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The highly valuable heartwood of Dalbergia odorifera T. Chen, known as Jiang Xiang in
traditional Chinesemedicine, is formed very slowly, and there is a need to better understand
the process and promote heartwood formation. Chemical induction is considered to be
one of the promising methods to induce heartwood formation. However, to date no
method has been proved effective for D. odorifera as little is known about biochemical and
physiological changes during heartwood development. Three potential heartwood
induction substances viz. acetic acid, sodium chloride, and hydrogen peroxide solutions
were injected into the trunk of D. odorifera to determine the effect on heartwood formation
and physiological activity. Non-structural carbohydrates, lipids, wood properties, and
essential oil were assessed in the post-treatment period. As also observed in the
formation of natural heartwood, chemical-induced Jiang Xiang production was
accompanied by sapwood dehydration, non-structural carbohydrates consumption, and
synthesis of heartwood substances. As the heartwood substances accumulated, basic
density and essential oil content increased gradually, thereby Jiang Xiang was finally
produced. In this process, physiological parameters of discolored sapwood gradually
evolved to resemble those of natural heartwood. Hydrogen peroxide-induced Jiang Xiang
was closest to natural heartwood, and the essential oil components met the standards for
high-quality Jiang Xiang, while the induction effects of acetic acid and sodium chloride were
unsatisfactory. Thus, this study indicates that hydrogen peroxide has the potential to induce
Jiang Xiang production in Dalbergia odorifera.

Keywords: non-structural carbohydrates, essential oil, hydrogen peroxide, heartwood, Dalbergia odorifera
INTRODUCTION

Dalbergia odorifera T. Chen (Leguminosae) is a medium-sized tree native to Hainan Island,
southern China (Wariss et al., 2017) and has been widely cultivated in the tropical regions of Central
and South America, Africa, and East and Southern Asia, especially in China (Ninh The, 2017). The
heartwood of D. odorifera is not only one of the best rosewoods in the world, but is also a valuable
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traditional Chinese medicine known as Jiang Xiang (Yu et al.,
2017; Liu et al., 2019). Jiang Xiang has been recognized by the
Chinese Pharmacopeia for centuries to dissipate blood stasis,
regulating Qi, stop bleeding, and relieve pain (Cheng et al., 1998;
Wang et al., 2000; Sugiyama et al., 2002; Choi et al., 2009; Cui
et al., 2017). Authoritative industry standards stipulate that high-
quality Jiang Xiang has the relative amount of trans-Nerolidol
25–60%, (E)-beta-Farnesene 0–3%, and alpha-Bisabolol 0.1–
6.0% in the essential oil (Li et al., 2016). The annual demand
for raw D. odorifera heartwood is over 300 tonnes, and the
annual production value exceeds 700 million USD. However, the
heartwood of D. odorifera is formed very slowly once trees have
reached about 6 years of age (Ma et al., 2017). Thus, there is a
need to better understand and promote formation of D. odorifera
heartwood (Cui et al., 2017).

Chemical injection appears to be the most promising technique
for stimulating heartwood formation of trees as certain substances
may act rapidly and are easy to apply in precise amounts. Potential
heartwood induction chemicals include weak acids, inorganic salts
and various plant growth regulators (ethrel, methyl jasmonate,
salicylic acid), which have been applied to stimulate the
production of agarwood, the heartwood of Aquilaria sinensis
(Lour.) Gilg. (Liu et al., 2013; Van Thanh et al., 2015; Wang,
2016). In addition, chemical induction has also been used in
Acacia auriculiformis A. Cunn. ex Benth. (Baqui et al., 1984),
Samanea saman (Jacq.) Merr. (Patel and Bhat, 1984), Quercus
serrata Thunb. (Moungsrimuangdee et al., 2011), Santalum album
L. (Radomiljac, 1998; Liu, 2012), D. odorifera (Zhou et al., 2014;
Wang et al., 2017), and some conifers (Stubbs et al., 1984; Martin
et al., 2002). However, the chemical inducers in these studies are
mostly plant growth regulators. It is still unclear whether weak
acids and inorganic salts might induce the formation of Jiang
Xiang in D. odorifera.

Mechanical wounding has been reported to induce the
production of Jiang Xiang in D. odorifera (Meng et al., 2010).
Moreover, hydrogen peroxide (H2O2) could be an important
wound signal in D. odorifera that may help induce vessel
occlusions and production of Jiang Xiang (Cui et al., 2019).
Experiments are required to determine the potential of chemicals
such as hydrogen peroxide (H2O2), acetic acid (CH3COOH), and
sodium chloride (NaCl) solutions.

The formation of heartwood is often accompanied by
physiological processes such as xylem dehydration (Nakada,
2006; Kuroda et al., 2009), programmed cell death (Spicer,
2005; Nakaba et al., 2008; Nakaba et al., 2012), depletion of
storage compounds (Magel et al., 1994; Piispanen and Saranpää,
2001; Nakaba et al., 2013), deposition of heartwood substances
(Magel et al., 1991; Nakada and Fukatsu, 2012), and changes in
cell wall structure (Nakada and Fukatsu, 2012; Song et al., 2014).
The deposition of heartwood substances is the most important
manifestation of heartwood formation due to its importance in
natural durability; it is also important as heartwood extractives
may be important pharmaceuticals. Heartwood substances are
the products of secondary metabolism of trees, whose
metabolized substrates are mainly non-structural carbohydrates
(NSCs). NSCs in trees are the main photosynthetic storage
Frontiers in Plant Science | www.frontiersin.org 2
compounds and transported inwards through ray parenchyma
cells in the formation of secondary components in heartwood
(Hillis, 1987). NSCs mainly include starch and soluble sugars
(e.g. sucrose, fructose, glucose, arabinose, galactose, stachyose).
The arabinose and galactose contents were reported to be related
to the synthesis and hydrolysis of hemicellulose in the cell wall
during the formation of heartwood (Saranpää and Höll, 1989;
Fischer and Höll, 1992). In addition, the content of lipid in xylem
has also proved to be involved in heartwood formation
(Bergström, 2003).

In order to better understand heartwood formation induced
by chemicals, this study was conducted to investigate: 1) whether
H2O2, CH3COOH, and NaCl could induce the heartwood
formation in D. odorifera; and 2) the physiological changes in
xylem during chemical-induced Jiang Xiang production in
D. odorifera.
MATERIALS AND METHODS

Study Site
A 5-year-oldD. odorifera plantation located in Xiashi Arboretum
(22°60′ N, 106°53′ E), Pingxiang City, Guangxi Zhuang
Autonomous Region (GZAR) was selected for this study. The
site is characterized by the south subtropical monsoon climate
with a mean annual temperature of 20.5–21.7°C, mean annual
rainfall 1,200–1,500 mm yr−1, mean annual evaporation 1,261–
1,388 mm yr−1, and mean annual relative humidity 80–84%. The
soil is lateritic with an average depth of more than 1 m. The D.
odorifera plantation was established in 2012 with 2 m × 2 m
spacing. The status of stand growth in 2017 was as follows
(mean ± standard deviation): tree height 5.03 ± 0.81 m, diameter
at breast height (DBH) 6.54 ± 1.35 cm, and north–south crown
diameter 3.21 ± 0.68 m.

Experimental Design
Three chemicals used were: 0.1 mol L−1 hydrogen peroxide
(H2O2), 1.0 mol L−1 (pH≈2.4) acetic acid (CH3COOH) and
1.0 mol L−1 sodium chloride (NaCl). Distilled water was
injected as a control. Sixty trees of similar size, all without
heartwood were selected for a single-tree plot experiment with
15 replicates for each treatment. A tiny drill was used to detect
which trees have or don’t have heartwood. In May 2017, an
injection hole of 1 cm diameter and 5 cm deep was drilled at a
downward angle of 45° at 1.3 m from the ground on each tree.
An amount of 50 ml solution was injected into each tree over 8 h
period with a 5 ml syringe, and the hole was sealed with a cork
after injection.

Field Sampling and Measurement
The DBH, tree height, and north–south crown diameter of the
sampled trees were measured before and at 6 months after
commencement of treatment, and the growth increment
was calculated.

Five trees per treatment were harvested at one, three and six
months after injection treatment. At the same time, three trees
August 2020 | Volume 11 | Article 1161
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with heartwood were selected to collect natural heartwood. At
each harvest, the trees were felled, and the boles were
immediately dissected (Figure 1). Wood samples were
sequentially collected from the cambium to the pith as shown
in Figure 1A. In the dotted box, the normal sapwood was divided
into positions I and II, and the discolored part was defined as
position III. These samples were immediately deactivated in a
600-Wmicrowave oven for 90 s (Hoch et al., 2002), dried at 65°C
to constant weight, ground and passed through a 50 mesh sieve,
and stored in a refrigerator at 4°C for determination of NSCs
and lipids.

The length of discoloration in the transverse (Figure 1A) and
axial directions (Figure 1B) was measured with a ruler, and the
irregular area of the discoloration was determined by the grid-
area method (Gao, 2015).

Laboratory Determination
NSCs and Lipids
Arabinose and galactose contents were determined on an Agilent
1200 liquid chromatograph with the following parameters:
SHISEIDO C18 column (4.6 × 250.0 mm, 5 mm); mobile
phase: 0.1 mol L−1 pH 7.0 phosphate buffer solution,
acetonitrile:water = 82:18 (v:v); flow rate 1.0 ml min−1; column
temperature 25°C; injection volume 10 ml; wavelength 245 nm
(after degraded by 4 mol L−1 trifluoroacetic acid and derivatives
with 1-phenyl-3-methyl-5-pyrazolone). Glucose, fructose,
sucrose, and stachyose were determined by high performance
liquid chromatography (HPLC) with the following parameters:
Shodex NH2P column (250.0 × 4.6 mm, 5 mm); mobile phase:
acetonitrile:water = 75:25 (v:v); flow rate 1.0 ml min−1; injection
volume 10 ml; column temperature 35°C; detector: differential
refractive index (DRI), temperature: 35°C. The starch content
Frontiers in Plant Science | www.frontiersin.org 3
was determined by an anthrone colorimetric method (Osaki
et al., 1991). The lipid content was determined by Soxhlet
extraction as described in detail by Ramluckan et al. (2014).

Relative Moisture Content and Basic Density
Fresh wood samples were weighed immediately three times, and
basic density (bone-dry weight per unit of fresh volume) was
determined using the water displacement method. Dry weight
was obtained after drying at 105°C to constant weight, and
relative moisture content was calculated (Searle and Owen, 2005).

Extraction and Component Analysis of Essential Oils
For each treatment, 5 g powdered wood samples were immersed
in 50 ml petroleum ether and shaken for 24 h. After filtration and
concentration (Concentrator 5301, Eppendorf, Germany),
essential oils were obtained, and the oil content was calculated
(Cui et al., 2019). The oils were kept at 4°C until analysis. The
extractions were repeated three times and the oil content was
reported as a percentage of the dry weight.

GC–MS analysis was performed by Agilent coupled with a
6890N-5975I system equipped with flame ionization detector
(FID) and a DB-5MS (30 m × 0.25 mm, 0.25 mm film thickness).
The temperature program included a starting temperature of 70°C
which was then increased to 250°C at the rate of 8°Cmin−1, and this
temperature held for 15 min. Detailed operating parameters are
described by Cui et al. (2019). Qualitative identification of essential
oil components was based on comparison of their retention times
and mass spectra with the data in the Wiley and NIST electronic
libraries as well as the authentic reference compounds that were
reported in the published literature (Zhao et al., 2000). The relative
amount of each component was calculated by comparing its average
peak area to the total areas.
A B

FIGURE 1 | Schematic diagram of the discoloration range measurement and sampling positions. (A, B) indicate the transverse and axial anatomy, respectively. In
the dotted box, the normal sapwood was divided into positions I and II on average, and the discolored part was defined as position III.
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Statistical Analysis
Data were subjected to one-way analysis of variance (ANOVA),
and any significant differences among H2O2, CH3COOH, NaCl,
and control treatments at one, three, and six months after
treatment were evaluated using Duncan’s multiple range tests
using the data processing software SPSS 17.0 (IBM, United
States). Significant differences in non-structural carbohydrates
and lipid contents in each part of the xylem among H2O2,
CH3COOH, NaCl, and control treatments were evaluated by
one-way ANOVA with asterisks, * p < 0.05, ** p < 0.01. The plots
for the graphs were generated in SigmaPlot 10.0 (Systat,
United States).
RESULTS

Effect of Chemical Induction on Tree
Growth
After six months of treatment, significant differences in
increment of tree height, DBH, and tree crown diameter were
observed between chemical treatments (p < 0.01). Compared to
control, the increment in height, DBH, and crown diameter of
the CH3COOH treated trees was significantly decreased by 25.53,
34.92, and 32.78%, respectively (Figure 2). There were no
significant differences between NaCl, H2O2, and control
treatments. These results indicated that the CH3COOH
treatment markedly inhibited tree growth, while the drill hole
control, NaCl, and H2O2 treatments had little effect or no effect
on tree growth.

Effect of Chemical Induction on NSCs and
Lipid in Xylem
One month after injection, significant changes occurred in the
starch, soluble sugars, and lipids in various positions of the
xylem. For all treatments, NSCs gradually decreased while lipids
increased from position I to position III (Figure 3). There were
no significant differences in starch, soluble sugars, and lipids in
position I between various treatments (p > 0.05). For position II,
except for starch, significant differences in NSCs were observed
between different treatments, with the H2O2 treatment being the
lowest. The lipid content showed the opposite trend. Contents of
starch, soluble sugars, and lipids in position III were all
significantly different among the treatments, and their patterns
were similar to those of position II. In addition, there were lower
concentrations of stachyose, galactose, arabinose, and sucrose
than other NSCs in position III, especially for the H2O2

treatment. Correspondingly, the lipid content in position III
was higher in the H2O2 than in other treatments.

After six months of treatment, significant changes were
observed in each treatment (Figure 4). Fructose, glucose,
sucrose, stachyose, and starch in position I were significantly
different among treatments, with the contents in the H2O2

treatment being the lowest, while arabinose, galactose, and fat
were not significantly different. Except for sucrose and stachyose,
the other carbohydrates in position II almost continued the
patterns of the position I, and the lipid content was also
Frontiers in Plant Science | www.frontiersin.org 4
significantly different between treatments. Furthermore,
compared to one month after treatment, fructose, glucose,
sucrose, stachyose, and starch were depleted in position III in
all treatments, whereas the arabinose and galactose contents
significantly increased (Figures 4E, F). The lipid content in
positions II and III increased significantly in all treatments
over time. In particular, the H2O2 treatment induced the xylem
to consume more NSCs and synthesize more lipids than the
other treatments.

Effect of Chemical Induction on Wood
Properties
Wood Discoloration
In this study, all treatments caused sapwood discoloration (Figure 5).
The length and area of induced discoloration were significantly
different among treatments, and the change in discoloration
length was similar to that of the discoloration area (Figure 6).
The largest discoloration length and area of both transverse and
axial discoloration occurred in the CH3COOH treatment,
followed by the H2O2 treatment. No significant changes in the
A

B

C

FIGURE 2 | Effects of three chemicals on tree growth. (A–C) indicate the
increment of DBH, tree height, and tree crown after 6 months of treatment,
respectively. Similar letters indicate no significant difference at p > 0.05. Bar
represents standard deviation.
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transverse discoloration length and area were found with chemical
treatments over time. In contrast, the transverse discoloration of
the control treatment nearly doubled after three months, and the
subsequent increase was small (Figures 6A, B).

The length and area of axial discoloration of all treatments
increased significantly with the treatment time (Figures 6C–F).
In the CH3COOH treatment, the discoloration length and area
after three months were more than double those at one month.
The discoloration length and area of the NaCl, H2O2, and CK
plants increased significantly after three and six months. Hence,
NaCl, and H2O2 had a lengthier period of induction effect
compared with CH3COOH.

Relative Moisture Content
After one month of treatment, the relative moisture content of
the discolored sapwood induced by each treatment was
significantly higher than that of natural heartwood (NH) (p <
0.05). The relative moisture content of each treatment was
significantly reduced after three months compared to one
month of treatment (p < 0.05), which were not significantly
different from that of NH (Figure 7). These results indicated that
the water in the sapwood continuously reduced during induced
Frontiers in Plant Science | www.frontiersin.org 5
discoloration of the sapwood, and the relative moisture content
level approached that of the natural heartwood after three
months of treatment.

Basic Density
As shown in Figure 8, no significant changes in the basic density
were observed in positions I and II of each treatment over the six
months period. In contrast, the basic density of the discolored
sapwood (position III) increased significantly with time (p <
0.01) in H2O2 and control treatment but not in CH3COOH and
NaCl treatments.

After one and three months of treatment, the basic density
of the discolored sapwood in each treatment was not
significant different from that of NH. However, the density
of the discolored sapwood in the H2O2 and control treatments
was significantly higher than that of NH after six months,
while the density of the discolored sapwood in CH3COOH and
NaCl treated wood remained slightly lower than that of NH
(Figure 9). These results indicated that the basic density of
discolored sapwood gradually increased with time after
treatment, but it did not reach the same density level of
natural heartwood.
A B

D

E F

G H

C

FIGURE 3 | Non-structural carbohydrates and lipid contents in parts of the xylem after one month of treatment. (A–H) indicate fructose, glucose, sucrose,
stachyose, arabinose, galactose, starch, and fat, respectively. Significance of statistical analysis (one-way ANOVA) shown with asterisks, *p < 0.05, **p < 0.01. “ns”
indicates no significant difference at the 0.05 level. Bar represents standard deviation.
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Essential Oil Content
No significant temporal changes in the oil content were observed
in positions I and II of all the treatments; oil content was about
0.20% (Figure 10). In position III, the oil contents of the
discolored sapwood of all treatments increased significantly
from one month to three months after treatment. Further
increase in oil content was only significant in the H2O2 and
control treatments.

Compared with natural heartwood, the oil content of induced
heartwood was significantly lower after one and three months of
treatment (Figure 11). After six months, the oil content of the
discolored sapwood in the H2O2 and control treatments, which
was 0.98 and 1.02% respectively, was significantly greater (p <
0.01) than that of NH (0.82%). However, the oil content of the
discolored sapwood induced by the CH3COOH and NaCl
treatments was still significantly lower than that of NH.

Essential Oil Components
Twenty-one essential oil components in the natural heartwood
were used as a reference set for comparison with the essential oil
components of the natural heartwood. The composition and
Frontiers in Plant Science | www.frontiersin.org 6
relative content of essential oil components induced by
chemicals increased with the treatment time (Table 1). One
month after treatment, only 6–8 components of essential oil were
detected, and the total relative amount of essential oil
components was 38.90–44.65%. After three months, 9–12
components of essential oil were detected, and the total relative
amount of essential oil components was 41.27–48.47%. After six
months, there were 12 and 14 kinds of essential oil in the
CH3COOH and NaCl treatments, respectively, and the total
relative amount of essential oil components of the NaCl
treatment was up to 50.07%. The control treatment, which
contained more essential oil components (17), had the total
relative amount of the essential oil components at 46.47%.

All 21 essential oil components in the natural heartwood were
detected in the H2O2 treatment with the relative amount
reaching 48.59%. Moreover, the relative amount of trans-
Nerolidol (39.14%), (E)-beta-Farnesene (0.04%), and alpha-
Bisabolol (0.12%) in the H2O2-induced essential oil met the
standards for high-quality Jiang Xiang, i.e. 25–60%, 0–3%, and
0.1–6.0%, respectively. The relative amount of alpha-Bisabolol in
the other treatments was considerably less at 0.03 and 0.04%.
A B

D

E F

G H

C

FIGURE 4 | Non-structural carbohydrates and lipid contents in parts of the xylem after six months of treatment. (A–H) indicate fructose, glucose, sucrose,
stachyose, arabinose, galactose, starch, and fat, respectively. Significance of statistical analysis (one-way ANOVA) shown with asterisks, *p < 0.05, **p < 0.01.
“ns” indicates no significant difference at the 0.05 level. Bar represents standard deviation.
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Therefore, a greater diversity of heartwood oil components was
induced by the H2O2 treatment than by the CH3COOH and
NaCl treatments. H2O2 was the only inducer of essential oil
components that reached the level of NH and met the standards
of high-quality Jiang Xiang.
DISCUSSION

Physiological Parameters of Discolored
Sapwood Gradually Evolve to Resemble
Those of Natural Heartwood During
Chemical Induction
After chemical treatment, an overall trend of a decrease in non-
structural carbohydrate content and an increase in lipid content
was observed in xylem. Similar results were observed in a study of
growth regulator-induced sapwood discoloration of Quercus
serrata (Moungsrimuangdee et al., 2011) and consistent with the
chemical changes during the formation of natural heartwood
(Magel et al., 1994). The depletion of storage starch was thought
to be associated with parenchyma cells’ death, and this
relationship controlled the formation of heartwood (Islam et al.,
Frontiers in Plant Science | www.frontiersin.org 7
2012). When the xylem was exposed to these chemicals, large
amounts of phytoalexins (heartwood substances) were synthesized
in the parenchyma cells and transported into the infected vessels
to inhibit further infection. As precursors, the NSCs supplied a
large quantity of carbon skeletons for the synthesis of heartwood
substances (Magel et al., 1994). In addition, these chemicals may
affect the storage functions of NSCs by altering the pH of the
xylem (Pagliarani et al., 2019). After one month of treatment, the
levels of NSCs in positions II and III decreased significantly, while
those in position I did not decline until after six months when the
NSCs in position III were almost exhausted. These results
indicated that when the NSCs in position III were consumed to
a certain extent, the NSCs in positions II and I were successively
consumed. Since no lipid accumulated in position I, it was
speculated that the NSCs in position I might be transferred to
position II or III in wood ray parenchyma. Some studies have
suggested that NSCs could be transported in both directions in
wood ray parenchyma (Furze et al., 2018). The NSCs transported
outward could maintain the “Leakage-retrieval Mechanism” of
phloem (De Schepper et al., 2013), and the NSCs transported
inward might be used as substrate for secondary metabolism in
xylem, such as for the synthesis of heartwood substances (Magel
FIGURE 5 | Image description of Jiang Xiang of Dalbergia odorifera. The images from left to right represent CH3COOH, NaCl, H2O2 and wounding induced Jiang
Xiang (discolored wood), respectively. NH represents the natural heartwood (wild Jiang Xiang), which forms very slowly.
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et al., 1991). In addition, stachyose, galactose, and arabinose were
exhausted first, which might be related to their characteristics and
functions. These oligosaccharides or monosaccharides are small
storage materials and are the most easily utilized carbohydrates in
trees (Saranpää and Höll, 1989). Interestingly, after six months of
treatment, the arabinose and galactose contents increased in
position III of each treatment. The arabinose and galactose
produced in position III might be derived from partial
hydrolysis of hemicellulose in the cell wall during the formation
of heartwood (Saranpää and Höll, 1989; Fischer and Höll, 1992).
Galactose has been reported to stimulate the production of
ethylene in tomato fruits (Kim et al., 1987), and ethylene was
thought to be closely associated with heartwood formation (Hillis,
1987; Cui et al., 2019). Therefore, NSCs can directly provide raw
materials for the synthesis of heartwood substances and also
indirectly regulate physiological processes related to heartwood
formation. In general, as observed in the formation of natural
heartwood, in the process of chemical induction, NSCs were
continuously consumed, and heartwood substances were
gradually synthesized in xylem, while hemicellulose in the xylem
cell wall might have been partially hydrolyzed. However, the
metabolic characteristics and physiological functions of specific
carbohydrates involved in the synthesis of heartwood substances
are little known and deserve further study.
A B

D

E F

C

FIGURE 6 | Changes in the transverse and axial discoloration induced by different chemicals. (A, C, E) indicate discoloration length of the transverse, axial-upper,
and axial-lower, respectively. (B, D, F) indicate discoloration area of the transverse, axial-upper, and axial-lower, respectively. Similar uppercase letters indicate that
the temporal effect is not significantly different. Similar lowercase letters indicate that the treatment effect is not significantly different (p > 0.05). Bar represents
standard deviation.
FIGURE 7 | Relative moisture contents of discolored sapwood induced by
different chemicals. Similar uppercase letters indicate that the treatment effect is
not significantly different. Similar lowercase letters indicate that the temporal
effect is not significantly different (p > 0.05). Bar represents standard deviation.
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In terms of wood properties, the relative moisture content of
the discolored sapwood continued to decrease, while the density
and oil content increased gradually during the induction process.
Dehydration of sapwood was an important stage in the
formation of heartwood (Nakada, 2006; Kuroda et al., 2009;
Nakada and Fukatsu, 2012), which accelerated the decline of
sapwood cells (Spicer and Holbrook, 2005), stimulated ethylene
synthesis (Shigo and Hillis, 1973), or altered xylem water
distribution (Watanabe et al., 2012), and finally induced
heartwood formation (Nakada and Fukatsu, 2012). In return,
the deposition of heartwood substances blocked the vessels,
Frontiers in Plant Science | www.frontiersin.org 9
which further reduced the moisture content (Taylor et al.,
2002; Déjardin et al., 2010). Furthermore, the deposition
increased the xylem density and oil content. These results are
consistent with the density and oil content of heartwood being
greater than that of sapwood (Taylor et al., 2002; Searle and
Owen, 2005). In addition, GC–MS analysis also showed that the
essential oil components of the discolored sapwood became
progressively more similar to those of natural heartwood.

Comprehensive analysis of NSCs, lipids, and wood properties
showed that, as observed in the formation process of natural
heartwood, chemical-induced sapwood discoloration was
accompanied by sapwood dehydration, NSC consumption and
synthesis of heartwood substances. These substances filled and
blocked the lumen of the vessels, which further reduced the
moisture content of the discolored sapwood. As the heartwood
substances accumulated, the density, essential oil content, and
components of the discolored sapwood increased gradually, and
thereby Jiang Xiang was finally formed.

H2O2 Is a Promising Candidate for
Artificially Induced Jiang Xiang in
D. odorifera
This study showed that the injection of an acid solution into the
trunk markedly inhibited growth of the tree, while the injection of
distilled water, NaCl solution, and H2O2 solution into the trunk
had little or no effect. Wang (2016) found that acid solution
destroyed the tissue cells of the xylem, and thus, it inhibited the
growth and even caused tree death. The comprehensive analysis of
the transverse and axial discoloration ranges indicated that the
range of discoloration induced by CH3COOH was the largest,
followed by the H2O2 treatment. In terms of the persistence of the
induction effect, some differences were found between the
FIGURE 8 | Effects of different chemicals on basic density of parts of the xylem. Similar letters indicate no significant difference at the 0.05 level (p > 0.05). “ns”
indicates no significant difference at the 0.05 level. Bar represents standard deviation.
FIGURE 9 | Basic density of discolored sapwood induced by different
chemicals. Similar letters and “ns” indicate no significant difference at the 0.05
level (p > 0.05). Bar represents standard deviation.
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transverse and axial directions. The effects of transverse
discoloration induced by all treatments were only maintained
for one month; however, in the axial direction, the induction effect
of the CH3COOH treatment lasted for three months, and the
H2O2 and NaCl treatments still had induction effects after six
months. Moreover, the H2O2 treatment induced xylem to
consume most of the NSCs and synthesize most of the lipids,
and its essential oil content and basic density reached the levels of
natural heartwood. By contrast, although the density of the
discolored sapwood induced by the CH3COOH and NaCl
Frontiers in Plant Science | www.frontiersin.org 10
treatments reached the level of natural heartwood, their essential
oil contents were still much lower than those of natural heartwood.
In addition, the essential oil components of H2O2-induced
discolored sapwood were closest to those of natural heartwood.
Therefore, H2O2-induced Jiang Xiang is closest to natural
heartwood, while the CH3COOH and NaCl treatments have
poor induction effects. Moreover, the relative amount of trans-
Nerolidol (39.14%), (E)-beta-Farnesene (0.04%), and alpha-
Bisabolol (0.12%) in the H2O2-induced essential oil met the
standards for high-quality Jiang Xiang which are 25–60%, 0–3%,
and 0.1–6.0%, respectively. Thus, H2O2 is a promising inducer for
Jiang Xiang production in D. odorifera. The superior effect of
H2O2 treatment may be related to its involvement in the wound
signal ofD. odorifera (Cui et al., 2019), which in turn illustrates the
important role of H2O2 in wound-induced Jiang Xiang formation.
This study addressed some of the key factors related to heartwood
formation and the results indicate the potential of for H2O2 to
induce high-quality Jiang Xiang production. Further study is
warranted to explore the molecular mechanism of H2O2

regulation on Jiang Xiang formation in D. odorifera.
Furthermore, the chemicals used in this study are only in
certain doses, and a wider range of concentrations needs to be
examined. At present, the production of Jiang Xiang is extremely
limited. The induction of H2O2 will greatly increase the yield and
will have commercial potential if the techniques can be further
improved and widely implemented.
CONCLUSIONS

All chemical inducers in this study are effective in inducing
discoloration of sapwood. In this process, physiological
FIGURE 10 | Effects of different chemicals on essential oil contents of parts of the xylem. Similar letters and “ns” indicate no significant difference at the 0.05 level
(p > 0.05). Bar represents standard deviation.
FIGURE 11 | Essential oil contents of discolored sapwood induced by
different chemicals. Similar letters indicate no significant difference at the 0.05
level (p > 0.05). Bar represents standard deviation.
August 2020 | Volume 11 | Article 1161
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parameters of discolored sapwood gradually evolved to resemble
those of natural heartwood. Comparative analysis indicated
hydrogen peroxide (H2O2)-induced Jiang Xiang was closest to
natural heartwood and met the standards for high-quality Jiang
Xiang, while the induction effects of CH3COOH and NaCl were
unsatisfactory. Thus, this study supports the hypothesis that
H2O2 has the potential to induce formation of Jiang Xiang in
D. odorifera.
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