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Paclitaxel is the top-selling anticancer medicine in the world. In vitro culture of Corylus
avellana has been made known as a promising and inexpensive strategy for producing
paclitaxel. Fungal elicitors have been named as the most efficient strategy for enhancing
the biosynthesis of secondary metabolites in plant cell culture. In this study, endophytic
fungal strain HEF17 was isolated from C. avellana and identified as Camarosporomyces
flavigenus. C. avellana cell suspension culture (CSC) elicited with cell extract (CE) and
culture filtrate (CF) derived from strain HEF17, either individually or combined treatment, in
mid and late log phase was processed for modeling and optimizing growth and paclitaxel
biosynthesis regarding CE and CF concentration levels, elicitor adding day, and CSC
harvesting time using multilayer perceptron-genetic algorithm (MLP-GA). The results
displayed higher accuracy of MLP-GA models (0.89–0.95) than regression models
(0.56–0.85). The great accordance between the predicted and observed values of
output variables (dry weight, intracellular, extracellular and total yield of paclitaxel, and
also extracellular paclitaxel portion) for both training and testing subsets supported the
excellent performance of developed MLP-GA models. MLP-GA method presented a
promising tool for selecting the optimal conditions for maximum paclitaxel biosynthesis.
An Excel® estimator, HCC-paclitaxel, was designed based onMLP-GAmodel as an easy-
to-use tool for predicting paclitaxel biosynthesis in C. avellana CSC responding to
fungal elicitors.
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INTRODUCTION

Paclitaxel is a potent mitotic inhibitor that is utilized for treating
breast, lung and ovarian cancers, and Kaposi’s sarcoma (Weaver,
2014), so that it has been entitled the top-selling anticancer
medicine in the world (Goodman and Walsh, 2001). Also, this
impactful chemotherapeutic agent is used for off-label treatment
of endometrial, gastroesophageal, prostate, cervical, and head
and neck cancers (Weaver, 2014). Invaluable secondary
metabolite “paclitaxel” was initially extracted from Taxus bark
(Wheeler et al., 1992). But harvesting the bark of these valuable
species in the natural areas speedily exceeded levels deemed as a
sustainable one, and critical over-harvesting has caused Taxus
wild populations to be on the brink of extinction worldwide
(Shinwari and Qaiser, 2011). Plant cell factories are a promising
environmentally sustainable alternative to paclitaxel mass
production (Salehi et al., 2017; Espinosa-Leal et al., 2018;
Salehi et al., 2019b; Salehi et al., 2019c). The rising demand for
paclitaxel and Taxus recalcitrant behavior under in vitro
conditions have caused extensive effort toward finding
alternatives for producing this invaluable secondary metabolite.

In vitro culture of hazel (Corylus avellana, European filbert)
has been made known as a promising and inexpensive strategy
for producing paclitaxel (Gallego et al., 2017; Salehi et al., 2017;
Salehi et al., 2018c; Salehi et al., 2019b; Salehi et al., 2019c;
Farhadi et al., 2020; Salehi et al., 2020). Biosynthesizing bioactive
compounds in plants is influenced by various factors (Torkamani
et al., 2014; Salehi et al., 2017; Salehi et al., 2018a; Salehi et al.,
2018b; Salehi et al., 2018c; Salehi et al., 2019a; Salehi et al., 2019b;
Salehi et al., 2019c; Salehi et al., 2019d). Previous studies (Salehi
et al., 2019b; Salehi et al., 2019c; Farhadi et al., 2020; Salehi et al.,
2020) demonstrated the positive influences of cell extract (CE) and
culture filtrate (CF) of endophytic fungi on paclitaxel biosynthesis in
cell suspension culture (CSC) of C. avellana. Fungal elicitor type,
concentration and adding time, and also exposure time of cell culture
(CSC harvesting time) should be optimized to achieve the maximum
biosynthesis of paclitaxel in C. avellana CSC (Salehi et al., 2019b;
Salehi et al., 2019c; Farhadi et al., 2020; Salehi et al., 2020). Precise
analysis of the effects of these factors and their optimal selection
would pave the way for the commercialization of bioprocessing C.
avellana cells toward paclitaxel mass production. Paclitaxel
biosynthesis and its elicitation are complex biological processes
since they are affected by several factors and their nonlinear
interactions. Optimizing these mentioned factors by experimenting
is laborious, costly, and time-consuming. The mathematical models
can effectively predict the optimized conditions for a multifactorial
process (Struik et al., 2005; Gallego et al., 2011) such as
paclitaxel biosynthesis.

Artificial intelligence (AI) technology is the algorithm capable
of complex and intelligent computing similar to the routine
performance of the human brain (Agatonovic-Kustrin and
Beresford, 2000). Artificial neural network (ANN) is an AI
method discovering complex nonlinear relationships among
input (factors) and output (parameters) data (Patnaik, 1999;
Plumb et al., 2005). Indeed, ANN is a brain-inspired method that
imitates the way that the human brain works (Agatonovic-
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Kustrin and Beresford, 2000). It processes information and
makes decision in systems involving vagueness and uncertainty
(Patnaik, 1999; Gago et al., 2010). This technology has been
widely used as a predictive instrument in a broad range
of fields including ecology, food science, agriculture,
environmental sciences, plant biology, pharmaceutical research,
and biotechnology (Hilbert and Ostendorf, 2001; Daniel et al.,
2008; Huang, 2009; Arab et al., 2018; Hesami et al., 2019a;
Hesami et al., 2019b; Hesami et al., 2019c; Sheikhi et al., 2020).
Multilayer perceptron (MLP), one of the most popular types of
ANN, exhibits superior predictive ability as compared to
traditional statistical methods to approximate the mathematical
functions for analyzing and interpreting different unforeseeable
data sets (Ahmadi and Golian, 2011; Jamshidi et al., 2016).
However, training and designing of ANN face several
problems. One of the biggest problems is assigning the weights
in ANN structure which displays the direct influence on model
performance. Basically, the network architecture and learning
algorithm parameters control the weights. Also, other network
parameters including the number of memory taps, the number of
hidden layers and nodes and learning rates could influence ANN
performance (Tahmasebi and Hezarkhani, 2009). To overcome
these mentioned problems, ANN is hybridized with other
optimization methods including genetic algorithm (GA)
(Plumb et al., 2005; Shao et al., 2007; Ahmadi and Golian,
2011; Eftekhari et al., 2018; Sheikhi et al., 2020).

GA is the evolutionary algorithm making superb solutions to
problems and has been applied for bioprocess optimization in
plant biology (Osama et al., 2015; Jamshidi et al., 2016; Arab
et al., 2018). Indeed, GA is a search algorithm inspired by natural
selection and genetics concepts (Holland, 1992). The
fundamental principles of GA are the creation of an initial
population of search solutions (chromosomes), and then elite
search solutions were selected for crossover using a roulette
wheel selection method, which will ultimately be the best
solution (fittest chromosome) (optimal value) among them
(Figure 1).

Multilayer perceptron-genetic algorithm (MLP-GA),
integrating MLP with GA (Figure 1), causes achieving an
accurate model for prediction and optimization of biological
process (Jamshidi et al., 2016; Arab et al., 2018; Eftekhari
et al., 2018).

The objectives of this research were (a) to isolate endophytic
fungi from C. avellana grown in Iran, (b) to develop regression
and MLP-GA models to predict output variables “dry weight
(DW), intracellular paclitaxel, extracellular paclitaxel, total yield
of paclitaxel and extracellular paclitaxel portion” based on input
variables “CE and CF concentration levels, elicitor adding day,
and CSC harvesting time”, (c) to compare regression and MLP-
GA performance in term of prediction accuracy of output
variables, (d) to optimize the mentioned factors for maximum
biosynthesis of paclitaxel, (e) to detect the most important
factors for maximum biosynthesis of paclitaxel, and (f ) to
design an Excel® estimator which can easily be applied to
predict the total yield of paclitaxel in C. avellana CSC based on
input variables.
August 2020 | Volume 11 | Article 1148
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MATERIALS AND METHODS

Isolation of Endophytic Fungi
Healthy samples of the bud, stem, bark, and leaves were obtained
from C. avellana grown in Iran during June to September 2018.
The surfaces of the samples were sterilized as described by Salehi
et al. (2018c; 2019b). The surface-sterilized plant samples were
cut and transferred on PDAC [potato dextrose agar (PDA);
supplemented with 250 mg l−1 Chloramphenicol] in unique
Petri dishes (100 × 15 mm), incubated at 25 °C. After the
growth of endophytic fungi, the pure cultures of the isolates
were established by hyphal tip culture (Strobel et al., 1996). All
fungal endophytes were numbered as HEF# series and stored at
4 °C.

Molecular Identification of
Endophytic Fungus
Fungal endophyte was cultured in potato dextrose broth (PDB)
and incubated in a shaker incubator at 25 °C and 110 rpm for 10
days. The extraction of fungal genomic DNA was done as
described by Salehi et al. (2018c; 2019b). The partial sequences
of internal transcribed spacer (ITS) fragments (ITS1-5.8S-ITS2)
and actin gene (ACT) were used to obtain DNA sequence
information. ITS fragments were amplified using universal
primers ITS1 and ITS4 (White et al., 1990) and ACT using
primer pair ACT-512F and ACT-783R (Carbone and Kohn,
1999). PCR reaction mixtures (25 μl) consisted of 1 μl genomic
DNA (~100 ng), 1 μl forward and reverse primers (10 pM), and
12.5 μl Premix Taq (TaKaRa Biotechnology Ltd., Japan), and
10.5 μl PCR ultrapure water. PCR reaction programs were an
initial denaturation at 94 °C for 3 min, followed by 30 cycles of
Frontiers in Plant Science | www.frontiersin.org 3
denaturation (94 °C for 30 s), annealing [56 °C (ITS) and 59 °C
(ACT) for 30 s], extension (72 °C for 1 min), and a final extension
at 72 °C for 5 min. PCR product analysis and purification,
sequencing and the phylogenetic analysis were made as
described previously (Salehi et al., 2018c; Salehi et al., 2019b).

Elicitation of C. avellana Cell Culture
C. avellana CSC was established as described by Salehi et al.
(2017; 2018c; 2019b; 2019c). The elicitors (CE and CF) were
prepared as described previously (Salehi et al., 2019b). For
elicitation, 1.5 ± 0.1 g of C. avellana cells (fresh mass) was
cultured in 100 ml flasks containing 30 ml MS medium
supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 BAP.

Based on our previous studies (Salehi et al., 2019b; Salehi
et al., 2019c; Farhadi et al., 2020), three concentrations [2.5, 5,
and 10% (v/v)] of fungal elicitors “CE:CF (100:0, 75:25, 50:50,
25:75, 0:100 v/v)” and also mid (day 13) and late (day 17) log
phase of C. avellana cell cultures were selected for adding fungal
elicitors. Control received an equal volume of water (for CE)/
PDB (for CF).

Cell Growth Measurement
Cell growth was determined by the measurement of cell dry
weight (DW). Cell biomass was separated from the culture
medium by filtration (Whatman No. 1) and washed with
distilled water to remove the residual medium, afterward
freeze-dried to a constant weight by a vacuum-freeze drier.

Quantification of Paclitaxel
C. avellana cells were separated from the culture medium by a
filter paper (Whatman No. 1). Intracellular and extracellular
Stopping
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FIGURE 1 | Steps of operation of multilayer perceptron-genetics algorithm (MLP-GA) intelligence.
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paclitaxel were extracted from the cells and culture broth using a
procedure described by Salehi et al. (2017; 2018c; 2019b).
Filtering all samples was performed by 0.22 μm cellulose
acetate syringe filters before HPLC analysis. Paclitaxel in the
samples was analyzed by HPLC (Waters, USA) with a C18
analysis column (Machereye-Nagel EC 250/4.6 Nucleodur).
Each sample (20 μl) was injected and detected at 230 nm using
a UV detector. The mobile phase was methanol:water (80:20 v/v)
at a flow rate of 1.0 ml min−1. The quantification of paclitaxel was
based on an external standard of genuine paclitaxel (Sigma).

Experimental Design
The experiment was conducted based on randomized complete
block design (RCBD) with factorial arrangement, three factors
containing elicitor type with 10 levels [CE:CF (100:0, 75:25,
50:50, 25:75, 0:100 v/v) and water:PDB (100:0, 75:25, 50:50,
25:75, 0:100 v/v)], concentration with three levels [2.5, 5, and
10% (v/v)], elicitor adding day with two levels (days 13 and 17),
and three replicates. The cultures were harvested at 2-day
intervals after elicitation until the 23rd day.

Model Development
The data were randomly divided into a training subset (70%) and
a testing subset (30%). The training subset was applied to develop
multiple linear regression (MLR) and backward regression and
also MLP-GA models, and testing subset was applied to test the
predictability of developed models (Shao et al., 2006).

Regression Analysis
Regression analysis is one of well-known predictive modeling
methods. The popularity of these models may be assigned to
model parameter interpretability and its ease of use. Here, MLR
and backward regression models were used to predict DW,
intracellular, extracellular and total yield of paclitaxel, and also
extracellular paclitaxel portion. Significance level for the
independent variables to include in the model was set at 0.05.

To determine which model component is more important
during the modeling process, sensitivity analysis was performed
on developed regression models using analysis of variance
(ANOVA) and absolute t value (|t value|) corresponding to
model coefficients. It is noteworthy that a more important
model component displays a higher |t value| (Ahmadi and
Golian, 2011; Ahmadi and Rodehutscord, 2017).

Multilayer Perceptron (MLP) Model
Three-layered feed forward back-propagation neural network was
used to define the influences of CE and CF concentration levels,
elicitor adding day, and CSC harvesting time on DW, paclitaxel
biosynthesis (intracellular, extracellular and total), and
extracellular paclitaxel portion. Transfer functions for hidden
and output layers were hyperbolic tangent sigmoid (tansig) and
linear (purelin), respectively.

ANN capability to process the information is determined by
its architecture. Evolutionary algorithms are used for searching
the optimal architecture design (Yao, 1999).
Frontiers in Plant Science | www.frontiersin.org 4
Genetic Algorithm (GA)
The high number of hidden neurons leads to prolong the
training time and also overfits the data. Too few hidden
neurons lead to a low accuracy rate (Matignon, 2005). GA was
used (i) to determine optimal MLP architecture design including
the optimal numbers of neurons, and (ii) to optimize the values
of input variables (CE and CF concentration, elicitor adding day,
and CSC harvesting time) in developed MLP-GA models for
maximum paclitaxel biosynthesis and its secretion. An initial
population of 50, crossover rate of 0.85, generation number of
500 and mutation rate of 0.01 (Haupt and Haupt, 2004;
Abramson, 2007) were set to establish fittest MLP structure
and optimize input variables for maximum output variables.

The performance of MLP-GA models is determined by root
mean square error (RMSE) and coefficient of determination (R2)
as reported by Ahmadi (2017), as well as mean absolute
percentage error (MAPE) [Eq. (1)].

MAPE =   1=n  o
n

i=1

yact − yestð Þ
yactð Þ

�
�
�
�

�
�
�
�
� 100 (1)

Where “yact” are the actual values, “yest” are the predicted
values, and “n” is the number of data.

Sensitivity Analysis of the Models
Sensitivity analysis was done on MLP-GA models to determine the
importance degree of the factors (CE and CF concentration levels,
elicitor adding day, and CSC harvesting time) on the model
parameters (DW, paclitaxel biosynthesis, and its secretion). The
sensitivity of DW, paclitaxel biosynthesis (intracellular, extracellular,
and total yield), and extracellular paclitaxel portion was determined
by the criteria including variable sensitivity error (VSE) value
displaying the performance (RMSE) of MLP-GA model when
that particular input variable is unavailable in the model. Variable
sensitivity ratio (VSR) value was calculated as the ratio of VSE and
MLP-GA model error (RMSE value) when all input variables are
available. Finally, calculated VSR values were rescaled within the
range [0, 1]. The input variable with higher VSR was considered as
the higher important variable in the model (Ahmadi and
Golian, 2011).

The mathematical codes for the development and evaluation
of MLR, backward regression, and MLP-GAmodels were written
using MATLAB (Matlab, 2010) software, and the graphs were
made by GraphPad Prism 5 (GraphPad Prism 5, 2005) software.
“ANNGA_opt” program coded by MATLAB can be downloaded
from https://github.com/hahmadima/ANNGA_opt.
RESULTS

Identification of Endophytic Fungus
Strain HEF17 was isolated from the leaf of C. avellana and
identified as Camarosporomyces flavigenus by analysis of the
sequences of actin gene (Figure 2). Accession numbers used for
phylogenetic study were reported by De Gruyter et al. (2013).
August 2020 | Volume 11 | Article 1148
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This is the first report of this endophytic fungus on C. avellana
tree (matrix nova). The partial sequences of ITS rDNA and ACT
obtained from C. flavigenus strain HEF17 were deposited in
GenBank (NCBI) under accession numbers MT176168 and
MT224136, respectively.

Regression Analysis
Goodness of fit displayed no difference regarding the accuracy
of MLR and backward regression for all output variables, 0.66,
0.56, 0.61, 0.58, and 0.85 for DW, intracellular paclitaxel,
extracellular paclitaxel, total yield of paclitaxel, and extracellular
paclitaxel portion, respectively, for the training subset (Table 1).
Accordingly, the results of backward regression showed
that elicitor adding day and CSC harvesting time are only
parameters among the four above-mentioned input variables
which influenced DW (Table 1). All input variables including
CE and CF concentration levels, elicitor adding day and CSC
harvesting time are important factors influencing intracellular,
extracellular, and total yield of paclitaxel, and also paclitaxel
secretion from cells to the culture medium (Table 1). R2 values
for DW, intracellular paclitaxel, extracellular paclitaxel, total yield
of paclitaxel, and extracellular paclitaxel portion were estimated
0.64, 0.58, 0.61, 0.61, and 0.85, respectively, for the testing subset
(Figure 3).

Goodness of fit of DW model and absolute t values (Table 1)
showed that out of the investigated input variables, CSC harvesting
time (|t value| = 20.3) was the most important parameter affecting
DW, followed by elicitor adding day (|t value| = 3.1). Accordingly,
CF concentration level (|t value| = 15.0) displayed the highest effect
on intracellular paclitaxel, followed by elicitor adding day (|t value| =
10.5), CE concentration level (|t value| = 8.3) and CSC harvesting
time (|t value| = 3.8). Also, CF concentration level (|t value| = 13.2)
was the most effective component on extracellular paclitaxel,
Frontiers in Plant Science | www.frontiersin.org 5
followed by elicitor adding day (|t value| = 11.0), CE
concentration level (|t value| = 7.4) and CSC harvesting time (|t
value| = 6.5). Furthermore, CF concentration level (|t value| = 13.8)
was the most important factor influencing total yield of paclitaxel,
followed by elicitor adding day (|t value| = 11.3), CE concentration
level (|t value| = 7.7) and CSC harvesting time (|t value| = 3.0).
Additionally, CSC harvesting time exhibited the highest effect on
extracellular paclitaxel portion (|t value| = 35.7), followed by CF
concentration level (|t value| = 5.6), elicitor adding day (|t value| =
3.7) and CE concentration level (|t value| = 3.5) (Table 1).

Multilayer Perceptron-Genetics
Algorithm Analysis
Initially, CE and CF concentration levels, elicitor adding day
and CSC harvesting time were used as input variables and DW,
intracellular, extracellular and total yield of paclitaxel, and also
extracellular paclitaxel portion as output variables. Then,
output variables were predicted according to developed MLP-
GA models. To evaluate the performance of developed MLP-
GA models, the predicted values were plotted against the
observed values of training (Figure 4A) and testing (Figure
4B) subsets. The great accordance between the predicted and
observed values of DW, intracellular, extracellular and total
yield of paclitaxel, and also extracellular paclitaxel portion was
observed for both training and testing subsets (Figure 4).
Goodness of fit of developed MLP-GA models showed that
the developed models could accurately (R2 = 0.90, 0.89, 0.92,
0.95, and 0.91) (Table 2) predict DW, intracellular, extracellular
and total yield of paclitaxel, and also extracellular paclitaxel
portion of the testing subset, not used during the training
processes (Figure 4). Also, developed MLP-GA models
displayed the balanced statistical values for both training and
testing subsets (Table 2).
FIGURE 2 | Molecular identification of strain HEF17 based on the analysis of the sequences of actin gene. The tree was rooted to Plenodomus lingam (CBS 147.24).
August 2020 | Volume 11 | Article 1148
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Sensitivity Analysis of the Models
To rank the input variables based on their relative importance in the
model, VSRs were estimated using all data lines (training and testing
subsets). VSRs were obtained for each of output variables (DW,
intracellular, extracellular and total yield of paclitaxel, and also
extracellular paclitaxel portion) regarding CE and CF concentration
levels, elicitor adding day and CSC harvesting time (Table 3).
Analysis of DW model indicated that DW of C. avellana cells
was more sensitive to CSC harvesting time (VSR = 0.990), followed
by elicitor adding day (VSR = 0.010), CE and CF concentration
levels (VSR = 0.004). Intracellular paclitaxel displayed more
sensitivity to CE concentration level (VSR = 0.530), followed by
CF concentration level (VSR = 0.460), elicitor adding day (VSR =
0.180), and CSC harvesting time (VSR = 0.100). Extracellular
paclitaxel showed more sensitivity to CSC harvesting time (VSR =
0.660), followed by CF concentration level (VSR = 0.250),
CE concentration level (VSR = 0.110), and elicitor adding day
(VSR = 0.100). Accordingly, total yield of paclitaxel exhibited more
Frontiers in Plant Science | www.frontiersin.org 6
sensitivity to CE concentration level (VSR = 0.720), followed by CF
concentration level (VSR = 0.500), CSC harvesting time (VSR =
0.190), and elicitor adding day (VSR = 0.070). Also, extracellular
paclitaxel portion displayed more sensitivity to CSC harvesting time
(VSR = 0.810), followed by elicitor adding day (VSR = 0.120),
CE concentration level (VSR = 0.080), and CF concentration level
(VSR = 0.050) (Table 3).

Model Optimization
The optimization analysis on developed MLP-GA models was
performed using GA to determine the optimal levels of input
variables for achieving maximum growth, paclitaxel biosynthesis,
and its secretion in C. avellana CSC (Table 3). The optimization
results showed that adding 6.27% (v/v) of 90CE:10CF containing
5.67% (v/v) CE and 0.6% (v/v) CF on 15th day and harvesting CSC
134 h and 38 min after elicitation could result in maximum DW
(12.04 g l−1) (Table 3). The highest content of intracellular
paclitaxel (17.74 μg g−1 DW) may be produced by adding 8.70%
TABLE 1 | Backward regression models for estimating growth, paclitaxel biosynthesis, and secretion in Corylus avellana cell suspension culture (CSC) treated with
fungal elicitors using cell extract (CE) and culture filtrate (CF) concentration levels [% (v/v)], elicitor adding day, and CSC harvesting time (day).

Measured factors Variablea Coeffcient Standard error t value

Dry weight (g l-1) Intercept -0.8950 0.5350 -1.67
Elicitor adding day 0.0995 0.0325 3.06
CSC harvesting time 0.4862 0.0239 20.34

R2 0.6635
RMSE 0.9642
MAPE 4.6650

Intracellular paclitaxel (µg g-1 DW) Intercept -4.7600 1.3200 -3.60
CE concentration level 0.4393 0.0531 8.28
CF concentration level 0.7936 0.0528 15.03
Elicitor adding day 0.8277 0.0787 10.52
CSC harvesting time -0.2170 0.0578 -3.75

R2 0.5560
RMSE 2.3318
MAPE 59.1400

Extracellular paclitaxel (µg l-1) Intercept -123.5000 8.9600 -13.78
CE concentration level 2.6740 0.3600 7.44
CF concentration level 4.7370 0.3580 13.24
Elicitor adding day 5.8400 0.5330 10.96
CSC harvesting time 2.5470 0.3920 6.50

R2 0.6060
RMSE 15.7977
MAPE 65.60000

Total yield of paclitaxel (µg l-1) Intercept -242.0000 23.0 -10.51
CE concentration level 7.1130 0.924 7.70
CF concentration level 12.7280 0.920 13.84
Elicitor adding day 15.5000 1.37 11.31
CSC harvesting time 3.0100 1.01 2.99

R2 0.5803
RMSE 40.5987
MAPE 67.7200

Extracellular
paclitaxel portion
(%)

Intercept -18.6000 1.4200 -13.07
CE concentration level 0.1976 0.0571 3.46
CF concentration level 0.3167 0.0569 5.57
Elicitor adding day 0.3119 0.0847 3.68
CSC harvesting time 2.2211 0.0623 35.68

R2 0.8549
RMSE 2.51070
MAPE 21.18
August 2020 | Volume 11 | Artic
aSignificant (p ≤ 0.05) variables included in the model. R2, coefficient of determination; RMSE, root mean square error; MAPE, mean absolute percentage error.
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(v/v) of 39CE:61CF containing 3.37% (v/v) CE and 5.33% (v/v) CF
on 17th day and harvesting CSC 78 h and 29 min after elicitation
(Table 3). Also, the results showed that highest extracellular
paclitaxel (124.52 μg l−1) can be produced by adding 11.13% (v/
v) of 48CE:52CF containing 5.29% (v/v) CE and 5.75% (v/v) CF on
17th day and harvesting CSC 93 h and 36 min after elicitation
(Table 3). Additionally, CSC exposed with 8.58% (v/v) of
39CE:61CF containing 3.33% (v/v) CE and 5.25% (v/v) CF on
17th day and harvesting it 94 h and 48 min after elicitation may
obtain the highest total yield of paclitaxel (369.67 μg l−1) (Table 3).
The results of MLP-GA model optimization displayed that adding
9.61% (v/v) of 47CE:53CF containing 4.51% (v/v) CE and 5.10%
(v/v) CF on 17th day and harvesting CSC 144 h after elicitation may
lead to highest extracellular paclitaxel portion (48.07) (Table 3).

Comparison of MLP-GA and Backward
Regression Models
The statistical values for MLP-GA models displayed higher
prediction accuracy as compared to regression models as estimated
R2 for MLP-GA vs. regression models were: DW = 0.90 vs. 0.66,
intracellular paclitaxel = 0.90 vs. 0.56, extracellular paclitaxel = 0.93
vs. 0.61, total yield of paclitaxel = 0.95 vs. 0.58, and extracellular
paclitaxel portion = 0.92 vs. 0.85 (Tables 1 and 2). In the end, an
Excel® total paclitaxel estimator, namely, HCC-paclitaxel, was
created using developed MLP-GA model (Figure 5). The
mentioned estimator was presented as supplementary material.
DISCUSSION

Predicting the optimal amount of the effective factors on paclitaxel
biosynthesis is highly promising and essential for its production
increment and cost decrement. This is the first study on predicting
the optimal conditions for maximum paclitaxel biosynthesis in C.
avellana CSC exposed to fungal elicitors using the mathematical
model. To accurately predict the optimal amounts of effective
factors (CE and CF concentration levels, elicitor adding day, and
CSC harvesting time) on paclitaxel biosynthesis in C. avellana
CSC, using a trustworthy modeling system is essential.

In this study, regression and MLP-GA modeling were applied
to evaluate the relationships among four studied factors “CE and
CF concentration levels, elicitor adding day, and CSC harvesting
time” and the parameters “DW, intracellular, extracellular, and
total yield of paclitaxel and extracellular paclitaxel portion”, and
also the possibility of predicting the growth and paclitaxel
biosynthesis by the determined factors. Such mathematical
predictions have not been described in this area. Higher
accuracy of MLP-GA models as compared to regression
models (Tables 1 and 2) was also reported in previous studies
(Jamshidi et al., 2016; Eftekhari et al., 2018).

The fit of regression models was presented by R2 (Figure 3)
for testing subset, suggesting these models can explain 64, 58, 61,
61 and 85% of the variability in DW, intracellular paclitaxel,
extracellular paclitaxel, total yield of paclitaxel and paclitaxel
extracellular portion, respectively, when they face unseen data.

Our results suggested that MLP-GA models could accurately
predict DW, intracellular paclitaxel, extracellular paclitaxel, total
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FIGURE 3 | Scatter plot of actual data against predicted values of dry
weight, intracellular, extracellular and total yield of paclitaxel, and extracellular
paclitaxel portion in Corylus avellana cell cultures using backward regression
models in the testing subset. The solid line shows fitted simple regression line
on scatter points.
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simple regression line on scatter points.
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yield of paclitaxel and extracellular paclitaxel portion (R2 = 0.90,
0.89, 0.92, 0.94, and 0.91, respectively) in the testing subset
(Figure 4), not used in the training process. Also, the small
number of hidden neuron and also closing the errors of training
and testing subsets to each other (Table 2) suggested that
overlearning had not arisen in the training process, and
developed MLP-GA models displayed good generalizability
when they faced unseen data (Lou and Nakai, 2001; Ahmadi
and Golian, 2011). Based on RMSE, R2 and MAPE of the training
and testing subsets (Table 2), it can be concluded that tansig
activation function effectively worked for modeling over all
experiments. Small RMSE and MAPE (Table 2) showed the
high potential of MLP-GA models in predicting output variables.

Regardless of previous studies on the effects of CE and CF
concentration levels, elicitor adding day and CSC harvesting time
on paclitaxel biosynthesis and secretion, there remains the
question to be answered: which input variables are the most
important in paclitaxel biosynthesis? As previously mentioned,
sensitivity analysis displayed that CE and CF concentration levels
are the most important variables affecting total yield of paclitaxel
TABLE 2 | Statistics and information on multilayer perceptron-genetics algorithm (MLP-GA) models for growth, paclitaxel biosynthesis and secretion in Corylus avellana cell culture.

Measured factors Neuron number Training subsets Testing subsets

R2 RMSE MAPE R2 RMSE MAPE

Dry weight 5 0.90 0.53 0.45028 0.90 0.54 0.48036
Intracellular paclitaxel 6 0.90 1.14 0.86184 0.89 0.98 0.78311
Extracellular paclitaxel 7 0.95 6.78 4.45092 0.92 5.77 4.12229
Total yield of paclitaxel 7 0.95 14.27 10.9185 0.95 12.87 9.85688
Extracellular paclitaxel portion 5 0.92 1.87 1.54511 0.91 1.89 1.59910
August 2020
 | Volume 11 | Art
R2, coefficient of determination; RMSE, root mean square error; MAPE, mean absolute percentage error.
TABLE 3 | Importance (according to sensitivity analysis) and optimal levels of the different input variables including cell extract (CE), culture filtrate (CF) concentration levels (% (v/
v)), elicitor adding day and cell suspension culture (CSC) harvesting time (day) for achieving maximum growth, paclitaxel biosynthesis and secretion in Corylus avellana CSC using
multilayer perceptron-genetics algorithm (MLP-GA) models.

Criteria Variable Importance value
(according to VSRa)

Optimal level Output Optimal

Dry weight (g l-1) CE concentration level 0.004 5.67 12.04
CF concentration level 0.004 0.60
Elicitor adding day 0.010 15.17
CSC harvesting time 0.990 20.78

Intracellular paclitaxel (µg g-1 DW) CE concentration level 0.530 3.37 17.74
CF concentration level 0.460 5.33
Elicitor adding day 0.180 17.00
CSC harvesting time 0.100 20.27

Extracellular paclitaxel (µg l-1) CE concentration level 0.110 5.29 124.52
CF concentration level 0.250 5.75
Elicitor adding day 0.100 17.00
CSC harvesting time 0.660 20.90

Total yield of paclitaxel (µg l-1) CE concentration level 0.720 3.33 369.67
CF concentration level 0.500 5.25
Elicitor adding day 0.070 17.00
CSC harvesting time 0.190 20.95

Extracellular paclitaxel portion (%) CE concentration level 0.080 4.51 48.07
CF concentration level 0.050 5.10
Elicitor adding day 0.120 17.00
CSC harvesting time 0.810 23.00
aRelative indication of the ratio between the variable sensitivity error and the error of the model when all variables are available. Calculated VSR values were rescaled within range [0, 1].
FIGURE 5 | HCC-paclitaxel: an Excel® estimator for predicting total paclitaxel
value in Corylus avellana cell culture responding fungal elicitors using multilayer
perceptron-genetic algorithm (MLP-GA) model. CE, cell extract; CF, culture filtrate.
This estimator was presented as Supplementary Material.
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(Table 3). Endophytic fungi synthesize microbe-associated
molecular patterns (MAMPs). The receptors localized on plant
cell surface recognize MAMPs and thus induce plant defense
system (Ausubel, 2005). Some of these MAMPs are found only in
CE, a number of these exist only in CF, and others are found in
both CE and CF with different concentrations (Figure 6).
Therefore, paclitaxel biosynthesis elicitation potential of these
fungal elicitors (CE and CF) is different. Extracellular paclitaxel
content is important for paclitaxel production in a continuous
system. Sensitivity analysis displayed that CSC harvesting time is
the most important factor affecting extracellular paclitaxel (Table
3). Paclitaxel biosynthesis is the complex biological process that
requires the accurate techniques for modeling and optimization.
MLP-GA has been efficiently used to solve problems with
extremely difficult and unknown solution in various fields
(Jamshidi et al., 2016; Arab et al., 2018; Eftekhari et al., 2018;
Sheikhi et al., 2020). A growing interest in ANN has mostly been
because of its power in solving the problems in a broad range of
fields, their ability for modeling nonlinear and complex
relationships, prediction ability of the unseen relationships on
Frontiers in Plant Science | www.frontiersin.org 10
the unseen data, and having no need of a specification of data
statistical distribution (Mahanta, 2017).

According to the high prediction accuracy of the training and
testing subsets, it can be concluded that developed MLP-GA
could accurately predict DW, paclitaxel biosynthesis, and
secretion in C. avellana CSC.

Publishing developed MLP-GA models needs to share the
connection weight matrices, which running ANN models
requires the especial software. Therefore, we share developed
MLP-GA model predicting total paclitaxel with the readers as
HCC-paclitaxel Excel® estimator (Figure 5).
CONCLUSION

This research applied mathematical approaches for modeling
and optimizing paclitaxel biosynthesis in C. avellana cell culture
treated with fungal elicitors for the first time. The great
accordance between the predicted and observed values of the
output variables (DW, intracellular, extracellular and total yield
2 .
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of paclitaxel, and also extracellular paclitaxel portion) supported
the excellent performance of developed MLP-GA models. HCC-
paclitaxel Excel® estimator presents an easy-to-use tool to
predict total yield of paclitaxel in C. avellana cell culture
treated with fungal elicitors using MLP-GA model.
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