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jtascenc@ncsu.edu

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Plant Science

Received: 28 February 2020
Accepted: 10 July 2020
Published: 23 July 2020

Citation:
Beam K and Ascencio-Ibáñez JT
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A continuing challenge to crop production worldwide is the spectrum of diseases caused
by geminiviruses, a large family of small circular single-stranded DNA viruses. These
viruses are quite diverse, some containing mono- or bi-partite genomes, and infecting a
multitude of monocot and dicot plants. There are currently many efforts directed at
controlling these diseases. While some of the methods include controlling the insect
vector using pesticides or genetic insect resistance (Rodrı́ guez-López et al., 2011), this
review will focus on the generation of plants that are resistant to geminiviruses themselves.
Genetic resistance was traditionally found by surveying the wild relatives of modern crops
for resistance loci; this method is still widely used and successful. However, the quick rate
of virus evolution demands a rapid turnover of resistance genes. With better information
about virus-host interactions, scientists are now able to target early stages of geminivirus
infection in the host, preventing symptom development and viral DNA accumulation.
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INTRODUCTION: VIRAL PROTEINS MAY BE TARGETS FOR
RESISTANCE

Geminiviruses are circular single-stranded DNA viruses that infect a wide range of plant species
including many important crops. Damages attributed to geminiviruses include over $300 million in
loss in the Indian bean industry (Patil et al., 2014), up to 100% loss of tomato crop in Italy and the
Dominican Republic (Picó et al., 1996), and nearly $2 billion loss in African cassava production
(Patil and Fauquet, 2009). The impact of geminiviruses is widespread and destructive. The family
Geminiviridae has nine genera based on viral genome structure and insect vectors. In the case of
begomoviruses, genomes can be mono- or bipartite, with each circular DNA (~2.5 Kb) packaged in
a twinned icosahedral particle (Zerbini et al., 2017).

Geminivirus infection begins when an insect vector containing virions feeds on a host plant. The
viral genome is deposited and unpackaged in the phloem cells. A complementary strand is
synthesized, then the dsDNA is replicated and packaged into mini-chromosomes using host
histones (reviewed in Jeske, 2009 and Hanley-Bowdoin et al., 2013). The viral genes are
transcribed by host RNA Polymerase II. The viral genome is replicated by rolling-circle and
recombination-dependent replication systems (Jeske et al., 2001). These processes require both host
and viral proteins. See Figure 1 for an overview of the geminivirus life cycle.

The most critical geminiviral protein for virus replication is the replication initiator protein (Rep).
It initiates replication by binding the origin sequence, nicking the DNA, and associating with host
factors (Laufs et al., 1995; Kong et al., 2000; Arguello-Astorga et al., 2004; Desvoyes et al., 2006). The
geminiviral transcriptional activator protein (TrAP) is involved in pathogenicity and suppresses both
transcriptional and post transcriptional gene silencing (Sunter and Bisaro, 1992; Hong et al., 1996;
Voinnet et al., 1999; Shivaprasad et al., 2005; Trinks et al., 2005; Wang et al., 2005; Chowda-Reddy
et al., 2009; Castillo-González et al., 2015; Kumar et al., 2015). Furthermore, the replication enhancer
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protein (REn) contributes to increased viral replication and
interacts with host factors and with Rep. Geminiviruses also
encode proteins for packaging and movement. The coat protein
(CP) comprises the viral capsid and is critical for vector specificity
(Noris et al., 1998) and viral nuclear import (Liu et al., 1999) and is
also required for symptom development. In bipartite
geminiviruses, the nuclear shuttle protein (NSP) is responsible
for nuclear import by binding ssDNA. It also aids in intercellular
movement by interacting with the movement protein (MP) at the
membrane. MP is responsible primarily for the intercellular spread
of viral DNA (Noueiry et al., 1994) by increasing the size exclusion
limit of plasmodesmata (Rojas et al., 2001). For excellent reviews
in these subjects please see Hanley-Bowdoin et al., 2013; Czosnek
et al., 2017; Rojas et al., 2018, and Martins et al., 2020.
NATURALLY OCCURRING RESISTANCE

In the process of crop domestication, traits that are not directly
beneficial are often bred out in favor of those increasing yield in
particular conditions. When a new challenge arises, breeders
Frontiers in Plant Science | www.frontiersin.org 2
search wild relatives for traits that increase survival. This is the
case with geminiviruses: there are multiple geminivirus
resistance genes from undomesticated relatives that are utilized
in agriculture. Examples include many crops like beans
(reviewed by Blair and Morales, 2008) or cotton (Zaidi et al.,
2020). This minireview will cover resistance genes in tomato and
cassava in detail. A selected list of resistance genes for these crops
is presented in Table 1.

Solanum chilense is the most popular wild tomato relative for
introgressing Tomato yellow leaf curl virus (TYLCV) resistance, as
over 80% of its accessions are resistant (Yan et al., 2018). Many of
the Ty family of resistance loci are from this plant. Ty-1 was
introgressed into tomato from S. chilense and mapped to
chromosome 6. It confers a tolerant symptomless response
against TYLCV in homozygous plants (Zamir et al., 1994). Ty-1
is allelic with another resistance gene from S. chilense, Ty-3. These
genes encode an RNA-dependent RNA polymerase (RDR) similar
to RDRs 3, 4, and 5 in Arabidopsis thaliana, implying a role for
RNA interference (Verlaan et al., 2013). A. thaliana itself may be a
source for resistance as found by Reyes et al. (2017) in an accession
showing immunity to Cabbage leaf curl virus (CbLCV) and Beet
FIGURE 1 | Geminivirus life cycle with points of resistance. Orange blocks show points where known resistance mechanisms interfere with the virus. ssDNA, single
stranded DNA; dsDNA, double stranded DNA; NSP, nuclear shuttle protein; AZP, artificial zinc-finger protein; Rep, replication-associated protein; CP, coat protein.
July 2020 | Volume 11 | Article 1131

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
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curly top virus (BCTV). Ty-1 plants have increased siRNA levels in
comparison to non-resistant cultivars, corresponding with high
levels of viral DNA methylation. This indicates transcriptional
gene silencing (TGS) is likely involved in Ty-1/Ty-3 mediated
resistance (Butterbach et al., 2014).

Ty-2 is a TYLCV resistance locus on tomato chromosome 11
introgressed from Solanum habrochaites (Yang et al., 2014). This
locus hosts a gene known as TYNBS1 that encodes an Nucleotide
Binding, Leucine Rich Repeat (NB-LRR) protein, known
elsewhere to provide pathogen resistance (Yamaguchi et al.,
2018). The recessive ty-5 locus from a hybrid tomato known as
Tyking has been mapped to chromosome 4. It is closely tied to
the Quantitative trait loci (QTL) marker SlNAC1 (Anbinder
et al., 2009; Hutton et al., 2012). The gene responsible for ty-5
resistance is pelota, which encodes an mRNA surveillance factor
homolog (Lapidot et al., 2015; Wang Y. et al., 2018). Ty-4 and Ty-6
are other resistances genes from S. chilense that are less
understood. Ty-4 is a minor locus on tomato chromosome 3 (Ji
et al., 2009). Ty-6 lies on chromosome 10, has incomplete
dominance, and protects tomatoes against Tomato mottle virus
(ToMoV) and TYLCV (Scott et al., 2015; Gill et al., 2019).
Frontiers in Plant Science | www.frontiersin.org 3
Cassava mosaic disease (CMD) is caused by multiple cassava
mosaic geminiviruses, often in complexes. CMD has only three
markers in cassava known to confer resistance. CMD2 is a single
locus preferred by breeders due to its dominance (Akano et al.,
2002). However, CMD2 is monogenic and thus at risk of viral
evolution overcoming resistance. Monogenic resistance is not
sufficient for long-term disease resistance, requiring constant
innovation to keep ahead of viral evolution. The newest marker
associated with CMD resistance is CMD3 (Okogbenin et al.,
2012). It arose through crossbreeding of cultivars with the CMD2
locus and another recessive resistance locus, CMD1, and appears
to provide the highest resistance level of the three (Kuria
et al., 2017).

The CMD2-provided resistance is lost when the plants are
regenerated through somatic embryogenesis (Beyene et al.,
2016). The mechanism for this change is unknown. The other
CMD resistance alleles (CMD1 and CMD3) are unaffected and
still reliable for use. The loss of CMD2-based resistance could
provide a method to predict if other traits will share the same
phenomenon (Chauhan et al., 2018). There are several potential
mechanisms for this effect including somaclonal variation, which
TABLE 1 | List of genes involved in geminivirus resistance and geminiviral suppressors of silencing.

Gene Protein Plant Virus Reference

Ty-1, Ty-3 RNA-dependent
polymerase

S. lycopersicum TYLCV (Zamir et al., 1994; Verlaan et al.,
2013; Butterbach et al., 2014)

Ty-2 NB-LRR class protein S. lycopersicum TYLCV (Yang et al., 2014; Yamaguchi
et al., 2018)

Ty-4 S. lycopersicum TYLCV (Ji et al., 2009)

ty-5 pelota S. lycopersicum TYLCV (Hutton et al., 2012; Scott et al.,
2015; Lapidot et al., 2015)

Ty-6 S. lycopersicum TYLCV (Scott et al., 2015)

CMD1, CMD3 M. esculenta ACMV (Fregene et al., 2000; Akano
et al., 2002; Okogbenin et al.,
2012)

CMD2 M. esculenta ACMV (Akano et al., 2002; Kuria et al.,
2017)

CchGLP MN-SOD C. chinense PHYVV, PepGMV (León-Galván et al., 2011;
Guevara-Olvera et al., 2012;
Mejı́ a-Teniente et al., 2015)

SlSnRK1 SnRK1 S. lycopersicum TYLCV, CaLCuV (Shen et al., 2011; Shen et al.,
2014; Hulsmans et al., 2016)

Permease-1
like

S. habrochaites introgressed S. lycopersicum TYLCV (Eybishtz et al., 2009)

LeHT1 hexose transporter S. lycopersicum TYLCV (Eybishtz et al., 2010; Sade
et al., 2012)

SlVSRLip lipocalin-like S. lycopersicum TYLCV (Sade et al., 2012)

NIK NSP-interacting kinase A. thaliana, S. lycopersicum, G. max begomoviruses (Brustolini et al., 2015)

SGS3 RNA binding protein in
PTGS

N. benthamiana TYLCV (Li et al., 2017)

WRKY Group III transcription
factors

S. lycopersicum TYLCV (Huang et al., 2016)
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is caused by epigenetic changes when the cell undergoes the
disorganized regeneration phase in tissue culture (Bairu et al.,
2011; Lee and Seo, 2018). However, virus evolution through
pseudorecombination or recombination and not changes in the
host can also be at play to break resistance in the field.

This ability to overcome genetic resistance is a very
challenging aspect in geminivirus-plant interactions. One such
example is the discovery of sequences enhancing geminivirus
symptoms (SEGS) during CMD infection. These SEGS (encoded
in the cassava genome) enabled the virus to cause symptoms in
otherwise resistant cultivars, breaking the resistance (Ndunguru
et al., 2016). Viruses themselves also have a high rate of mutation
that can change the virus-host interactions to evade resistance.
For TYLCV, the mean rate of genomic substitutions is estimated
to be 2.88 x 10-4 nucleotide substitutions per site every year
(Duffy and Holmes, 2008). This ability of geminiviruses to
overcome genetic resistance has led to a resurgence of Cotton
leaf curl disease (CLCuD) in south Asia after it had been nearly
eradicated (Amrao et al., 2010).
GEMINIVIRUS-PLANT INTERACTIONS
AND UNDERSTANDING HOST
RESISTANCE

Reverse genetics is a common method for identifying genes
involved in viral infection. Eybishtz et al. used this method in
2009 to identify Permease I-like protein as a resistance factor
against TYLCV. In knockout resistant plants, viral genomic titer
increased and resulted in susceptibility (Eybishtz et al., 2009).
Similarly, the hexose transporter LeHT1 was also identified as a
resistance gene. In LeHT1-knockout plants, TYLCV accumulates
and causes a necrotic response. This implies programmed cell
death may be a factor in geminiviral response (Eybishtz et al.,
2010). A downstream gene in the same LeHT1 pathway, a
lipocalin-like gene, also results in a necrotic response to TYLCV
when mutated from the resistant tomato (Sade et al., 2012).

A separate geminivirus resistance gene that also involves
programmed cell death includes the germin-like CchGLP gene
found in resistant peppers. This protein has manganese
superoxide reductase activity which increases upon infection
by Pepper golden mosaic virus or Pepper huasteco yellow vein
virus in resistant plants only (León-Galván et al., 2011). Resistant
peppers with knocked-out CchGLP develop symptoms,
indicating this gene has an important role in defense (Mejı́ a-
Teniente et al., 2015). When transferred into susceptible tobacco
plants, CchGLP conferred a mild symptom phenotype with
increased reactive oxygen levels and expression of systemic
acquired resistance-related genes (Guevara-Olvera et al., 2012).
Reactive oxygen species promote programmed cell death, a
general defense mechanism to prevent the spread of infectious
entities such as bacteria or viruses (Lam, 2004). Tomato leaf curl
New Delhi Virus (ToLCNDV) resistance protein SlRPT4, a 26S
proteasome, is also shown to regulate programmed cell death
and ROS production. This is in addition to its inhibitory binding
of the viral genome (Sahu et al., 2016).
Frontiers in Plant Science | www.frontiersin.org 4
SnRK1 is a major regulator of energy and nutrients in the plant
cell. It is also emerging with a role in plant response to biotic stress
(Hulsmans et al., 2016). When challenged with geminivirus
infection, A. thaliana SnRK1 has been shown to phosphorylate
TrAP of CbLCV, delaying and attenuating symptoms (Shen et al.,
2014). TrAP is an RNA silencing suppressor and acts as a
transcription factor for two other geminiviral proteins
(Fondong, 2013). In tomato, the analogue SlSnRK1 was shown
to interact with the geminivirus satellite pathogenicity factor bC1.
SlSnRK1 is shown to phosphorylate bC1, leading to symptom
delay and viral DNA load reduction (Shen et al., 2011).
Additionally, SnRK1 phosphorylates the Tomato golden mosaic
virus Rep protein and interferes with its dsDNA binding function.
This reduces viral DNA replication and symptoms (Shen et al.,
2018). These features make SnRK1 an important factor in
geminivirus defense. Other aspects of the host response like
SUMOylation, senescence response and autophagy (reviewed by
Kumar, 2019) may be used against the virus but viable resistance
strategies have yet to be developed.

Another receptor kinase that is known to counteract
geminivirus infection is the NSP-interacting kinase (NIK)
family (Santos et al., 2010). A. thaliana NIKs are activated via
oligomerization and autophosphorylation upon begomovirus
infection (Brustolini et al., 2015). The downstream target of
NIK is the ribosomal protein L10, which enters the nucleus and
downregulates translation-related genes to slow down the
infection (Santos et al., 2010; Brustolini et al., 2015). The
begomovirus has evolved alongside NIK to suppress its
antiviral activity by binding to the critical threonine 474,
preventing the phosphorylation required for NIK activation
(Santos et al., 2010). This same T474 when changed to
phosphomimetic aspartate constitutively activates antiviral
response genes, circumvents interference by NSP, and confers
tolerance to begomovirus infection (Brustolini et al., 2015).
Furthermore, a GTPase that interacts with NSP can also be
conceived as a target to develop resistance against geminiviruses
(Martins et al., 2020). These responses exemplify that
understanding and changing genetic interactions can provide
new solutions for disease management.

The status of the plant hormones in response to geminiviruses
has not been exhaustively assessed. Hormone changes related to
pathogen response fall within the salicylic acid (SA), jasmonic
acid (JA), and ethylene pathways (ET), where SA pathway is
upregulated during CbLCV infection in A. thaliana, JA is
downregulated, and ET has both responses in a transcriptomic
study (Ascencio-Ibáñez et al., 2008). Plants overexpressing SA
(cpr1 mutants) displayed a substantial delay in symptom
appearance upon infection, suggesting that plants with SA
pathway always on may have partial protection against
geminiviruses. On the other side, the CbLCV depletes the
production of jasmonate. JA is known for deterring insects and
reducing the transmissibility of geminiviruses (Escobar-Bravo
et al., 2016) so it could be used to reduce infection and impact
transmission of the virus (Sun et al., 2017). The issue is that SA
and JA seemed to be antagonistic on the plants, which will make
a plant producing both simultaneously at high levels not a viable
July 2020 | Volume 11 | Article 1131
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Beam and Ascencio-Ibáñez Geminivirus Resistance
alternative. Auxins, gibberellins, cytokinins, brassinosteroids,
abscisic acid, and strigolactones are all involved in the plant
responses. However, not enough information is available yet to
derive a putative resistance path.
ENGINEERED RESISTANCE

Natural defense mechanisms are often utilized to engineer a
plant with geminivirus resistance. This review will briefly cover
selected examples of engineered geminivirus resistance that
interfere with the viral replication cycle. Figure 1 puts these
mechanisms in context with geminiviral life cycle. For a more
detailed look at these approaches, see Loriato et al. (2020).
Interfering With Viral Proteins
Engineered resistance can act on proteins required for viral
replication or on viral DNA itself. In an approach known as
“immunomodulation”, transgenic plants express antibodies
against viral proteins. Single-chain antibodies generated against
the geminiviral coat protein were shown to bind and provide
resistance in vivo (Zakri et al., 2012). Similarly, anti-Rep
antibody expression can provide resistance, but the response
varies between lines due to variable transgene expression
(Safarnejad et al., 2009). DNase 3D8 is a recombinant antibody
with single- and double-stranded non-specific DNase activity
that has been tested against geminiviruses BCTV and Beet severe
curly top virus. Though the expression levels had to be kept low
to protect host nucleic acid, 3D8 expression prevented high levels
of viral DNA accumulation (Lee et al., 2013).

Peptide aptamers are engineered peptide sequences to be
expressed by the host to interfere with the activity of a protein
of interest. These are significantly smaller than single-chain
antibodies, but work similarly. They have been developed and
tested to disrupt functions of geminivirus proteins, one of which
is Rep from Tomato Golden Mosaic Virus. The aptamers bound
Rep in vivo and lowered viral DNA production (Lopez-Ochoa
et al., 2006). In transgenic tomato, peptide aptamers were also
effective against TYLCV and ToMoV by reducing viral
symptoms and viral load (Reyes et al., 2013). Another
approach for replication interference is by competition, as has
been shown with subgenomic DNA. However, this approach is
highly virus-specific, making its practical use limited and
inefficient (Stanley et al., 1990; Stenger, 1994).

Viral infection can also be impeded by sequestration of
protein targets. Rep can be out-competed for origin binding by
artificial zinc-finger proteins with specific DNA binding, and one
has been shown with greater affinity for the TYLCV origin than
Rep (Mori et al., 2013). A plant expressing it or a similar protein
may inhibit geminivirus replication. Mendoza-Figueroa et al.
found a globulin-derived peptide with high affinity for the
TYLCV origin and that reduced viral load when applied to
infected plants. This indicates that the peptide may not need to
be expressed by the plant, but rather can be applied exogenously
to interfere with Rep activity (Mendoza-Figueroa et al., 2018).
Frontiers in Plant Science | www.frontiersin.org 5
Viral Responses Against Gene Silencing
Rendered by the Host
Gene silencing regulates host processes by eliminating mRNA
before translation and is a defense against viral RNA. Dicer-like
proteins cleave dsRNA sequences into short interfering RNA
(siRNA) molecules 21–24 nt in length (Rey and Fondong, 2018).
The siRNA is loaded into a complex with Argonaute proteins,
which are then directed to complimentary DNA or RNA sequences.
This results in several outcomes, including degradation or
sequestration of existing RNAs (post-transcriptional gene
silencing) or targeting DNA for methylation (transcriptional gene
silencing) (Mathieu and Bender, 2004; Raja et al., 2010). RDRs
spread silencing throughout the plant by multiplying the secondary
siRNA signal (Rey and Fondong, 2018).

To counteract silencing, geminiviruses have evolved viral
suppressors of RNA silencing which are often pathogenicity
factors. For example, V2 of Tomato yellow leaf curl China
virus interacts with and sequesters secondary siRNAs,
hindering the spread of silencing. V2 of TYLCV suppresses
gene silencing by interacting with host proteins suppressor of
gene silencing 3 and histone deacetylase 6 (Fondong, 2013;
Wieczorek and Obrępalska-Stęplowska, 2015; Li et al., 2017;
Wang B. et al., 2018). Another example of RNA silencing
suppression is TrAP of Mungbean yellow mosaic Indian virus.
It slows siRNA production by blocking RDR6-mediated
biogenesis of siRNA, binds to Argonaute 1 to prevent its
action, and lowers global DNA methylation levels (Buchmann
et al., 2009; Kumar et al., 2015). C4 protein of Cotton leaf curl
Multan virus, Cassava mosaic viruses, Tomato leaf curl New
Delhi virus, and BCTV is also known to suppress silencing
(Vanitharani et al., 2004; Ismayil et al., 2018; Vinutha et al.,
2018) and can be a symptom determinant in infection (Mills-
Lujan and Deom, 2010).

Upon geminivirus challenge, an increase in siRNA is correlated
with a decrease in symptoms (Chellappan et al., 2004). Resistance
and recovery phenotypes are strongly associated with RNA
silencing. The intergenic region of the BCTV is targeted by
transcriptional gene silencing, evidenced by a greater proportion
of siRNAs produced for this region along with a heavier
methylation load in recovered plants (Yadav and Chattopadhyay,
2011; Coursey et al., 2018). There is a significant inverse relation
between the viral DNA methylation and the disease progression,
measured by symptom severity and viral titer (Rodrı́ guez-Negrete
et al., 2009; Yadav and Chattopadhyay, 2011).

Transgenic approaches have been developed in multiple
systems to generate plants that produce antiviral siRNAs,
artificial miRNAs, long non-coding RNAs, synthetic trans-
acting small interfering RNAs, etc., with different levels of
success (some reviewed in Kumar and Khan, 2019). This
concept has been proven in transgenic beans against Bean
golden mosaic virus (Aragão et al., 2013). In general, a viral
gene is expressed in the host to initiate PTGS quicker and to a
higher degree when challenged by the virus. The plants
expressing the gene in hairpin form had the highest levels of
resistance and siRNA, with some plants showing no symptoms at
all (Leibman et al., 2015; Tomar et al., 2018). However, this is
July 2020 | Volume 11 | Article 1131
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apparently dosage-dependent, as multiple studies have shown
that resistance is inversely correlated with siRNA level and can be
broken by high viral titer (Vanderschuren et al., 2009; Leibman
et al., 2015). Furthermore, it has been described that the
resistance is sequence dependent and only covers a single
species of virus (Fuentes et al., 2016). This limits the use of the
technology but does not preclude its application when the
prevalent virus is a single species.

The recent advent of the clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas system has introduced new
tools for generating resistance to geminiviruses. It has potential
as a specific editing tool, and has shown to be effective against
several different geminiviruses when expressed in plants
(reviewed by Zaidi et al., 2016). In all cases, the presence of the
Cas endonuclease and targeted short guide RNAs (sgRNAs)
reduced viral titer and symptom development. Studies suggest
that the level of Cas9 expression was a deciding factor in the level
of symptom reduction (Baltes et al., 2015; Ji et al., 2015). Not
only is this system effective in reducing geminivirus infection but
confers multiple-virus resistance when the conserved
nonanucleotide sequence was targeted. This was demonstrated
in a dual infection with TYLCV and BCTV. (Ali et al., 2015).

CRISPR/Cas9 offers a great tool to integrate geminivirus
resistance into susceptible plants, yet it is not perfect. Zhang
et al. described in 2018 that their high-specificity gRNA was still
showing off-target effects when expressed in A. thaliana. These
were reduced by using a modified gRNA scaffold (expressing the
gRNA adjacent to tRNA9met) and using the SpCas9 mutant
(Zhang et al., 2018). Another unintended consequence of
CRISPR-based viral resistance is the evolution of the virus to
evade sgRNA. This adaptation renders the resistance useless
(Mehta et al., 2019).
CONCLUSIONS

Although geminiviruses are very successful at infecting their
hosts, plants also evolve to overcome or tolerate infection.
Protective measures are introduced by humans as we seek to
maintain our crop productivity. It is important to continue
innovating to keep pace with the rapid viral evolution.
Resistance based on DNA sequence is at a disadvantage as it
Frontiers in Plant Science | www.frontiersin.org 6
relies on sequence to remain unchanged. These also tend to be
very virus-specific, making it difficult to protect crops against
mixed infections that are common. Antibody-based systems and
peptide aptamers may hold better long-term resistance since they
put more indirect evolutionary pressure on the geminivirus
genome. Additionally, the peptide aptamers showed a broader
base of effectiveness (Reyes et al., 2013), which may be effective at
fighting mixed infections. Aptamers can be improved and mixed
or re-designed using in silico approaches to increase its affinity.
However, the long history of virus/host competitive evolution
shows that protein-based resistance can still be overcome. To
continue developing more resistant crops, we must gain a greater
basic understanding of how these viruses infect the plants and
how the plant responds to and harbors viral replication. An ideal
resistance would prevent initial viral replication, eliminating the
opportunity for the virus to evolve. Furthermore, a combinatorial
or additive approach targeting both the virus and the vector may
provide with a better opportunity to impair the infection and
provide a longer lasting protection to crops.
AUTHOR CONTRIBUTIONS

JA-I conceived and supervised the review topics. KB wrote the
first draft. All authors contributed to the article and approved the
submitted version.
FUNDING

This work was partially funded by the Bill and Melinda
Gates Foundat ion (CPT005698) and by the T&E
Biochemistry Foundation.
ACKNOWLEDGMENTS

The authors thank Drs. Niki Robertson, Wei Shen, and Maria
Reyes for the critical review of the manuscript. We also apologize
to any authors and work that was not cited due to restrictions in
the size of the manuscript.
REFERENCES

Akano, A. O., Dixon, A. G. O., Mba, C., Barrera, E., and Fregene, M. (2002).
Genetic Mapping of a Dominant Gene Conferring Resistance to Cassava
Mosaic Disease. Theor. Appl. Genet. 105 (4), 521–525. doi: 10.1007/s00122-
002-0891-7

Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., and Mahfouz, M. M. (2015).
CRISPR/Cas9-Mediated Viral Interference in Plants. Genome Biol. 16, 238–
248. doi: 10.1186/s13059-015-0799-6

Amrao, L., Amin, I., Shahid, M.S., Briddon, R. W., and Mansoor, S. (2010). Cotton
Leaf Curl Disease in Resistant Cotton Is Associated with a Single Begomovirus
That Lacks an Intact Transcriptional Activator Protein. Virus Res. 152 (1–2),
153–163. doi: 10.1016/j.virusres.2010.06.019

Anbinder, I., Reuveni, M., Azari, R., Paran, I., Nahon, S., Shlomo, H., et al (2009).
Molecular Dissection of Tomato Leaf Curl Virus Resistance in Tomato Line
TY172 Derived from Solanum Peruvianum. Theor. Appl. Genet. 119, 519–530.
doi: 10.1007/s00122-009-1060-z

Aragão, F. J. L., Nogueira, E. O. P. L., Tinoco, M. L. P., and Faria, J. C. (2013).
Molecular Characterization of the First Commercial Transgenic Common
Bean Immune to the Bean Golden Mosaic Virus. J. Biotechnol. 166 (1–2), 42–
50. doi: 10.1016/j.jbiotec.2013.04.009

Arguello-Astorga, G., Lopez-Ochoa, L., Kong, L.-J., Orozco, B. M., Settlage, S. B.,
and Hanley-Bowdoin, L. (2004). A Novel Motif in Geminivirus Replication
Proteins Interacts with the Plant Retinoblastoma-Related Protein. J. Virol. 78
(9), 4817–4826. doi: 10.1128/JVI.78.9.4817-4826.2004
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