
Frontiers in Plant Science | www.frontiersin

Edited by:
Hans-Peter Mock,

Leibniz Institute of Plant Genetics and
Crop Plant Research (IPK), Germany

Reviewed by:
Tong Zhang,

Pacific Northwest National Laboratory
(DOE), United States
Jose Valero Galvan,

Universidad Autónoma de Ciudad
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The jasmonic acid (JA) signaling pathway is one of the primary mechanisms that allow
plants to respond to a variety of biotic and abiotic stressors. Within this pathway, the JAZ
repressor proteins and the basic helix-loop-helix (bHLH) transcription factor MYC3 play a
critical role. JA is a volatile organic compound with an essential role in plant immunity. The
increase in the concentration of JA leads to the decoupling of the JAZ repressor proteins
and the bHLH transcription factor MYC3 causing the induction of genes of interest. The
primary goal of this study was to identify the molecular basis of JAZ-MYC coupling. For
this purpose, we modeled and validated 12 JAZ-MYC3 3D in silico structures and
developed a molecular dynamics/machine learning pipeline to obtain two outcomes.
First, we calculated the average free binding energy of JAZ-MYC3 complexes, which was
predicted to be -10.94 +/-2.67 kJ/mol. Second, we predicted which ones should be the
interface residues that make the predominant contribution to the free energy of binding
(molecular hotspots). The predicted protein hotspots matched a conserved linear motif
SL••FL•••R, which may have a crucial role during MYC3 recognition of JAZ proteins. As a
proof of concept, we tested, both in silico and in vitro, the importance of this motif on
PEAPOD (PPD) proteins, which also belong to the TIFY protein family, like the JAZ
proteins, but cannot bind to MYC3. By mutating these proteins to match the SL••FL•••R
motif, we could force PPDs to bind the MYC3 transcription factor. Taken together,
modeling protein-protein interactions and using machine learning will help to find essential
motifs and molecular mechanisms in the JA pathway.
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INTRODUCTION

A considerable effort to elucidate the molecular mechanisms of
plant defense has lead to a better understanding of these
fascinating systems (Fürstenberg-Hägg et al., 2013; Abdul
et al., 2020). The molecular mechanisms of protein-protein
recognition through hormone biosynthesis and molecular
signaling are not yet totally understood (Burger and Chory
et al., 2019). A closer revisit could lead to valuable insights into
these essential plant signaling pathways (Zhang et al., 2010;
Fukao, 2012). Probably, part of the current limitations is due
to the lack of structural information to study the dynamics of
protein-protein interactions and the time-consuming nature
experimental approaches (Xing et al., 2016). Most of the
research devoted to unraveling protein interactions addresses
mainly to single point mutations and deletion effects that
generate invaluable information. However, these approaches
can be complemented with computational biology approaches
to better understand the whole dynamic process of recognition
and the coupling of protein-protein complexes.

Computational biology and machine learning are excellent
tools to explore the dynamics of protein-protein interactions. In
silico experiments, using available structural and biochemical
data could generate predictions of great value. In comparison
with experimental approaches, they are less time-consuming,
more flexible regarding size and type of proteins, and capable of
providing accurate predictions of the studied system (Folador
et al., 2015; Peng et al., 2017). Therefore, researchers have been
using these approaches to understand complex biological
problems when experimentation did not completely unravel
the molecular mechanism. Examples of these studies range
from protein-protein interactions for drug discovery on
various diseases, including cancer (Sarvagalla et al., 2016;
Goncearenco et al., 2017), neurological illnesses, metabolic
disorders (Shin et al., 2017; Macalino et al., 2018), or host-
pathogen protein interactions (Mariano and Wuchty, 2017), and
novel interactions in plant metabolism (Ding and Kihara, 2019;
Dong et al., 2019).

Under constant environmental and biotic threats, terrestrial
plants have developed diverse signaling pathways to respond to
the attack of arthropods, herbivores, and parasites (Turner, 2007;
Koo and Howe, 2009). Tissue damage triggers plant production
of small signaling molecules, namely, jasmonic acid (JA),
ethylene, and salicylic acid, that lead to the modulation of
transcription of genes related to the response of the plant to
environmental stimuli (Pieterse et al., 2009; Wasternack and
Hause, 2013).

In the JA pathway of Arabidopsis thaliana, TIFY class II
Jasmonate-ZIM domain (JAZ) repressor proteins are of great
importance (Pauwels and Goossens, 2011; Howe et al., 2018;
Howe and Toshida, 2019). JAZ proteins can participate within a
transcriptional repressor complex with the basic helix-loop-helix
(bHLH) MYC transcription factor (Turner, 2007; Koo and
Howe, 2009; Koo et al., 2009; Schmiesing et al., 2016). In the
absence of any environmental threat, biosynthesis of the
jasmonate-isoleucine (JA-Ile) hormone is low, and JAZ
Frontiers in Plant Science | www.frontiersin.org 2
repressor proteins are bound to the MYC transcription factor
(Chini et al., 2007; Thines et al., 2007). When the JAZ-MYC
complex is formed, the co-repressors Novel Interactor of JAZ
and TOPLESS bind to JAZ proteins and prevent transcription via
histone deacetylase 6 and 19 (Chini et al., 2007; Thines et al.,
2007; Yan et al., 2007; Zhang et al., 2015). Upon environmental
stimuli, the levels of JA-Ile increase, and the transcriptional
repressor machinery disassembles (Zhang et al., 2015). JA-Ile
binds JAZ proteins and forms a complex with SCF (COI1)
ubiquitin ligase, which marks JAZ proteins for degradation by
the 26S proteasome (Vasyukova and Ozeretskovskaya, 2009).
Meanwhile, MYC recruits mediator complex subunit 25 and the
rest of the transcription machinery to begin the transcription of
JA related genes such as AOS, LOX2, and VSP2 commonly used
as markers for the activation of the JA pathway (Leon-Reyes
et al., 2010; Perez and Goossens, 2013; Zhang et al., 2015). It is
essential to mention that all JAZ proteins have a redundant
function, and that they use the same transcriptional repression
mode as demonstrated the interaction with MYC (Thines et al.,
2007; Demienaski et al., 2011; Withers et al., 2012; Yu
et al., 2016).

MYC transcription factors, namely, MYC2, MYC3, and
MYC4, regulate JA related genes involved in plant defense and
plant growth. For instance, MYC2 plays a prominent role in the
regulation of root growth genes such as JAZ1 and JAZ10
(Grunewald et al., 2009; Demianski et al., 2011). MYC3 and
MYC4 are the main actors in defense of herbivory and regulation
of the glucosinolate pathway (Schweizer et al., 2013). Most of the
research on plant defense mechanisms has been dedicated to
MYC2, with only a few studies about the molecular mechanisms
of MYC3 and MYC4 (Fernández-Calvo et al., 2011; Goossens
et al., 2015). Using a detailed computational approach, we
investigated the molecular interactions of the TIFY class II
protein family with the MYC3 transcription factor.

Machine learning approaches (also known as knowledge-
based methods) for hotspot prediction is a field where
outstanding contributions are currently in development, but it
is still far from solved (Cukuroglu et al., 2014; Liu et al., 2018).
Preceding the use of machine learning for the prediction of
hotspots, the method of choice has been computational alanine
scanning mutagenesis that can be implemented via performing
full molecular dynamics simulation or using empirically
calibrated free energy functions (Cukuroglu et al., 2014; Liu
et al., 2018). The change in Gibbs free energy upon mutation
defined the classification if the residue was a hotspot. However,
threshold energy was necessary, and no universal agreement
about the value existed (Liu et al., 2018). As an alternative,
considering gains in speed and precision, the integration of
energy terms and machine learning algorithms for hotspot
predictions has been explored by several authors (Lise et al.,
2009; Liu et al., 2018). In one approach, the energy terms for only
the bound state of the complex were used as the input for the
machine learning algorithms. The classification was based on a
binary classification with a threshold of energy (DDG) to dictate
still the classes (Lise et al., 2009). Since the first efforts made to
implement machine learning, the computational power has
August 2020 | Volume 11 | Article 1139
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dramatically improved, and now the use of molecular dynamics-
derived features is not as computationally expensive as once it
when considered. However, it may still be challenging to apply
on large-scale studies (Lise et al., 2009; Cukuroglu et al., 2014; Liu
et al., 2018), and the open question remains how to effectively
implement molecular dynamics with knowledge-based methods
to obtain useful but still fast prediction models (Liu et al., 2018).

Here, we developed a computational workflow based on
experimental data that reveals the structural basis of a
transcriptional repressor complex critical in the context of plant
defense response to external stimuli. Our in silico pipeline explored
the binding thermodynamics and molecular hotspots of 14 TIFY
class II protein complexes. We predicted binding energy using
molecular dynamics simulations followed by free binding energy
calculations. Besides, we trained a machine learning classifier to
further understand each residue contribution to the binding
energy in each protein-protein interface. We found significant
differences in binding affinity between JAZ proteins and PPD
proteins with MYC3 protein.
MATERIALS AND METHODS

Molecular Modeling of JAZ-MYC3
Complexes
Fourteen 3D models corresponding to Arabidopsis JAZ-MYC3
interaction [12 models using JAZ1 to JAZ12 and MYC3] and
PPD-MYC3 complexes (two models; Figure 1) were built using
automated full-length 3D protein structural predictions using I-
Tasser Service (Zhang et al., 2015). We used structural
information from RCSB PDB entries 4YZ6 and 4YWC as
templates to build the 3D structures. The 4YZ6 template
Frontiers in Plant Science | www.frontiersin.org 3
describes the crystallographic structure of the JAZ1-MYC3
complex, which includes transcription factor MYC3 (residues
44-238) and protein JAZ1 (residues 200-221). The 4YWC
template describes the JAZ9-MYC3 complex, which consists of
the transcription factor MYC3 (residues 5-242) and the protein
JAZ9 (residues 194-215). For further loop refinement, we use the
ModLoop functionality of the Modeller v. 9.19 molecular
modeling software (Eswar et al., 2003; Webb and Sali, 2014).
The rationale for generating these models was to be able to
adequately define the interaction network of all class II TIFY
protein family members with MYC3 at an atomic level. We chose
to build these models because this is the first step to study
protein-protein interactions using Molecular Dynamics, which is
our main computational tool in this study. Also, the 14 interfaces
are not exactly the same, and each one has small differences in
amino acid sequences that definitely provoke considerable
differences in thermodynamic and binding properties.

Model Quality Assessment
Before the simulation, the generated models were evaluated in
terms of structural quality by ERRAT, ProQ, QMean4, and SolvX
servers. Each program evaluates a different characteristic of the
model, and together, they provide a general estimation of the
quality of the complex (Bhutani et al., 2015). ERRAT uses an error
function to statistically assess the nonbonded interactions
between different atom types (Colovos and Yeates, 1993). ProQ
uses neural networks to predict the structure quality regarding
Solvent Accessible Surface Area (SASA), residue-residue contacts,
and atom-atom contacts (Wallner and Elofsson, 2003). QMean4
checks the degree of ¨nativeness¨ of the predicted model in
comparison with a data set of experimental crystal structures
(Benkert et al., 2010). SolvX considers the compactness of the
A B

FIGURE 1 | Class II TIFY protein family in Arabidopsis. (A) Phylogenetic tree of class II TIFY protein family in Arabidopsis. The tree was constructed using the
complete amino acid sequence alignment using the maximum parsimony method (MEGA7: Molecular Evolutionary Genetics Analysis version 7.0). At3g20580 was
chosen as the outgroup (Vanholme et al., 2007). The numbers above the branches are bootstrap values from 500 replicates. Graphical representations of ZIM, Jas,
EAR, and PPD domains are given and were adapted from (Cuéllar Pérez et al., 2014). Jas* indicates the Jas-like domain. (B) Jas domain sequences from the class II
TIFY protein family.
August 2020 | Volume 11 | Article 1139
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predicted structure by calculating the solvent accessible area,
which is an indicator of proper folding (Holm and Sander, 1992).

Molecular Dynamics Simulation (MD
Simulation)
Molecular dynamics simulations of the 14 complexes were
performed using Gromacs 5.1.4 with the Amber-03 force field
(Berendsen et al., 1995). The system was set up as a solvated cubic
box filled with SPC216 water molecules described by the TIP3P
water model. Na+ and Cl- ions were added to simulate
physiological conditions at a concentration of 0.1 M. We used
periodic boundary conditions and Particle-Mesh-Ewald
electrostatics. The first step of the simulation was energy
minimization, which was performed using the steepest
descent algorithm, and a convergence parameter of less than 10
kJ mol-1nm-1. For equilibration dynamics, we ran two NVT and
NPT ensemble simulations for 500 ps each. V-rescale thermostat
at 310 K and Parrinello-Rahman barostat at 1 bar were used,
respectively (Bhutani et al., 2015).

The equilibrated systems were subjected to a 50 ns simulation,
keeping the same temperature and pressure conditions as
described previously. Molecular dynamics final trajectories
were analyzed using Gromacs built-in tools, namely, gmx
energy, gmx rmsf, gmx rms, and gmx hbond. Clustering of the
trajectory was performed using an RMSD cutoff of 0.25 nm and
the gromos algorithm to determine the cluster representatives
(Huber et al., 1994).

Free Binding Energy Calculation
The free binding energy was determined using the FoldX suite
functionality AnalyseComplex. The FoldX algorithm calculates
the Gibbs free energy for each protein and then the whole
complex using a linear combination of empirical terms
presented in the following equations (Schymkowitz et al., 2005):

DGbinding = DGAB − DGA + DGBð Þ (1)

DGbinding represents the change in Gibbs free energy for JAZ-
MYC3 complex. Each DG term was derived from equation 2.

DGx = a · DGvdw + bDGsolvH + c · DGsolvP + d · DGwd

+ e · DGhbOnd + f · DGel + g · DGkon + h · TDSmc

+ k · TDSsc + l · TDGclash (2)

DGx represents the change in Gibbs free energy for each term
in equation 1. Each term of equation 2 represents the contribution
of Van der Waals interactions, polar, apolar solvation, hydrogen
bonding, electrostatic interactions, entropic penalties, and steric
overlaps present in the target system. Lower-case letters designate
relative weights of each energetic term (Schymkowitz et al., 2005).
We calculated the weighted binding energy average of each cluster
representative for each complex. For the weighing factor, we used
the number of structures in each cluster relative to the total
number of structures of the stable production trajectory section.
Frontiers in Plant Science | www.frontiersin.org 4
Machine Learning Classifier
The machine learning workflow used to predict molecular
hotspots of JAZ-MYC3 was generated in Waikato Environment
for Knowledge Analysis (WEKA) v.3.8.1 (Witten et al., 2016). A
supervised approach was used to train the machine learning
classifiers in WEKA. Multilayer Perceptron (MP), Naive Bayes
(NB), Sequential minimal optimization (SMO), and Random
Forest (RF) algorithms were tested for classification. The
classifiers were thoroughly calibrated to assure the best
predictions. The models were evaluated using model quality
metrics, i.e., accuracy, recall, precision, F-measure, true-positive
rate, false-positive rate, Matthew correlation coefficient, precision
and recall area, and ROC area.

Training and Validation Data Set for
Machine Learning
We built a training/cross-validation data set, which comprises 19
reported cases of site-directed mutagenesis assays all belonging to
the JAZ9-MYC3 complex (Melotto et al., 2008;Withers et al., 2012;
Zhang et al., 2015). This data set has eleven non-deleterious
mutations and eight deleterious mutations. The complete
training data set is available in Table S1 of supplementary
information. FoldX suite the PSSM functionality was used to
calculate energetic descriptors for the training and testing data
sets (Schymkowitz et al., 2005). The PSSM tool calculates the
change in free binding energy (DDG) upon mutation.
Computational scanning mutagenesis was performed for the 20
natural amino acids, and DDG values were calculated.

Experimental Validation, Gene Cloning
All cloning was carried out by Gateway® recombination
(Thermo Fisher Scientific, Waltham, MA, USA), as described
by Goossens et al. (2015). The point mutations in PPD1(Y242F
and R243L) and PPD2(Y243F) were generated with the
GeneTailorTM Site-Directed Mutagenesis system (Thermo
Fisher Scientific) as described by Goossens et al. (2015).

Yeast Two-Hybrid (Y2H)
Y2H analysis was performed as described in Cuéllar Pérez et al.
(2014), with the GAL4 system. Briefly, bait and prey open reading
frames were fused to the GAL4-AD or GAL4-BD via cloning into
pGAL424gate or pGBT9gate, respectively. The Saccharomyces
cerevisiae PJ69-4A yeast strain was co-transformed with bait and
prey using the polyethylene glycol (PEG)/lithium acetate method.
Transformants were selected on Synthetic Defined (SD) media
lacking Leu and Trp (Clontech, Saint-Germain-en-Laye, France).
Three individual colonies were grown overnight in liquid cultures
at 30°C and 10- or 100-fold dilutions were dropped on control
media (SD-Leu-Trp) and selective media lacking Leu, Trp, and
His (Clontech).

RESULTS

JAZ Proteins and Domains: Interactions
and Pipeline
Briefly, we needed to find the structures available for the protein-
protein interaction of interest and, when necessary, to generate
August 2020 | Volume 11 | Article 1139
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the structure for the complexes without reported structure.
Then we used these structures for the molecular dynamics
simulation from which the main features for knowledge-based
methods will be extracted. Finally, machine learning classifiers
were trained and validated and applied to the test problem.
These computational predictions were then tested in the lab
and reported.

The Arabidopsis thaliana class II TIFY protein family
comprises 12 JAZ proteins, and two non-JAZ proteins named
PPD1 and PPD2 (Figure 1). This protein family modulates
transcription by forming a transcriptional repressor complex
sensitive to hormone biosynthesis. These proteins repress bHLH
MYC transcription factors that regulate JA responsive genes
(Fernández-Calvo et al., 2011). Yeast two-hybrid assays have
proven that all JAZ proteins interact with the MYC3
transcription factor through their Jas domain (Fernández-Calvo
et al., 2011; Goossens et al., 2015). The computational workflow
depicted in Figure 2 comprises three sequential stages, which allow
a clear understanding of the whole interaction dynamics of JAZ-
MYC3 complexes. In the first stage, we used automated full-length
3D protein structure prediction tools to generate 14 JAZ/PPD-
MYC3 complexes, which were validated using different quality
metrics. In the second stage, we calculated the free binding energy
of each of the complexes using molecular dynamics and free energy
calculations with an empirical force field. In the third stage, we
detected molecular hotspots using machine learning classifiers
trained with public domain site-directed mutagenesis data. The
rationale behind the three stages of our computational method is
multipurpose. First, a predictive model can be built if we combine
molecular dynamics-derived features with experimental features
Frontiers in Plant Science | www.frontiersin.org 5
from the literature. This approach does not require extensive
molecular dynamics, improving the speed and the computational
cost. Furthermore, by implementing experimental features and not
strictly only the change in Gibbs free energy but the qualitative
experimental results observed upon experimental mutations, we
may capture more information than with only energy terms.
Second, the data set available in general for protein-protein
interfaces from experiments is still too small to generate a system
capable of predicting hotspots for all cases possible in nature with
the same reliability (Liu et al., 2018). Therefore, we chose the
alternative of dividing the problem instead of developing a single
method that predicts hotspots for all proteins. Our method will
work well with a subset of similar proteins. We selected plants to
test the hypothesis since the abundance of protein families with
multiple closely related proteins, sometimes even almost identical
copies, in the same plant. Besides, with this approach, we do not
need to rely on defining a specific energy threshold to classify a
residue as a hotspot or not. It may even capture relationships
between neighboring residues that are hard to discern or
decompose from the molecular dynamics results alone.

Finally, this hybrid computational-experimental workflow
applied to class II TIFY family (JAZ-PPD proteins) will
provide great insight into how the MYC3 transcription factor
identifies substrates binders (JAZ) from nonsubstrates binders
(PPD) at an atomic level. Using this information, we will be able
to modulate the binding specificity of MYC, which will
eventually lead to design of new plant immune response
modulators. Finally, once we identified the key residues for the
interaction, we looked to see what happened experimentally if
these hotspots were inserted in PPD proteins. The wild-type
FIGURE 2 | In silico workflow proposed to unravel structural, energetic, and molecular features of JAZ-MYC3 complexes. The pipeline is divided into three stages:
protein homology modeling, binding energy calculation, and molecular hotspots discovery.
August 2020 | Volume 11 | Article 1139
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PPDs lack some of the identified critical residues within their Jas-
like domain. We tested PPDs mutant versions that now included
the key residues, added artificially to the PPDs Jas-like domain,
to see what happened with these proteins that naturally do not
bind MYC3 proteins.

JAZ-MYC3 Binding Interface
We used a server that applies a multiple threading approach that
finds templates to build structural predictions. We coupled the
predicted structures to a complementary stage of refinement
using molecular dynamics resulting in high-quality 3D structural
predictions of the 14 JAZ/PPD-MYC3 complexes. For this
purpose, we performed a BLASTp query to choose our
templates. BLASTp results reported five potential templates for
homology modeling, as shown in Table 1. They corresponded to
MYC3 protein-only and JAZ-MYC3 protein complexes, which
have an available crystal structure in RCSB PDB. For the aim of
this study, 4YWC_A and 4YZ6_A were chosen as templates
since they covered the JID-TAD domain (MYC3 protein) and Jas
domain (JAZ protein) which are the major interacting regions
between both proteins (Zhang et al., 2015).

Using 4YWC_A and 4YZ6_A as templates, we assembled 14
3D models corresponding to the MYC3 JID-TAD domain
interacting with Jas or Jas-liked domains of the 14 Arabidopsis
thaliana class II TIFY proteins. Figure 3A shows one of the 14
models, i.e., the JAZ1-MYC3 complex. All models comprised the
JID-TAD domain from the MYC3 transcription factor (Figure
3A, shown in blue) and Jas or Jas-like domain from the JAZ
repression protein and PPD protein, respectively (shown in
gray). Figure 3B shows the MYC3 binding pocket, which has
predominantly charged and hydrophobic residues that surround
the Jas helical domain of the JAZ protein. Figure 3C depicts in
detail the number of charged residues and the GRAVY (Grand
Average of Hydropathy) score of all 14 Jas and Jas-like domains
(Doolittle, 1992; Young et al., 1994). In the GRAVY index, the
larger the number, the more hydrophobic the average protein.

JAZ-MYC3 and PPD-MYC3 Full-Length 3D
Protein Structure Predictions Comply With
Quality Metrics
The quantitative validation of the structural models can be found
in Table 2. This validation was carried out using four servers that
assess different biochemical and structural characteristics of the
complexes. A three-step validation was implemented. The first
Frontiers in Plant Science | www.frontiersin.org 6
validation (Raw Model) corresponds to the assessment of the
initial model obtained immediately after the construction of the
3D structures by the online servers. The second validation was
done for the energy-minimized structures, a MD process to
stabilize the stereochemical characteristics of JAZ-MYC3 and
PPD-MYC3 models. The third validation (Molecular Dynamics)
was conducted on the models after the 50-ns molecular dynamics
simulations, which were performed to create the appropriate
physicochemical environment present in physiological
conditions. Table 2 reports the average quality scores and the
corresponding standard deviation of the 14 3D models
throughout the three-step validation.

Errat quadratic error function evaluates nonbonded protein
interactions using a quality factor, which ranges from 1%‑100%.
Structures with a quality factor above 95% are considered good
models (Colovos and Yeates, 1993). JAZ-MYC3 proteins after
Molecular Dynamics simulation scored an average quality factor
of 94.12 +/- 2.80%, which indicates high-quality models. This
score was higher than the average scores obtained from the
assessment of raw models and energy-minimized-only models
(85.15+/-0.65 and 92.89+/-2.30, respectively). The ProQ quality
evaluator uses neural networks to predict structural quality based
on SASA, residue-residue, and atom-atom contacts (Wallner and
Elofsson, 2003). It uses two scores, LGScore and MaxSub. The
difference between both lies in the size of the protein complex to be
evaluated. Larger complexes have a higher probability of getting
high LGScores, while small complexes tend to score higher in the
MaxSub metric. High-quality models have an LGScore above 1.5,
and a MaxSub score above 0.1 (Wallner and Elofsson, 2003). JAZ-
MYC3 complexes showed high quality in both metrics indistinctly
from the validation step.

The QMean4 score determines the degree of “nativeness” of a
protein model against experimental crystallographic structures.
This quality evaluator does not depend on the size of the protein,
unlike ProQ scoring functions. The QMean score ranges from 0
to 1. High-quality models usually score above 0.6 (Benkert et al.,
2010). All JAZ-MYC3 models scored above 0.7, presenting small
differences between validation steps. The SolvX analysis further
supported the quality of our predicted 3D structures. This
structural validation server determines proper folding through
the calculation of the SASA as a degree of compactness (Holm
and Sander, 1992). All predicted JAZ-MYC3 and PPD-MYC3
models present negative SolvX scores for every refinement step,
which indicates proper folding of the tertiary structure
throughout molecular dynamics processing.
TABLE 1 | Blastp results for MYC3 protein sequence query.

Template ID Total score Sequence coverage E-value Identity (%) Resolution (Å)

4YWC_A 498 MYC3: 5-242
JAZ9: 218-239

3e-176 100 2.10

5T0F_A 414 MYC3:44-242
JAZ10: 16-58

7e-144 100 2.15

4YZ6_A 407 MYC3:44-238
JAZ1: 200-221

6e-141 100 1.95

4RQW_A 398 MYC3:44-238 2e-137 98 2.2
5GNJ_G 122 MYC3:409-484 3e-33 78 2.7
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Oña Chuquimarca et al. JAZ-MYC interactions via Machine Learning
Moreover, we evaluated the quality of molecular dynamics
simulations. Figures 3D, E show molecular dynamics’ metrics,
namely, RMSD (Root Mean Square Deviation) and hydrogen
bonds profile along a 50-ns trajectory. RMSD remains stable
throughout the simulation and fluctuates around 1‑2 Å. This
behavior is expected in molecular dynamics simulations that
reach stability. The hydrogen bonding profile varies around 6 to
10 hydrogen bonds between the Jas peptide and the MYC3 JID-
TAD domain. The stability of the hydrogen bonding indicates a
good coupling between structures, and this is a good predictor of
binding affinity. Overall, JAZ-MYC3 and PPD-MYC3 models
showed high-quality structural characteristics based on the
TABLE 2 | Protein structure validation of JAZ-MYC3 homology models.

Validation Step Errat ProQ

LGScore Max

Raw Model 85.15 +/-0.65 4.41 +/- 0.16 0.44 +/
Energy Minimized 95.89 +/-2.30 5.10 +/- 0.23 0.22 +
Molecular Dynamics 94.12 +/-2.81 4.68 +/- 0.35 0.17 +
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assessment of four independent evaluators and stability
throughout the 50-ns trajectory of MD simulations.

JAZ-MYC3 Complexes Showed a Higher
Binding Affinity Than PPD-MYC3
Complexes
There is not enough structural data that can guide us to a clear
understanding of why PPD and JAZ proteins participate in widely
different biological processes. The availability of 3D structures for
these complexes is limited to JAZ1-MYC3, JAZ9-MYC3, and
JAZ10-MYC3 complexes (Zhang et al., 2015). There are no
crystal structures of PPD-MYC3 complexes. For this reason, we
A B

D E

C

FIGURE 3 | (A, B) Interaction domains between JAZ1 (Jas) and MYC3 (JID-TAD) proteins reveal a hydrophobic and charged pocket that surrounds the Jas degron;
this coupling mechanism is similar in all 14 models. Charged, hydrophobic, and neutral amino acids are depicted in blue, red, and green, respectively. (C) The table
shows the biochemical properties of Jas and Jas-like domains, GRAVY scores below 0 indicate that the binding interface in all JAZ/PPD-MYC3 complexes is highly
hydrophobic. The number of charged residues within the domain indicates that the electrostatic interactions predominate in the interface. (D) The RMSD plot of
JAZ1-MYC3 complex during the 50-ns molecular dynamics simulation indicates that the simulations reached the equilibrium. This behavior is observed for all 14
simulations. (E) Fluctuation of the number of hydrogen bonds of that JAZ1-MYC3 interface during the 50-ns molecular dynamics simulation shows that the H-bond
network is stable, and that there is no uncoupling of the interface.
QMean4 SolvX

Sub JAZ MYC3

-0.013 0.83 +/- 0.003 -5.67 +/- 4.56 -34.48 +/- 0.86
/- 0.01 0.81 +/- 0.01 -5.68 +/- 3.55 -12.91 +/- 15.34
/-0.02 0.78 +/-0.01 -4.88 +/-3.96 -43.83 +/- 10.03
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Oña Chuquimarca et al. JAZ-MYC interactions via Machine Learning
used an in silico approach to better understand the specificity of
JAZ and PPD proteins during the recognition of their binding
partner. We hypothesize that slight differences in binding affinity
within the JAS domain versus the PPD’s Jas-like domain are due to
the presence or absence of specific residues, hotspots, and may
profoundly influence protein-protein recognition for the
cases studied.

Provided the fact that computational methods allow us to study
systems dynamically, we can calculate the binding affinity during
each simulation step. By doing so, we could obtain a robust binding
energy prediction comparable with experimental approaches.
Therefore, we used Gromos algorithm with an RMSD cutoff of
0.25 nm to cluster the conformational space created during the 50-
ns MD simulations of JAZ/PPD-MYC3 complexes (Berendsen
et al., 1995). We used FoldX AnalyseComplex functionality to
determine the free energy profile of each cluster representative
(Schymkowitz et al., 2005). The cluster representatives were defined
as the molecular conformations that appeared the most during MD
simulation trajectories. Some cluster representatives were more
frequent during MD than others. Therefore, to determine the
binding energy of JAZ/PPD-MYC3 complexes, we calculated a
weighted average of binding energy using the frequency of each
cluster representative for each complex.Table 3 shows the predicted
van der Waals, electrostatic, polar, and apolar solvation energies
which are the critical energy terms from which FoldX calculates the
free binding energy (DGbinding) for each complex (Schymkowitz
et al., 2005). The 12 JAZ-MYC3 complexes showed an average
DGbinding = -10.94 +/- 2,22 kcal/mol (negative value indicates
favorable binding).

In contrast, PPD1/2-MYC3 complexes showed a predicted
average DGbinding of -6.34 +/- 1.44 kcal/mol (Table 3). Even
though this value denotes favorable binding, DGbinding was
significantly lower than the JAZ-MYC3 average DGbinding.
Remarkably, the PPD1-MYC3 complex presented one
representative with a predicted positive binding energy of 1.05
kcal/mol (a positive DGbinding denotes unfavorable binding
between two proteins). This representative accounts for 20.33%
TABLE 3 | Summary of the energy profile of JAZ-MYC3, PPD-MYC3, and mPPD-MYC

Complex #Clusters Binding Free Energy
(kcal/mol)

Van der W
(kcal/mo

JAZ1-MYC3 9 -11.78 +/-0.021 -13.2 +/- 0
JAZ2-MYC3 11 -7.69 +/- 0.018 -13.29 +/- 0
JAZ3-MYC3 10 -10.46 +/-0.031 -14.09 +/- 0
JAZ4-MYC3 13 -13.31 +/- 0.044 -13.63 +/- 0
JAZ5-MYC3 11 -15.63 +/- 0.028 -15.34 +/-0
JAZ6-MYC3 14 -11.26 +/- 0.027 -14.74 +/- 0
JAZ7-MYC3 16 -10.75 +/- 0.021 -14.98 +/-0
JAZ8-MYC3 12 -10.67 +-/ 0.031 -15.31 +/-0
JAZ9-MYC3 14 -9.84 +/- 0.027 -14.9 +/- 0
JAZ10-MYC3 18 -12.35 +/- 0.025 -14.41 +/- 0
JAZ11-MYC3 20 -7.74 +/-0.043 -16.48 +/- 0
JAZ12-MYC3 11 -9.75 +/- 0.079 -16.28 +/- 0
PPD1-MYC3 11 -5.32 +/-0.049 -13.82 +/- 0
PPD2-MYC3 16 -7.35 +/-0.031 -15.09 +/- 0
mPPD1-MYC3 4 -16.42 +/- 0.006 -13.43 +/- 0
mPPD2-MYC3 4 -15.41 +/- 0.013 -13.34 +/- 0
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of the complete pool of structural binding modes for PPD1-
MYC3 clusters. As shown, there are significant differences in
binding energies between JAZ-MYC3 and PPD-MYC3
complexes. A way to find out the reason for these differences is
to compare the per-residue energy contribution in JAZ-MYC3
and PPD-MYC3 interfaces.

Although PPD proteins display significant sequence similarity
to JAZ proteins, they are not involved in JA signaling. JAZ and
PPD proteins both contain a PEAPOD domain, a ZIM-domain,
and a Jas/Jas-like domain in their protein structure (Bai et al.,
2011). Alterations in the Jas-like domains of PPD1 (SL-YR-R
motif) and PPD2 (SL-YL-R motif) are likely responsible for the
nulling of the interaction between the PPD and MYC proteins.
Thus, we decided to investigate further the contribution of each
residue to the overall binding energy.

The Jas domain from JAZ proteins showed less exposed
residues (6 to 10 residues) compared to Jas-like domains from
PPD proteins (14 for PPD1 and 13 for PPD2). Jas binding
domains present higher GRAVY scores compared with Jas-like
domains, meaning that Jas domains are more hydrophobic than
their counterparts (Jas-like domains).
Hotspots Prediction Reveal a Short Linear
Motif Which May Define JAZ-MYC3
Binding Specificity
With the cluster representatives structures (the more representative
structures for each complex simulated, accounting 12 for each)
obtained from the molecular dynamics trajectory, we performed
computational scanning mutagenesis. We calculated the per-residue
energy contribution (a weighted average of the cluster
representatives), and with these results and available experimental
data from the literature, we tested several machine learning
classifiers. This approach allowed us to predict molecular hotspots
based on both computational calculations and experimental data,
which reinforce the accuracy of the predictions.
3 complexes.

aals
l)

Electrostatic
(kcal/mol)

Polar solvation
(kcal/mol)

Apolar solvation
(kcal/mol)

.013 -4.22 +/- 0.001 15.57 +/- 0.029 -18.33 +/- 0.014

.008 -4.53 +/- 00.7 16.94 +/- 0.018 -17.67 +/- 0.008

.009 -3.44 +/- 0.006 17.07 +/- 0.013 -18.61 +/- 0.013

.007 -4.23 +/- 0.006 16.85 +/- 0.013 -18.36 +/- 0.007
.012 -5.88 +/- 0.011 19.1 +/- 0.023 -20.23 + /- 0.012
.007 -6.14 +/- 0.015 19.77 +/- 0.015 -18.69 +/- 0.011
.041 -4.24 +/-0.013 19.39 +/- 0.083 -19.93 +/-0.041
.017 -4.25 +/- 0.012 20.1 +/- 0.028 -20.96 +/- 0.025
.02 -4.42 +/- 0.021 19 +/- 0.032 -19.7 +/- 0.022
.012 -4.05 +/- 0.009 18.35 +/- 0.026 -18.81 +/- 0.011
.021 -4.35 +/- 0.014 21.88 +/-0.061 -19.84 +/- 0.02
.014 -5.48 +/- 0.012 22.64 +/- 0.041 -20.46 +/- 0.012
.019 -4.57 +/-0.015 19.74 +/- 0.025 -16.28 +/- 0.03
.007 -3.69 +/- 0.01 20.57 +/- 0.012 -19.13 +/- 0.008
.001 -3.17 +/- 0.002 16.28 +/- 0.001 -17.57 0.002
.002 -3.79 +/- 0.003 17.06 +/- 003 -17.2 +/- 0.001
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TABLE 4 | Quantitative assessment of the best ranked machine learning algorithms for JAZ-MYC3 hot spots prediction.

Algorithm TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

Random Forest 0.818 0.125 0.900 0.818 0.857 0.685 0.943 0.959 NDM
0.875 0.182 0.778 0.875 0.824 0.685 0.943 0.943 DM
0.842 0.149 0.849 0.842 0.843 0.685 0.943 0.952 Average

Sequential Minimal Optimization 1.000 0.250 0.846 1.000 0.917 0.797 0.875 0.846 NDM
0.750 0.000 1.000 0.750 0.857 0.797 0.875 0.855 DM
0.895 0.145 0.911 0.895 0.892 0.797 0.875 0.850 Average

Multilayer Perceptron 0.818 0.125 0.900 0.818 0.857 0.685 0.920 0.940 NDM
0.875 0.182 0.778 0.875 0.824 0.685 0.920 0.924 DM
0.842 0.149 0.849 0.842 0.843 0.685 0.920 0.934 Average

Naïve Bayes 0.909 0.125 0.909 0.909 0.909 0.784 0.943 0.954 NDM
0.875 0.091 0.875 0.875 0.875 0.784 0.943 0.952 DM
0.895 0.111 0.895 0.895 0.895 0.784 0.943 0.953 Average

TP Rate, True positive rate; FP Rate, false positive rate; MCC, Matthews correlation coefficient; ROC Area, Receiver Operating Characteristic area under the curve; PRC Area, Precision
Recall area under the curve. Each score ranges from 0 to 1, 1 being the best possible outcome. The training data set was divided into two classes NDM (non-deleterious mutations) and
DM (deleterious mutations).

Oña Chuquimarca et al. JAZ-MYC interactions via Machine Learning
We used a supervised learning approach to build classifiers
using several machine learning algorithms. The training data set
comprises deleterious and non-deleterious mutations collected
from the literature (Melotto et al., 2008; Withers et al., 2012;
Zhang et al., 2015). We considered only single point mutations to
generate the training set. We calculated the change in binding
energy (DDG binding) using computational scanning mutagenesis
for all the 20 natural amino acids (Table S1). Using this data set,
we trained, cross-validated, and tested several machine learning
classifiers. The performance of the best classifiers is shown in
Table 4.

We used several quality metrics to evaluate the performance of
the classifiers. For instance, we checked the true-positive
rate, false-positive rate, precision, recall, F-Measure, Matthew
correlation coefficient, ROC area, and PRC area for each
classifier. For most metrics, a value close to one is characteristic
of a good model, except for the false-positive rate where values
close to zero are the best. The Matthew correlation coefficient
index goes from -1, indicating absolutely no correspondence with
the data, over zero, meaning no better than pure chance, to +1,
indicating a perfect correspondence between the model and the
data. The top-scoring models, according to these quality metrics,
were random forest, sequential minimal optimization, multilayer
perceptron, and naïve Bayes (Table 4). The most common
descriptors used by the classifiers were alanine's, isoleucine's,
lysine's, proline's, serine's, and valine’s DDGbinding energy (Table
S1). It was clear that alanine would be one of the most informative
features because alanine scanning mutagenesis is the gold standard
for hotspot discovery.

We chose the sequential minimal optimization (SMO)
classifier for assessing JAZ-MYC3 and PPD-MYC3 models
because it outperforms other classifiers with 89.5% instances
correctly classified as a given class. Also, this classifier model
was more conservative than the other classifier tested because the
SMO was most likely to classify a residue as non-deleterious (not a
hotspot) than as deleterious. To be a conservative model is a
desirable behavior since only a few residues in a protein will be
hotspot. The PRC area average for the classifier was still very high
(0.856) overall for a conservative model classifier. The analysis of
the classifier predictions highlighted the importance of a
Frontiers in Plant Science | www.frontiersin.org 9
conserved hotspot motif within JAZ-MYC3 complexes. This
motif was formed of five specific residues within the linear motif
Serine-Leucine-X-X-Phenylalanine-Leucine-X-X-Arginine amino
acids (SL.FL.R), X being any residue. SL.FL.R, which are in direct
contact with the binding pocket of the MYC3 through hydrogen
bonds and van der Waals interactions (Figure 4A). Therefore, this
hotspot motif highly contributes to the binding affinity between
JAZ proteins and MYC3 transcription factor. Figure 4B shows a
logo of Jas domain residues. Highly conserved amino acids are
represented by bigger letters. The SL.FL.R motif is a highly
conserved motif within JAZ-MYC3 complexes. Notably, not all
conserved residues are hotspots for specific protein-protein
interfaces; however, hotspots are usually conserved residues.
PPD-MYC3 Models Differ at Their Protein
Interface
PPD1&2 proteins are not reported to interact with MYC3, even
though they have a Jas-like domain similar to JAZ proteins. When
looking at the PPD Jas-like domain, the linear motif identified for
the Jas-domain is incomplete, which may be the reason why PPD
proteins do not interact with MYC3. To confirm this hypothesis,
we performed a yeast two-hybrid (Y2H) assay using “wild-type”
PPDs and mutant PPDs (mPPDs) with a mutation in the Jas-like
domain (mPPD1 and mPPD2; Figure 5A) to investigate the effect
of these mutations for the interaction between PPDs and MYC3.
Figure 5B depicts the Y2H assay. As reported before, and as
supported by the binding energy predictions described above,
PPD1 and PPD2 do not interact with MYC3. However, both
mPPD1 and mPPD2 present binding affinity towards MYC3
(Figure 5B), establishing the fundamental role of the identified
linear motif in the interaction.

In parallel, we compared if the Y2H results could be
corroborated using computational methods that calculate the
predicted free binding energy between MYC3 and mPPD1/
mPPD2. Indeed, we found a low predicted free binding energy
betweenMYC3 and the wild-type PPDs, pointing to a weak or no
interaction capacity between these proteins. Conversely, we
found a significantly higher free binding energy, thus
suggesting a higher interaction affinity between MYC3 and the
August 2020 | Volume 11 | Article 1139
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mPPDs mutants. The artificially reestablished SL.FL.R linear
motif provokes a three-fold increase in binding energy
(DGbinding) for PPD1 (from -5.32 +/- 0.049 kcal/mol to
-16.42 +/- 0.031 kcal/mol) and a two-fold increase for PPD2
(from -7.35 +/- 0.031 kcal/mol to -15.41 +/- 0.013 kcal/mol)
(Figure 5C). The difference in binding energy is statistically
significant (p<0.05).

Overall, molecular hotspot prediction and computational
analysis explained why the SL.FL.R linear motif is responsible
for most of the binding dynamics. This conserved linear motif
may indeed be the molecular fingerprint that MYC3 uses to
recognize and bind to JAZ proteins instead of PPD proteins. Site-
directed mutagenesis and Y2H assays confirm the importance of
the SL.FL.R linear motif in for MYC3 protein recognition, and it
is surprising that by inducing specific punctual mutations in the
Frontiers in Plant Science | www.frontiersin.org 10
PPD wild-type domain, a novel interaction with MYC3 can be
induced for PPD proteins. This simple change had a real impact
on the binding energetics of PPD proteins, which was also found
using computational methods.
DISCUSSION

The study of protein families as a whole system is one of the
priorities of modern protein research. Particularly in plants, it is
relatively common to find extended protein families throughout
their genome, and a problem arises in the fact that for most of these
families, their functions or structure are poorly characterized.
Several experimental and computational approaches have played
A

B

FIGURE 4 | (A) Spatial location of the SL.FL.R motif in the JAZ-MYC3 complex. Red sticks represent the small binding motif. (B) Multiple sequence alignment logos
representation of the Jas domain. Red asterisks denote the position of the SL.FL.R motif.
A

B

C

FIGURE 5 | Site-directed mutagenesis assay of PPD-MYC3 complexes. (A) Amino acid alignment showing chances in the Jas-like domain of PPD1, PPD2, and mutants
mPPD1 and mPPD2. (B) Yeast-two hybrid experiments are showing the favorable change in affinity upon mutation of the SL.FL.R motif in PPD1 and PPD2. (C) Predicted
free binding energy of PPD1, PPD2, and mPPD1, mPPD2 mutants. Triple asterisks show statistical significance (p < 0.05) between wild type and mutants.
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a significant role in addressing this question. Experimental
techniques like site-directed mutagenesis are widely used for
describing binding interfaces at a molecular level.

Nevertheless, the costs and effort associated with these
experiments are high, and experimental techniques are limited
to small-scale tests (Zinzalla and Thurston, 2009). Several
computational approaches, on the other hand, such as molecular
dynamics and machine learning predictors, usually required high
amounts of computational resources and time to get accurate
results. Moreover, the correlation between experimental and
computational predictions has generally been low because of
experimental and computational shortcomings, but it has been
improving over time (Cukuroglu et al., 2014). There are no general
criteria to experimentally define what a hotspot is. The same can
be a problem for the computational prediction that relies on a
specific threshold change in free binding energy (Liu et al., 2018).
From the computational point of view, there are only small sets of
experimental data available to train the models and too many
potential features so that overfitting is possible when using
machine learning approaches (Liu et al., 2018).

The advantage of using our methodology is that we used
available experimental data as a scaffold to design computational
experiments that increase the accuracy of our predictions. We
collected data for a specific protein-protein interaction from the
literature and predicted the effect on the whole group of proteins
for which minimal experimental data was available. Integrating
computational insights to characterize or design complex system
increases our understanding and optimizes experimental
resources (Montero-Oleas et al., 2018; Ryan et al., 2019). By
doing so, we can escalate the study of protein-protein
interactions to specific families of proteins, as we did with the
Arabidopsis TIFY class II family. We suggest that our in silico
strategy is suitable for the study of plant family proteins because
gene duplication is very extended in plant lineage members, for
example, on average 65% of annotated genes from a group of 41
sequenced plant genomes had duplicated copies (Panchy et al.,
2016). Redundant protein families include, but are not limited to,
transcription factors, membrane proteins, peptidases,
Cytochrome P450, or signaling proteins (Roskoski, 2012;
Bolger et al., 2018; Seternes et al., 2018).

This gene duplication process can allow the acquisition of novel
functions, interactions, or expression patterns that could confer
new characteristics for the benefit of living organisms (Rensing,
2014). Usually, these evolutionary novelties are related to new
molecular functions, plant structures, and adaptive traits (Hanada
et al., 2008). By studying protein families with our methodology,
we can identify and determine themolecular reasons why the small
molecular differences make possible the diversity of functions and
interactions seen within a family of interest.

Automated full-length 3D protein structural predictions have
been shown to be very accurate, especially when there are similar
proteins available in the structural databases used by the software
(Aguilera-Pesantes andMéndez, 2017). Since the partial structures
of JAZ1, JAZ9, and JAZ10 of Arabidopsis thaliana, interacting
with MYC3, are available, this allowed the server to generate
suitable starting full-length 3D structures. In the second stage, we
Frontiers in Plant Science | www.frontiersin.org 11
calculated the free binding energy of each of the complexes to
evaluate the importance of each residue at the protein-protein
interface. These calculations allowed us to rank the contribution of
each residue to the binding since not all residues contribute
equally to the interaction between two proteins. Those residues
that contribute more are considered hotspots residues, and their
biological relevance needs to be highlighted since a mutation in
these residues will, in general, significantly decrease and even
abolish the interaction between two proteins.

In the third stage, using the information calculated in silico
and the known experimental data (site-directed mutagenesis
data), we were able to train machine learning algorithms. The
aim was to recognize from all residues in the protein, which ones
were hotspots for the specific protein-protein interface. This
information is valuable to explain why we observe a weakening
of the protein-protein interaction in some instances. Specifically,
a weaker interaction is present in the in silico experiments as
well as in the in vitro experiments for wild-type PPD proteins
that lack the complete linear motif we derived from the
consensus sequence identified from the machine learning
classifier results. Therefore, identifying the consensus of these
hotspots along all the TIFY class II family proteins allowed us
to suggest a linear binding motif for the all JAZ-MYC3
complexes. Finally, our explanation of the Y2H results is that
slight differences in the binding affinity due to specific residues
(hotspots identified by the consensus from our machine learning
classifier results) may profoundly impact protein-protein
recognition and interface stabilization.

The approach is not designed to be used as a protein-protein
interaction discovery tool directly. But, its significance could be
that if one protein-protein interaction is discovered, the
interaction with all the other proteins of the same family can be
rapidly tested in silico. With this in mind, it could also be used to
test a hypothesis of a novel protein-protein interaction. First, a
known protein-protein interaction must exist, and from there,
similar proteins can be searched with other methods (Zhang et al.,
2010). To get a stronger sense to decide if these new proteins could
interact, the researcher could use the presented approach to look
for hotspots. If there are several hotspots present in the tested
interface, the data may help to validate the original hypothesis and
lead to an experimental test to verify the protein-protein
interaction. Regarding the protein similarity needed to apply this
method, it has been observed that there is a conservation of
interface locations at the family and superfamily levels and that
even there is some conservation with remote structural neighbors
(Korkin et al., 2005; Littler et al., 2005; Zhang et al., 2010). Also,
there is structure conservation of protein structure till the “twilight
zone” around 20%‑35% homology, and even at lower percentage
homology for transmembrane proteins (Olivella et al., 2013).
These considerations suggest that there will be many protein
families for which protein-protein interfaces could be studied
with ours or similar approaches.

The assessment of the Arabidopsis thaliana TIFY class II group
is an excellent example of how small molecular changes can lead to
significant differences in the interaction between proteins. JAZ
proteins interact with the MYC3 transcription factor through a
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short helical domain (Jas domain). On the other hand, PPD
proteins exhibit a Jas-like domain pretty similar to JAZ proteins,
but they do not interact with MYC3 (Gonzalez et al., 2015). The
question that arises is how the MYC3 transcription factor
specificity works despite the striking similarities between JAZ
and PPD proteins. Using a computational approach which
included modeling, molecular dynamics, and a machine learning
classification models, we discovered a short linear binding motif
that may be the clue of JAZ-MYC3 binding specificity.

The SL.FL.R linear motif, which is absent in PPD proteins,
interacts with the binding pocket of the MYC3 transcription
factor, which is formed by hydrophobic and charged amino
acids. This linear motif is composed of five molecular hotspots,
meaning that binding energy of the complex upon mutation of
one of them will considerably decrease compared to the mutation
of other residues. As a proof of concept, we developed an
experiment that consisted of completing the SL.FL.R linear
motif at the Jas-like domain of wild-type PPD proteins
resulting in that this change made PPD proteins able to bind
MYC3. Surprisingly, mutant PPD1 and PPD2 formed a complex
with the MYC3 transcription factor with a binding energy that
falls in the same range of JAZ-MYC3 complexes.

The coupling of computational predictions using relevant and
specific experimental data will result in a higher accuracy of
hotspot predictions compared with generic computational
protein-protein prediction assays, and the method could
generate results compared more quickly to experimental
techniques. Besides, we suggest that this methodology can be
translated to other protein families with unknown interacting
partners and which share at least 30% of homology in their
sequence, or even at lower percentage homology for membrane
proteins (Sander and Schneider, 1991; Olivella et al., 2013). This
homology requisite is necessary for developing an accurate full-
length 3D structural prediction. Besides, it is an asset to have a
crystal structure of one of the protein family members; however,
it is not crucial. Moreover, in the case of the JAZ-MYC3 protein
complex, we know their binding conformation. Nevertheless, in
the absence of that information, we could have predicted it using
protein-protein docking software. Overall, our methodology
allows us to predict molecular hotspots and their contribution
to the global binding energy quickly and robustly.
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