNA abundance
of ZmAT6 peaked at time point six and then gradually decreased
during prolonged Al stress. These results indicated that ZmAT6
was sensitive to the fluctuating environmental Al3+ status in
seedlings and was involved in the tolerance to aluminum toxicity
in maize.

Subcellular Localization of ZmAT6
Using the WoLF PSORT program, ZmAT6 protein was
predicted to be localized in the chloroplast or cytoplasm. To
detect the subcellular localization of ZmAT6 protein, the coding
region of ZmAT6 was fused with the 3′ end of the GFP gene and
driven by the 35S promoter. The GFP gene alone under the
Frontiers in Plant Science | www.frontiersin.org 4
control of the 35S promoter served as the control. The subcellular
localization of ZmAT6 was determined in a transient expression
system in Nicotiana benthamiana leaves. The result indicated
that the 35S:ZmAT6:GFP fusion protein appeared to be localized
in the chloroplast but not the cytoplasm (Figure 3).

Overexpression of ZmAT6 in Maize Plants
Conferred Improved Al Tolerance
To further investigate the function of ZmAT6 under Al stress, the
entire ORF of ZmAT6 was inserted into the binary vector CPB
(Figures S2A, B), and the recombinant expression vector p35S:
ZmAT6 was transformed into maize inbred line 18-599. Finally,
10 independent transgenic plants of T0 generation were
identified and confirmed by PCR detection (Figure S2C).
Among them, three homozygous lines (L3, L5, and L10) of T3
generation with higher ZmAT6 expression (Figure S2D) were
propagated and selected for analysis.

To determine whether the overexpression of ZmAT6
enhanced the tolerance of the transgenic plants to Al, we
assessed the plant growth of the three overexpressed transgenic
lines of ZmAT6 (OE-ZmAT6) and the wild type (18-599, WT)
under normal and Al stress conditions. At the beginning, the
transgenic plants grew normally like the WT in a hydroponic
FIGURE 1 | ZmAT6 and its homologs are highly conservative.
July 2020 | Volume 11 | Article 1016
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A

B

FIGURE 2 | The expression pattern of the ZmAT6 gene. (A) Tissue and organ expression pattern of ZmAT6 in adult maize plants. The letter above the columns of
expression data refer to: R, root; St, stem; L, leaf; EA, ear; T, tassel; and K, kernel. (B) Transcription of ZmAT6 in the roots (R) and shoot (S) was quantified at 0, 6,
12, 24, 48, and 96 h after Al treatment (60 mM AlCl3, pH = 4.2). ZmGAPDH was used as internal reference gene. The values were presented as mean ± SD (n = 3)
and marked with different letters to indicate statistic significant difference at P < 0.05 (student’s t test).
FIGURE 3 | Subcellular localization of ZmAT6.
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culture (pH 4.2). Nevertheless, when cultivated in the same
solution containing 200 mM AlCl3, all of the OE-ZmAT6 plants
uniformly showed a high tolerance to Al. The mean value of RRG
of OE-ZmAT6 plants was 90%, much higher than that of the WT
Frontiers in Plant Science | www.frontiersin.org 6
(70%) (Figures 4A, D). As for the root fresh weight, the mean
value of ZmAT6 transgenic lines was about 87% heavier than that
of WT (Figure 4B), indicating a less inhibition of OE-ZmAT6
plants when subjected to Al stress. Moreover, the vigorous leaf
A

B C

D

F

G

FIGURE 4 | ZmAT6 overexpression enhanced aluminum tolerance in both transgenic maize and Arabidopsis. (A) Wild type (WT) and OE-ZmAT6 transgenic plants
were grown on hydroponic culture with or without Al treatment (60 mM AlCl3, pH 4.2). The corresponding (B) root fresh weight, (C) shoot fresh weight, (D) relative
root growth (RRG), and (E) aluminum (Al) content. Values represent mean ± SD (n = 3–5). Scale bar: 2.0 cm. Different letters indicate significant differences (P < 0.01)
(multiple comparison). (F) Wild type Col-0 and mutants Atat6 and ZmAT6 overexpressed (OX) transgenic Arabidopsis plants grown with or without aluminum
treatment (pH 4.2) and the corresponding (G) root length. Scale bar: 1.0 cm. Values represent mean ± SD (n ≥ 3). Different letters indicate significant differences (P <
0.01) (multiple comparison).
July 2020 | Volume 11 | Article 1016
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growth of the OE-ZmAT6 transgenic plants could also be verified
by the significant increase in the shoot fresh weights (Figures 4A,
C). Concerning the Al content in root tips, the mean value of
24.63 mg/g fresh weight (FW) was lower in the OE-ZmAT6 plants
than the 37.23mg/g FW in the WT (Figure 4E).

In addition, evidence from its Arabidopsis homolog AtAT6
reinforced the fact that AtAT6 could enhance or decrease
aluminum tolerance via overexpression or mutation (Figure S3,
Figures 4F, G). In comparison with theWT Col-0, the root length
of the Atat6 mutant (SALK_082224) was much shorter, while
those of the AtAT6-overexpressed (OX) Arabidopsis plants were
much longer on Al exposure (Figure 4G).

Furthermore, physiological indices related to Al-stress
tolerance, including Evans blue staining, malondialdehyde
(MDA) content, and proline (Pro) content, were also measured
in three OE-ZmAT6 transgenic lines and WT maize plants on Al
exposure. As shown in Figure 5 and Figure S4, the results
indicated that the mean values of the Evans blue uptake (1.80 OD
600/g) and MDA content (3.14 mM/mg FW) in the OE-ZmAT6
lines were significantly lower than those of the WT under Al
treatment. In contrast, the Pro content (15.80 mM/g FW) was
clearly higher than that in the WT (11.77 mM/g FW) when the
plants suffered from Al toxicity (Figure 5C). These results verified
the fact that overexpression of ZmAT6 conferred tolerance to Al
toxicity inOE-ZmAT6 plants and reduced the oxidative damage of
maize under Al stress.
Frontiers in Plant Science | www.frontiersin.org 7
ZmAT6 Is Related to the Scavenging
of ROS
To investigate whether ZmAT6 is related to the scavenging of
ROS, we measured the content of hydrogen peroxide (H2O2) and
the rate of production of the superoxide anion in the three OE-
ZmAT6 lines and the WT. Under normal conditions, no distinct
difference could be detected between the OE-ZmAT6 lines and
WT regarding these two indices. Nevertheless, both H2O2 and
the superoxide anion had increased in all the plants tested during
Al stress, and the amplitude was even higher in the WT than in
OE-ZmAT6 plants (Figures 6A, B).The increase of H2O2 content
and productive rate of superoxide anion in WT against OE-
ZmAT6 lines under Al stress were 0.38:0.09 (mM/L FW) and
0.24:0.11 (mM/mg) min, respectively. These results indicated that
ZmAT6 played an important role in the scavenging of the
excessive ROS caused by Al stress, which endowed transgenic
maize plants with the capacity to tolerate aluminum toxicity by
ROS cleaning.
ZmAT6 Improved the Activity of Antioxidant
Enzymes and the Expression Level of
Antioxidant Genes in Transgenic Maize
To investigate the factors affecting the ZmAT6-mediated
scavenging of ROS, we examined the activity of several
enzymes usually involved in the antioxidant system. It was
A B C

FIGURE 5 | Determination of physiological indexes related to aluminum tolerance. (A) Evans blue, (B) Malondialdehyde (MDA) and (C) Proline (Pro) in the wild type
(WT) and three OE-ZmAT6 transgenic maize lines (L3, l5, and L10). Values represent mean ± SD (n = 10). Different letters indicate significant differences (P < 0.01)
(multiple comparison).
A B

FIGURE 6 | Determination of ROS under aluminum stress. (A) Hydrogen peroxide content and (B) the productive rate of superoxide anion in wild type (WT) and
three OE-ZmAT6 transgenic maize lines (L3, L5, and L10). Values represent mean ± SD (n = 3). Different letters indicate significant differences (P < 0.01) (multiple
comparison).
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notable that the SOD activity of three OE-ZmAT6 lines was
significantly higher than that of the WT despite Al treatment.
After treatment with 60 mM AlCl3 (pH 4.2), the mean value of
SOD activity of the OE-ZmAT6 plants was dramatically increased,
up to 244.4 U/g (Figure 7A). The activities of POD, CAT, and
APX remained almost the same in the WT plants as in the OE-
ZmAT6 plants but decreased separately to 28.07, 22.92, and
14.77%, respectively, when subjected to Al stress (Figures 7B–D).

In addition, we also monitored the expression patterns of
three antioxidant-enzyme genes on Al exposure. As shown in
Figures 8A, B, the expression of ZmSOD and ZmPOD could be
upregulated by Al stimulus in all tested plants with the exception
of ZmPOD in WT, consistent with the enhanced activities of
antioxidant enzymes (Figure 7). As for ZmSOD and ZmPOD,
both of them exhibited a much higher level of expression either
Frontiers in Plant Science | www.frontiersin.org 8
in the root or leaf of OE-ZmAT6 plant than in WT. In particular,
the expression of ZmCAT in the root of WT was higher than in
OE-ZmAT6 plant (Figure 8C). These results suggested that both
the regulation on gene expression and activity of antioxidant
enzymes contributed to the enhanced Al tolerance of OE-ZmAT6
plant in maize.
DISCUSSION

ZmAT6 Is Involved in Al-Stress
Related Responses
Some plants evolved many mechanisms to tolerate Al toxicity.
ZmAT6 was first identified as an Al-induced gene with an
A B

C D

FIGURE 7 | Determination of the activity of several antioxidant enzymes. The activities of antioxidant-related enzymes (A) SOD, (B) POD, (C) CAT, and (D) APX
were detected. Values represent mean ± SD (n = 4). Different letters indicate significant differences (P < 0.05) (multiple comparison).
A B C

FIGURE 8 | The relative expression of antioxidant enzyme genes. The relative expression levels of (A) ZmSOD, (B) ZmPOD, and (C) ZmCAT were determined with
or without Al treatment in WT and OE-ZmAT6 transgenic maize (L5). ZmGAPDH was used as internal reference gene. Values represent mean ± SD (n = 3). Different
letters indicate significant differences (P < 0.05) (multiple comparison).
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Du et al. Aluminum Tolerance in Zea mays
unpredicted function from our previous microarray data (Xu
et al., 2017). The unique indication was that its rice or tholog was
regulated by OsART1, a master transcriptional factor that
controls more than 30 Al response genes by binding to the
GGTCC (GGN(T/g/a/C)V(C/A/g)S(C/G)) site of its promoter
(Yamaji et al., 2009; Tsutsui et al., 2011). Similarly, we also found
a GGNVS site in the promoter of ZmAT6 (Table S2). In
addition, ZmAT6 expresses in many tissues and organs, and it
could be rapidly induced by Al stress in both the roots and shoots
of maize (Figure 2). These results suggested that ZmAT6may be
a downstream gene in maize directly targeted by a transcription
factor such as rice OsART1 when the plants are under Al stress.
An exploration of the OsART1 equivalent in maize by strategies
such as homolog query and gel shift assay could confirm
this hypothesis.

Overexpression of ZmAT6 Improved the Al
Tolerance of Transgenic Maize Plants
The inhibition of the root length was an initial detection of Al
toxicity in plants (Matsumoto and Motoda, 2012). Plants with
strong Al tolerance usually exhibited high relative root growth
(Ma et al., 2018; Badia et al., 2020). In this study, the RRG of OE-
ZmAT6 transgenic maize was more than 20% higher than those
in the WT. Meanwhile, the mean value of the total fresh weight
and the fresh weight of roots were more than 30% and even over
50% weightier than that of WT after exposure to Al, respectively
(Figures 4A–D). Attributed to the ectopic overexpression of
ZmAT6, the clear improvement of the Al tolerance was exhibited
not only in transgenic maize plants but also in transgenic wild
type Arabidopsis and at6mutant (Figures 4F, G). Moreover, the
content of aluminum in the root of OE-ZmAT6 plant is rather
lower than that in the WT (Figure 4E), underlying an antagonism
to Al toxicity.

In addition, a semi reduction of the superoxide radical ion
caused by aluminum toxicity may lead to oxidative stress and
serious cell damage. The enzyme-catalyzed antioxidant system
and the non-enzymatic antioxidant system of plants could
scavenge excessive ROS and reduce the cell damage caused by
aluminum toxicity (Achary et al., 2008; Irany et al., 2018). The
intensity of Evans blue staining and the content of MDA in the
cells of target tissue could reflect the lipid peroxidation of the cell
membrane. In this study, the significantly lower Evans blue
uptake (Figure 5A, Figure S4) and MDA content (Figure 5B)
of the OE-ZmAT6 plants suggested that aluminum stress caused
less damage to the cell membrane. This was consistent with the
results of Sun (Sun et al., 2017) and Yu (Yu et al., 2018), who
reported that the MDA content in the root tips of wheat
increased significantly under aluminum treatment, particularly
in sensitive genotype plants, and the higher Evans Blue uptake in
the root apexes was due to the Al-induced oxidative stress.
Moreover, proline, a type of antioxidant that favors ROS
removal (Rodriguez and Redman, 2005), had a significantly
higher content in tolerant plants than in sensitive ones (Ashraf
and Foolad, 2007). The obviously increased content of proline in
the OE-ZmAT6 plants under Al stress in this study was highly
consistent with the previous study of Giannakoula (Giannakoula
Frontiers in Plant Science | www.frontiersin.org 9
et al., 2008), who found that the proline content in the Al-
tolerant genotype maize increased with the concentration of Al.

Scavenging of ROS Favors OE-ZmAT6
Maize Plants to Antagonize Al-Stress
Previous studies have documented that the excessive accumulation
of ROS in plants under aluminum stress is the primary reason for
oxidative stress and the decisive factor that inhibited root elongation
(Tamás et al., 2006; Giannakoula et al., 2010). Giannakoula
(Giannakoula et al., 2010) and Sun (Sun et al., 2017) had found
that O2

·− and H2O2 could predominantly accumulate in the roots of
Al-sensitive maize and wheat, respectively, after exposure to Al.
Compared with the wild type, overexpression of AtPrx64 in
transgenic tobacco also showed less root growth inhibition, lower
H2O2 content, and less MDA accumulation following Al exposure
(Wu et al., 2017). In our study, the content of H2O2 and the
productive rate of the superoxide anion in the ROS of OE-ZmAT6
maize plants were significantly lower than those in theWT under Al
stress (Figure 6), indicating the involvement of AT6 in ROS
scavenging. Indeed, the activities of the antioxidant enzymes
POD, CAT, and APX of the OE-ZmAT6 plants had no obvious
change before and after Al treatment even though there was a
significant difference between the transgenic lines and WT (Figures
7B–D). The only exception was SOD, which had significantly higher
activities in the OE-ZmAT6 plants than that in the WT before or
after Al stress (Figure 7A). Consistently, the expression level of
ZmSODwas also predominately upregulated by Al stimulus (Figure
8A), suggesting that SOD played a crucial role in effectively
removing excess ROS from OE-ZmAT6 maize cells and
maintaining the balance of ROS.

Coincidentally, a number of studies also found that the
enzyme-catalyzed antioxidant system is involved in Al stress
antagonism even though the major scavenger enzyme was not
the same. Darkó et al. (Darkó et al., 2004) found that the activity
of the antioxidant enzymes in the wheat root tips changed
noticeably under Al stress, and the activity of APX in Al-
sensitive genotypes was significantly higher, while those of SOD
and CAT were lower than those of the Al-tolerant genotype.
However, the activities of SOD and POD were significantly
improved in Al-sensitive maize after Al treatment, while the
activities of SOD, POD and CAT exhibited no distinction in the
Al-tolerant genotypes (Boscolo et al., 2003). Therefore, the ROS
scavenging responses of antioxidant enzymes under Al stress
conditions varied depending on the species and genotypes.
Alternatively, the overexpression of genes encoding ROS-
scavenging enzymes in several plant species had documented
that their activities enhanced the tolerance of Al (Panda et al.,
2013; Sun et al., 2017; Irany et al., 2018). In this study, ZmAT6
enhanced the aluminum tolerance of maize by increasing the
expression level of ZmSOD gene and improving the activity of the
antioxidant enzymes SOD in the antioxidant enzymatic system.

In conclusion, we demonstrated that the chloroplast-located
gene ZmAT6 could be quickly induced by Al stress and could
enhance the tolerance to Al toxicity when overexpressed in
transgenic maize and Arabidopsis. ZmAT6 could antagonize
the Al toxicity via at least two ROS removal approaches:
July 2020 | Volume 11 | Article 1016
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increasing the activity of antioxidant enzymes SOD and the
content of antioxidant proline.
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