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Phenology—the timing of life-history events—is a key trait for understanding responses of
organisms to climate. The digitization and online mobilization of herbarium specimens is
rapidly advancing our understanding of plant phenological response to climate and
climatic change. The current practice of manually harvesting data from individual
specimens, however, greatly restricts our ability to scale-up data collection. Recent
investigations have demonstrated that machine-learning approaches can facilitate this
effort. However, present attempts have focused largely on simplistic binary coding of
reproductive phenology (e.g., presence/absence of flowers). Here, we use crowd-
sourced phenological data of buds, flowers, and fruits from >3,000 specimens of six
common wildflower species of the eastern United States (Anemone canadensis L., A.
hepatica L., A. quinquefolia L., Trillium erectum L., T. grandiflorum (Michx.) Salisb., and T.
undulatum Wild.) to train models using Mask R-CNN to segment and count phenological
features. A single global model was able to automate the binary coding of each of the three
reproductive stages with >87% accuracy. We also successfully estimated the relative
abundance of each reproductive structure on a specimen with ≥90% accuracy. Precise
counting of features was also successful, but accuracy varied with phenological stage and
taxon. Specifically, counting flowers was significantly less accurate than buds or fruits
likely due to their morphological variability on pressed specimens. Moreover, our Mask R-
CNN model provided more reliable data than non-expert crowd-sourcers but not
botanical experts, highlighting the importance of high-quality human training data.
Finally, we also demonstrated the transferability of our model to automated
phenophase detection and counting of the three Trillium species, which have large and
conspicuously-shaped reproductive organs. These results highlight the promise of our
two-phase crowd-sourcing and machine-learning pipeline to segment and count
.org July 2020 | Volume 11 | Article 11291
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reproductive features of herbarium specimens, thus providing high-quality data with which
to investigate plant responses to ongoing climatic change.
Keywords: automated regional segmentation, deep learning, digitized herbarium specimen, plant phenology,
regional convolutional neural network, reproductive structures, visual data classification
INTRODUCTION

Climate change is a potent selective force that is shifting the
geographic ranges of genotypes, altering population dynamics of
individual species, and reorganizing entire assemblages in all
environments. A key functional trait in this regard is phenology:
the timing of life-history events, such as the onset of flowering or
migration. The use of museum specimens has invigorated and
enriched the investigation of phenological responses to climatic
change, and is one of several research directions that has brought
a renewed sense of purpose and timeliness to natural history
collections (Davis et al., 2015; Willis et al., 2017; Meineke et al.,
2018; Meineke et al., 2019; Hedrick et al., 2020). Herbarium
specimens greatly expand the historical depth, spatial scale, and
species diversity of phenological observations relative to those
available from field observations (Wolkovich et al., 2014). In
many cases, herbarium specimens provide the only means of
assessing phenological responses to climatic changes occurring
over decades to centuries (Davis et al., 2015). However, a great
challenge in using these specimens is accessing and rapidly
assessing phenological state(s) of the world’s estimated 393
million herbarium specimens (Thiers, 2017; Sweeney
et al., 2018).

The ongoing digitization and online mobilization of
herbarium specimens has facilitated their broad access with
significant economies of scale (Sweeney et al., 2018; Nelson
and Ellis, 2019; Hedrick et al., 2020) and accelerated advances
in scientific investigations, including phenological assessment
efforts that were underway prior to mass digitization (Primack
et al., 2004; Miller-Rushing et al., 2006; Davis et al., 2015). A new
vision of digitization, Digitization 2.0 (sensuHedrick et al., 2020),
has also sparked the integration and development of new
scholarly disciplines and lines of inquiry not possible
previously. Whereas Digitization 1.0 refers to the generation of
digitized products from physical specimens, Digitization 2.0 is
the use of natural history collections to answer scientific
questions using only their digitized representation, rather than
the physical specimen itself.

In recent years, scientists have used these digitized herbarium
specimens in novel ways (e.g., Meineke et al., 2018; Meineke et al.,
2019; Hedrick et al., 2020) and greatly increased the pace at which
key phenological trait data can be harvested from tens of
thousands of specimens. The platform CrowdCurio–Thoreau’s
Field Notes (Willis et al., 2017) was one of the first attempts to
move beyond the standard practice of coding phenology of
herbarium specimens using binary (presence/absence) coding
(e.g., specimen A has flowers, specimen B has fruits: Primack
et al., 2004; Miller-Rushing et al., 2006). Many of these efforts have
also focused largely on flowering, ignoring other key phenophases.
.org 2
Rather, users of CrowdCurio use a crowd-sourcing pipeline to
score and quantify all phenophase features—bud, flowers, and
fruits—for each specimen processed. This pipeline has facilitated
the first development of ratio-based approaches to quantitatively
assess the early, peak, and terminal phenophases from herbarium
specimens and determine phenological changes within and
between seasons (Williams et al., 2017; Love et al., 2019). The
recent large-scale deployment of the CrowdCurio pipeline on the
crowdsourcing website Amazon Mechanical Turk has
demonstrated the power and scale of such fine-grained
phenophasing to understand latitudinal variation in
phenological responses (Park et al., 2019).

Despite the great promise of crowd-sourcing for phenophase
detection, it is still time-consuming and can become cost-
prohibitive to process entire collections spanning whole
continents. Machine-learning approaches have the potential to
open up new opportunities for phenological investigation in the
era of Digitization 2.0 (Pearson et al., 2020). Recent efforts (Lorieul
et al., 2019) have demonstrated that fully automated machine-
learning methods—and deep learning approaches based on
convolutional neural networks in particular—can determine the
presence of a fruit or flower in a specimen with >90% accuracy.
Convolutional neural networks were proven effective at predicting
all phenophases of a specimen, based on classification of nine
phenological categories. These predictions, estimated from
proportions of buds, flowers and fruits, reach an accuracy (true
positive rate) >43%, which is equivalent to the capability of human
experts (Lorieul et al., 2019). This large-scale automated
phenophase estimation, based on an annotation method
developed by Pearson (2019), was tested on species belonging to
a particularly difficult taxon (i.e., the Asteraceae family), for which
visual analysis of numerous and tiny reproductive structures is
known to be visually challenging. This work demonstrated the
potential of deep learning technologies to estimate fine-grained
phenophases, but further improvements are needed to support
ecological investigation of diverse taxa.

Although Pearson (2019) successfully determined reproductive
status (i.e., fertile vs. sterile specimens), neither the precise location
(i.e., image segment) nor the number of phenofeatures present on
a specimen was quantified (Lorieul et al., 2019). A quantitative
machine-learning approach would have the value and impact that
CrowdCurio has already achieved, but could be scaled-up in speed
and cost-effectiveness. A recent proof-of-concept study (Goëau
et al., 2020) used human-scored data to train and test a model
using instance segmentation with Mask R-CNN (Masked Region-
based Convolutional Neural Network: He et al., 2017) to locate
and count phenological features of Streptanthus tortuosus Kellogg
(Brassicaceae). This assessment clarified several determinants of
model success for identifying and counting phenological features,
July 2020 | Volume 11 | Article 1129
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including: the type of masking applied to human annotations; and
the size and type of reproductive features identified (e.g., flowering
buds, flowers, immature and mature fruits). Moreover, the model
was more successful identifying and counting flowers than fruits,
and was applied only to a single species with relatively little
human-scored training data (21 herbarium specimens). The
transferability of this model to other, more distantly related
species was not examined.

Here, we leverage extensive data gathered using our crowd-
sourcing platform CrowdCurio to develop and evaluate an
instance segmentation approach using Mask R-CNN to train
and test a model to identify and count phenological features of a
larger number of species. Specifically, we investigated digitized
specimens from six common spring-flowering herbs of the eastern
United States: Anemone canadensis, A. hepatica, A. quinquefolia,
Trillium erectum, T. grandiflorum, and T. undulatum. As with any
feature detection model, accurate human-collected data are
required to train, test, and refine these models. We thus
gathered phenological data from these species using CrowdCurio
to provide expert annotation data of buds, flowers, and fruits to
train and test our models. Phenological data previously collected
by non-expert citizen scientists was used to further evaluate the
performance of these models (Park et al., 2019). Our goals were to:
(1) determine how reliably we could localize and count these
features; (2) determine the accuracy in automated scoring of
different phenological features; and (iii) assess the transferability
of models trained on one species to other, distantly related ones.
MATERIALS AND METHODS

Dataset
Our experiments are based on a subset of the data used in Park
et al. (2018, 2019) comprising six species in two genera of common
spring-flowering herbs, Anemone and Trillium. This subset
includes 3073 specimens of: Anemone canadensis (N = 108), A.
hepatica (N = 524), A. quinquefolia (N = 686), Trillium erectum
(N = 862), T. grandiflorum (N = 226), and T. undulatum (N =
667). Each specimen (herbarium sheet) was previously examined
using the CrowdCurio–Thoreau’s Field Notes platform by, on
average, three citizen-scientists. For the purposes of this study,
these specimens were additionally scored by expert botanists to
provide the most accurate training and testing data possible.
Annotators added markers in the center of each visible
reproductive structure (bud, flower, or fruit), and determined its
type, number, and spatial location. For our experiments, we
randomly split this dataset into two parts: one (N = 2457) for
training the deep-learning models and one for testing them (i.e.,
for evaluating their predictive performance; N = 615).

Apart from the comparative experiment described in
Machine-Learning vs. Crowd-Sourcing section, only the
annotations of experts were used to train and test the deep-
learning models. We also only used the annotations of one of
the experts for each specimen (selected in a pre-defined order).
The final dataset contains 7,909 reproductive structures (6,321 in
Frontiers in Plant Science | www.frontiersin.org 3
the training set and 1,588 in the test set) with the following
imbalanced distribution: 492 buds (6.2%), 6,119 flowers (77.4%),
and 1,298 fruits (16.4%). Fruits were counted without any
knowledge of seeds.

Deep-Learning Framework
Several deep-learning methods have been developed in recent
years to count objects in images. One family of methods can be
qualified as density-oriented methods (Wang et al., 2015; Zhang
et al., 2015; Boominathan et al., 2016). They are usually based on
U-Net architectures (Ronneberger et al., 2015) that are trained
on annotations of object centers (indicated by dots) and predict
density maps that are integrated to obtain counts. U-Net-based
methods were developed originally for counting crowds and have
been extended recently to counting cells (Falk et al., 2019) and
animals (Arteta et al., 2016). The drawback of these methods is
that they are better suited for cases where the density of objects in
the image is high. This is not true in our case; the examined
herbarium specimens averaged <3 objects per specimen, even
fewer if we consider buds, flowers, and fruits separately.

Another deep-learning method is “direct counting” (a.k.a.
“glancing”), which trains the model with the true count on the
global image (e.g., Seguı ́ et al., 2015). The main drawback of
direct counting is that it cannot predict a count value that has no
representative image in the training set. That is, the network is
not really counting but only inferring the counts from the global
content of the image. In preliminary experiments (not reported
here), we found that direct-count methods tended to
systematically under-estimate the true counts and have an
unacceptably high variance.

The alternative method that we used in this study is to equate
counting with object-detection; the counts of the object of
interest are then equal to the sum up the number of detected
objects. To detect buds, flowers, and fruits, we used Mask R-
CNN, which is among the best-performing methods for instance
segmentation tasks in computer vision (He et al., 2017). We used
Facebook’s implementation of Mask R-CNN (Massa and
Girshick, 2018) using the PyTorch framework (Paszke et al.,
2019) with a ResNet-50 architecture (He et al., 2016) as the
backbone CNN and the Feature Pyramid Networks (Lin et al.,
2017) for instance segmentation. To adapt this architecture to
the data in our study (see previous section), we had to address the
following methodological issues:

1. Mask computation. The training data expected by Mask R-
CNN must consist of all the objects of interest visible in the
training images, each object being detected individually and
associated with a segmented region (encoded in the form of a
binary mask). However, the data available for our study did
not fully meet these conditions as the objects were detected
only by dot markers (roughly in the centre of the
reproductive structure). From these dot markers, we
generated dodecagons, such as the ones illustrated in
Figure 1, which best covered the reproductive structures.
To adapt the size of the dodecagons to buds, flowers, and
fruits, we manually segmented five of each (selected at
July 2020 | Volume 11 | Article 1129
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random from each genus) and calculated the average radius
of the circle enclosing each structure.

2. Input image size. Images were resized to 1,024 pixels (long
edge) × 600 pixels (short edge). This guaranteed a sufficient
number of pixels for the smallest dodecagons while
maintaining a reasonable training time (5–10 h per model)
on a computer comparable to a mid-tier consumer device
(i.e., recent GPUs with ±12 GB of RAM).

3. Anchor size. Anchors are the raw rectangular regions of
interest used by Mask R-CNN to select the candidate
bounding boxes for mask detection. We designated their
size so as to guarantee that all dodecagons had their entire
area covered.
Figure 2 Illustrates four example detections using Mask R-

CNN: one with a perfectly predicted count, and three with over-
or under-estimated counts. For each example, we show (a part
of) the original image, the ground-truth masks (computed from
expert botanist input), and the automated detections computed
by the deep-learning framework.

We then trained a set of models corresponding to three
distinct scenarios to be evaluated:

1. One model per species. In this scenario, we trained one Mask
R-CNN model for each species (i.e., six models in total) to
detect its buds, flowers, and fruits.

2. One single model for all species. In this scenario, we trained a
single Mask R-CNN for all species and all types of
reproductive structures (buds, flowers, fruits).

3. Cross-species models. Last, we assessed the transferability of
models trained on some species to other ones. We trained
three models on only two Trillium species: i.e., one on
T. erectum and T. grandiflorum, one on T. erectum and
T. undulatum , and one on T. undulatum and T.
Frontiers in Plant Science | www.frontiersin.org 4
grandiflorum. Each of these three models were then tested
on the Trillium species not included in the training set.

Evaluation Metrics and Statistics
We evaluated the accuracy of the models in four ways:

1. Counting error. The counting error ei,k for a specimen i and a
given type of reproductive structure k ∈ {bud, flower, fruit}
was defined as the difference between the true count and the
predicted count:

ei,k = ĉ i,k − ci,k (1)

where ci,k is the true count of reproductive structures of type k
in specimen i and k, ĉi,k is the predicted count. Note that the
counting error can be positive or negative. A detailed
description of the distribution of the counting error is
provided using letter-value plots (Heike et al., 2017), which
provide a more comprehensive view of the statistics through
a larger number of quantiles.

2. Mean Absolute Error (MAE). The MAE measures the overall
error by averaging the absolute value of the counting error of
each specimen and each type of reproductive structure:

MAE =
1
Noi ok

ei,k
�
�

�
� (2)

3. Coefficient of determination (R2). This statistic measures the
amount of variance explained or accounted by the model:

R2 = 1 −oi(ci − ĉ i)
2

oi(ci − �c)
2 (3)

where i indexes the observations and ranges from 1 to the
FIGURE 1 | Example of a specimen of the training set containing six reproductive structures (flowers) marked by dodecagons.
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total number of observations, ci is the observed count, ĉi is the
predicted count, and c is the mean of the observed counts.

4. Predicted counts box-plots. A detailed description of the
distribution of the predicted counts as a function of the
true counts is provided using box-plots indicating median
value, quartiles, variability outside quartiles, and outliers.

Machine-Learning vs. Crowd-Sourcing
We compared the counts predicted by Mask R-CNN with those
obtained when the reproductive structures on herbarium
specimens were counted by crowd-sourcers (Park et al., 2019).
The comparison was done on the intersection of the test sets of
both studies (i.e., on 544 specimens, equal to 88% of the test set of
previous experiments). These 544 specimens were annotated by
483 different annotators using Amazon Mechanical Turk. On
Frontiers in Plant Science | www.frontiersin.org 5
average, each specimen was annotated by 2.5 different
crowd-sourcers.
RESULTS

A Single Model vs. Species-Specific
Models
The R2 value for the separate trainingmodel for each species and the
single model for all species was 0.70 and 0.71, respectively. Thus, the
single model for all species provides marginally better results while
being simpler to implement and more scalable. As shown in Figure
3, the main problem of single species training models is that they
tend to over-predict the number of reproductive structures (number
of positive errors >than number of negative errors; Figure 3). The
A B C

FIGURE 2 | Examples of detection (colors do not have a particular meaning)—(A) original image; (B): ground-truth markers; (C): automatically detected masks. The
first row corresponds to a typical case with a perfect count. The second row corresponds to a case of over-estimated counts (one of the flowers was detected as
two flowers). The last two rows correspond to under-estimated.
July 2020 | Volume 11 | Article 1129
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extreme outlier in Figure 3 with a very high negative error resulted
from a species being assessed by the model that had been
misidentified in the collection.

The predictions of the single species training models were
very accurate for ≤3 reproductive structures, whereas the single
model for all species had high accuracy when ≤4 reproductive
structures were present (Figure 4). The variance of the predicted
counts was higher for specimens with more reproductive
structures but the median predicted count equalled the actual
count for ≤7 reproductive structures and the counting error
(interquartile distance) was usually <1 structure. Specimens with
>8 reproductive structures had larger errors but only accounted
for 4.2% of the specimens examined.

Distinguishing Reproductive Structures
Counting Results
The overall numbers of detected reproductive structures and
their relative proportions were very close to their actual values
(Table 1 and Figure 5). The Mean Absolute Error (MAE) was
Frontiers in Plant Science | www.frontiersin.org 6
also quite low for all types of reproductive structures, but this is
due in large part to the fact that the median number of structures
per phase and specimen is low. The median number of fruits and
buds, in particular, is much lower than the median number of
flowers. The R2 values (Table 1) and the box plots of the
predicted counts (Figure 6) provide a more relevant
comparison of the predictive performance for each type of
structure. Flowers are the best detected structures (R2 = 0.76),
followed by fruits (R2 = 0.33) and buds (R2 = 0.12). The lower
performance for buds is due to several factors: (i) the lower
number of samples in the training set—90.25% of specimens had
no buds and 98.05% had <3 buds, (ii) their smaller size and (iii),
their visual appearance that is less distinctive than flowers or
fruits. Fruits are affected by the same factors but to a lesser extent.

Occurrence and Dominance of Reproductive
Structures
Although the model was not developed or trained to directly
detect presence or absence of each reproductive structure, we
FIGURE 3 | Letter-value plot of the counting error for the two training
strategies: one model per species vs. one single model for all species.
A B

FIGURE 4 | Box-plots of the predicted vs. expected counts for the two training strategies: (A) separate training models for each species, (B) single training model
for all species.
FIGURE 5 | Letter-value plot of the counting error for each type of
reproductive structure.
July 2020 | Volume 11 | Article 1129
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were able to extrapolate the presence of each feature and which
feature was most frequent on a specimen (Table 2). The detection
accuracy of buds, flowers, and fruits was >87% and the accuracy of
determining relative abundance of a certain organ category (e.g.,
number of flowers >number buds or fruits) was >90% (Table 2).
Confidence in this strong result should be tempered by the actual
frequency of occurrence and dominance. Observed relative
presences of buds, flowers, and fruits, and dominance of fruits vs.
flowers all are quite disparate. Error rates (false negatives and
positives) for these all are non-zero, but are lower in all presence
and dominance categories (Table 2).

Species-Specific Models
Overall, the reproductive structures were detected more accurately
for Trillium species than Anemone species (Figures 7 and 8). At
the species-specific level, the R2 score was lowest for A. canadensis
(0.01) which is the species with the least number of training
samples (108 specimens). The R2 score was better for the other
species and increased with the number of training samples: R2 =
0.51 for T. grandiflorum, R2 = 0.64 for A. hepatica, R2 = 0.76 for T.
undulatum, R2 = 0.85 for A. quinquefolia and R2 = 0.89 for T.
erectum. Counting errors rarely exceeded ±2, and the few strong
outliers corresponded to very difficult cases or annotation errors.
The median value of predicted counts was correct in almost all
cases (Figure 7); exceptions were for T. grandiflorumspecimens
with four structures and A. hepatica with seven, both
corresponding to instances involving a small number of
specimens with large numbers of reproductive structures.

Model Transferability
The aim of this experiment was to assess whether reproductive
structures on one species could be estimated using a model
Frontiers in Plant Science | www.frontiersin.org 7
trained on a different, related species. Unsurprisingly, estimation
was less accurate when the target species was not represented in
the training set (Figures 9–11). However, it is still possible to
count the reproductive structures of a target species based on a
model trained on different species of the same genus (i.e., without
any specimen of the target species in the training data). The R2

score was higher for T. erectum (R2 = 0.72; Figure 9) and T.
undulatum (R2 = 0.66; Figure 10), which are morphologically
more similar to one another than either is to T. grandiflorum
(R2 = 0.02; Figure 11). Figures only show the results for Trillium
but similar conclusions were obtained for Anemone (R2 scores
respectively equal to 0.75 for A. quinquefolia, 0.39 for A. hepatica
and −0.39 for A. canadensis).

Machine-Learning vs. Crowd-Sourcing
On average, the deep learning model had a significantly lower
(P <0.001) MAE and better R2 score than any individual crowd-
sourcer, but still an order of magnitude larger than the MAE of
botanical experts (Tables 3 and 4). Interestingly, we can observe
that crowd-sourcers have a much harder time detecting buds
than the Mask R-CNN model. The MAE obtained by averaging
the counts of the different crowd-sourcers was only marginally
higher than the MAE from Mask R-CNN (P = 0.3). Note that a
counts averaging strategy could also be used for the deep learning
approach, i.e., by averaging the scoring of several deep learning
models. This technique is referred to as an ensemble of models in
A B C

FIGURE 6 | Box-plots of the predicted vs. expected counts for each type of reproductive structure. From left to right: (A) buds, (B) flowers, (C) fruits.
TABLE 2 | Accuracy of detection and relative dominance of buds, flowers, and
fruits (data pooled for all species).

Observed Buds Flowers Fruits Flowers ≥

Buds
Fruits ≥

Flowers

9.75 82.92 20.00 96.09 21.13

True positives (correctly
detected)

51.66 97.25 78.86 98.98 76.15

True negatives (correctly
undetected)

91.89 49.52 89.83 8.33 95.65

False positives 8.10 50.47 10.16 91.66 3.71
False negatives 48.33 2.74 21.13 1.01 23.84
Overall Accuracy 87.97 89.11 87.64 95.44 92.03
Ju
ly 2020
 | Volume 11 |
Values are percentages.
TABLE 1 | Predicted and true counts (percent of specimens in parentheses) of
buds, flowers, and fruits for all specimens pooled.

Buds Flowers Fruits All

True number of structures 107 (6.7) 1,241 (78.1) 240 (15.1) 1,588
Predicted number of structures 109 (6.1) 1,431 (80.0) 248 (13.9) 1,788
MAE 0.20 0.51 0.27 0.33
R2 0.12 0.76 0.33 0.71
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the machine learning community and is known to bring very
significant improvements. The most simple yet very efficient
method to build an ensemble is to train the same model several
times but with a different random initialization of the
parameters. Such strategy could be implemented in future work.
Frontiers in Plant Science | www.frontiersin.org 8
DISCUSSION

Mask R-CNN models trained with human-annotated trait data
were efficient and produced robust results. Our models worked
well for both identifying and counting phenological features, but
A B

D E F

C

FIGURE 7 | Boxplot of the predicted counts vs. expected counts for each species. (A) Anemone canadensis; (B) A. hepatica; (C) A. quinquefolia; (D) Trillium
erectum; (E) T. grandiflorum; (F) T. undulatum.
FIGURE 8 | Letter-value plot of the counting error for each species.
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A B

FIGURE 9 | Box-plots of the predicted counts vs. expected counts for Trillium erectum. (A) Model trained on T. erectum data; (B) model trained on T. undulatum
and T. grandiflorum.
A B

FIGURE 10 | Box-plots of predicted counts vs. observed counts for Trillium undulatum. (A) Model trained on T. undulatum data; (B) model trained on T. erectum
and T. grandiflorum.
A B

FIGURE 11 | Box-plots of predicted counts vs. expected counts for Trillium grandiflorum. (A) Model trained on T. grandiflorum data; (B): model trained on T.
erectum and T. undulatum.
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accuracy differed for buds, flowers, and fruits. Automated counts
using Mask R-CNN models were more accurate than counts
made by crowd-sourcers but not those of botanical experts.
Finally, the Mask R-CNN model could be transferred to other
species after being trained with data from reasonably close
phylogenetic relatives, with relatively small impacts on
counting accuracy.

Point Masking With Minor Modification Is
Efficient and Produces Robust Results
Recent efforts by Goëau et al. (2020) to segment and count
reproductive structures used training data collected by botanical
experts from 21 herbarium specimens of a single species (S.
tortuosus). In our work, we applied Mask R-CNN to segment and
count reproductive structures of six species, belonging to two
different genera; accurate training data were derived from both
botanical experts and crowd-sourcers using the CrowdCurio
interface (Willis et al., 2017). Although Goëau et al. (2020)
found that training data from point masks, like those
generated from CrowdCurio, produced less accurate results
than those derived from fully masked training data, obtaining
the latter is time intensive and difficult to scale to large numbers
of specimens. Whereas Goëau et al. (2020) produced three type
of training data, “point masks” (produced from a 3 × 3-pixel box
around a manual point marker); (ii) “partial masks” (extensions
of point masks to include partial segmentation using the Otsu
segmentation method (Otsu, 1979); and (iii) manually produced
“full masks” of each reproductive structure, we only used
modified partial masks (derived from point markers) with
Mask R-CNN. These modified partial masks were scaled to the
size of reproductive structures for each species and yielded high
accuracy and efficiency for phenophase detection and counting.
The scaling of our modified partial masks combined with the
approximately circular shapes of the reproductive structures we
studied likely led to the success of our approach. Our two-step
workflow integrating expert-scored and crowd-sourced citizen
science data with automated machine-learning models also is less
Frontiers in Plant Science | www.frontiersin.org 10
time-intensive and more scalable than a workflow requiring
detailed polygon masks of structures for training.

Feature Detection and Counting Accuracy
Is High Across All Phenological Features
Lorieul et al. (2019) were the first to apply machine-learning to
detect phenophases and developed a presence-absence model
that could identify reproductive specimens with ≈96% accuracy.
Their model was less accurate in detecting flowers or fruits (≈85
and ≈80% accuracy, respectively), and they did not consider
buds. In contrast, we used Mask R-CNN to accurately identify
the presence of each of the three reproductive stages (buds,
flowers, or fruits) with ≥87% accuracy (Table 2). Moreover, a
single globally-trained model was more efficient and had greater
accuracy than multiple species-specific models (Figures 7 and 8).
This points towards the possibility of developing a more
streamlined workflow to accurately score phenophases of many
different species simultaneously.

We also successfully estimated the relative abundance of each
reproductive structure on a specimen with ≥90% accuracy (Table
2). Herbarium specimens can vary greatly in phenological state.
Because different reproductive organs can co-exist at various
times through plant development (and may not all be
represented simultaneously on herbarium sheets), simply
quantifying presence or absence of phenological structures
limits inference about phenological state. In this regard, the
Mask R-CNN model performed better on Trillium—with its
large flowers and fruits, generally borne singly, and suspended on
an elongate stalk—than on Anemone—with its small clusters of
flowers on shorter stalks that are often pressed against a
background of clustered leaves. The combination of smaller
flowers, more complex morphology, and background “noise”
on Anemone specimens (e.g., overlapping structures) likely made
both model training and phenophase detection more prone to
error. This result supports the recent hypotheses that successful
application of machine-learning to phenophase assessment will
be dependent on species-specific morphological details (Goëau
et al., 2020). Along these lines, plant morphological trait
databases could help facilitate the identification of suitable taxa
to be analyzed with machine-learning methods.

Precise quantification of different reproductive structures, as
demonstrated here, allows the determination of finer-scale
phenophases (e.g., early flowering, peak flowering, peak
fruiting). For this exercise, the lowest mean absolute error
(MAE) was for bud counts, most likely due to the
morphological consistency of buds and their rarity on
specimens (Table 1). In contrast, MAE for counting flowers
was significantly worse than for buds or fruits. We attribute this
result to the greater number of flowers, ontogenetic variability in
floral morphology, and variation in appearance of dried,
pressed specimens.

Variation in appearance of reproductive features among dried
and pressed specimens of a single species also could add
complexity to automated detection of phenological features
and merits further investigation. Perhaps more consequentially,
large variation in the number of reproductive organs resulted in
unbalanced datasets (Table 1). Numerous data augmentation
TABLE 3 | Comparison of the counting error resulting from crowd-sourcing,
deep learning and expert annotation—performance is measured by the Mean
Absolute Error (MAE).

Buds Flowers Fruits All

Experts 0.009 0.027 0.073 0.036
Crowd-sourcing (isolated annotator) 0.526 0.487 0.314 0.442
Crowd-sourcing (average over all annotators) 0.418 0.405 0.243 0.355
Deep learning (model trained on all species) 0.201 0.507 0.266 0.325
TABLE 4 | Comparison of the counting error resulting from crowd-sourcing,
deep learning and expert annotation—performance is measured by R2 score.

Buds Flowers Fruits All

Experts 0.989 0.996 0.961 0.990
Crowd-sourcing (isolated annotator) −2.969 0.758 0.306 0.555
Crowd-sourcing (average over all annotators) −1.527 0.828 0.401 0.686
Deep learning (model trained on all species) 0.141 0.750 0.329 0.707
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approaches can be implemented to improve comparisons and
model selection for such data sets (e.g., Tyagi and Mittal, 2020),
but these approaches have been used more frequently in
classification or semantic segmentation (Chan et al., 2019)
than in instance segmentation approaches such as we used
here. Developing data augmentation approaches for instance
segmentation would be a useful direction for future research. But
even if collectors collect more flowering than non-flowering
specimens, estimating the quantity of buds, flowers and fruits
on any specimen is more informative than recording only their
presence or absence.

Botanical Experts Perform Better Than the
Model
When considered in aggregate, the MAE for segmenting and
counting all three phenophases using Mask R-CNN was lower
than that of crowd-sourcers but still an order of magnitude
higher than that of botanical experts (Tables 2 and 3). This result
reinforces the suggestion that abundant and reliable expert data
are essential for properly training and testing machine learning
models (Brodrick et al., 2019). Additionally, it was evident in
some cases that the precise detection of the phenological feature
was quite inaccurate (Figure 2).

Machines Can Apply Learning From One
Species to Another, but Success Is
Variable
For the first time to our knowledge, we have demonstrated that
training data from related taxa can be used to detect and count
phenological features of a species not represented in the training
set (Figures 9–11). We limit our discussion of transferability
here to species of Trillium owing to the ease of detecting and
counting phenological features in this genus. Though in some
cases species-specific models were highly transferable, model
transferability varied greatly. For example, training on Trillium
undulatum and testing on T. erectum (and vice-versa) was more
accurate than when Mask R-CNNmodels trained with data from
either of these species was applied to T. grandiflorum. T.
undulatum and T. erectum are more similar morphologically
than either is to T. grandiflorum, suggesting that morphological
similarity may be a better guide for transferability success than
phylogenetic relatedness (see Farmer and Schilling, 2002, for
phylogenetic relationships of Trillium). This conclusion implies
that transferability may be particularly challenging for clades that
exhibit high morphological diversity and disparity among close
relatives. The relationship between phylogenetic relatedness,
morphological diversity, and model transferability should be
investigated in future studies. The assessment of the sizes of
the reproductive structures that could be captured by this type of
approach should also be analyzed, to facilitate transferability.

Future Directions
The presence of reproductive structures has been determined only
infrequently during large-scale digitization and transcription
efforts by the natural-history museums that generate this
content. However, interest is growing rapidly in using
Frontiers in Plant Science | www.frontiersin.org 11
herbarium specimens for investigating historical changes in
phenology and other ecological traits and processes. Our results
have demonstrated success in automating the collection of large
amounts of ecologically-relevant data from herbarium specimens.
Together with controlled vocabularies and ontologies that are
being developed to standardize these efforts (Yost et al., 2018), our
two-stage workflow has promise for automating and harvesting
phenological data from images in large virtual herbaria. In the long
term, we would like to use the CrowdCurio workflow to generate
reliable human-annotated data to further refine automated models
for detecting phenological responses to climatic change from
herbarium specimens across diverse clades and geographies.
Finally, our results documenting transferability of machine-
learning models from one species to another are preliminary,
but promising. Although our universal model trained on all taxa
performed better than our individual, species-specific models,
there may be better ways to guide these efforts. For example, a
hierarchy of individual models could yield more accurate results.
These hierarchies might be phylogenetically organized (e.g.,
taxonomically by order, family, genus), leveraging information
about shared morphologies common to related taxa and further
governed by a set of rules that parse new specimens for
phenophase detection based on their known taxonomic affinities
(e.g., by genera). Similar approaches are already being applied
today by corporations like Tesla Motors. Their automated driving
suite uses different models for vehicle path prediction versus
vehicle detection (Karpathy et al., 2014; Tesla, 2019).
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