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A layer of cuticular wax is deposited on the surface of terrestrial plants, which reduces the
damage caused by environmental stress and maintains growth in a relatively stable
internal environment. Apple cuticular wax is an important part of the fruit epidermis that
plays an essential role in apple development, storage, and adaptation to environmental
stress. The formation of cuticular wax has been described at the transcriptional, post-
transcriptional, and translational levels in Arabidopsis, whereas less research has been
performed on apple cuticular wax. Here, we provide a brief overview of how apple
cuticular wax is formed, as well as its structure, composition, and function. An association
among the environment, genes, and apple cuticular wax deposition was revealed.
Cuticular wax prevents fruit rust from occurring on apple. Taken together, a detailed
understanding of apple cuticular wax is discussed. The results will act as a reference for
extending the storage period and increasing the commodity value of apple.
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INTRODUCTION

Plant growth is a process of continuous adaptation to the environment (Kim et al., 2019; Trivedi
et al., 2019). About 45 billion years ago, aquatic plants began to evolve towards land to adapt to the
changing environment. Terrestrial plants formed a hydrophobic cuticle on the surface of their aerial
organs to protect themselves from water loss (Waters, 2003; Leliaert et al., 2011; Sørensen et al.,
2011; Budke et al., 2012). The interactions between plants and their environment are vital for the life
of plants under changing environmental conditions. One such interaction is the emergence of the
cuticle on aerial organs of land plants (Bargel et al., 2006). Apple is a common fruit. The primary
role of apple cuticular wax is to reduce non-stomatal water loss and prevent pathogenic attacks. The
cuticular wax of apple directly determines its appearance quality and market value. In this study, we
summarize the biosynthesis, composition, regulation, and function of apple cuticular wax to provide
deeper knowledge of apple cuticular wax and to provide a basis for studying the molecular
mechanism of apple cuticular wax biosynthesis.
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CRYSTAL MORPHOLOGY AND
COMPOSITION OF APPLE CUTICULAR WAX

The epidermal wax, located in the outermost layer of apple
cuticular wax, is in direct contact with the external environmental
(Kunst and Samuels, 2003) and is one of main components of the
cuticle responsible for epidermal permeability (Veraverbeke et al.,
2001). Epidermal wax generally presents with different crystal
morphology from other apple cuticular wax under a scanning
electron microscope. The epidermal wax of apple often has a
platelet structure, and this difference is significant among different
developmental stages and apple varieties (Curry, 2005). Many
irregular lamellar crystals are detectable on the surface of “Granny
Smith” and “First Red”; however, the epidermis of “Red Rome” is
smooth, with a small number of parallel wax crystals (Belding
et al., 1998). The results of chemical composition are consistent
with the crystalline structure (Chu et al., 2017). Earlier studies
showed that the crystal morphology of apple cuticular wax is more
susceptible to environmental influences compared to its
composition (Belding et al., 2000). The environmental
conditions of light, temperature, and humidity affect the crystal
morphology of apple epidermal wax (Roy et al., 1994; Li F. et al.,
2019; Zhang et al., 2019b). The bagging technology during apple
production changes the microenvironment around the apples,
which affects the wax crystal morphology of the epidermis,
making the fruit surface smooth.

The components of apple cuticular wax are long-chain alkanes,
alcohols, aldehydes, fatty acids, and ketones, which are aliphatic
VLCFAs. In addition, apple cuticular wax contains triterpenes,
which are a unique component of the fleshy fruit epidermis
(Belding et al., 1998; Trivedi et al., 2019). Triterpenes and alkanes
are the main components of apple cuticular wax (Belding et al.,
2000). The content of these main ingredients fluctuates due to the
effects of species and environmental conditions. Alkanes, primarily
C29 alkanes, comprise 16.6–49% of apple cuticular wax contents.
Primary and secondary alcohols occupy 0–20.4% of total apple
cuticular wax. Aldehydes, fatty acids, and ketones comprise only a
small portion of total apple cuticular wax (0–6.0%), and the
percentage of triterpenes of total wax content varies from 32 to
70% (Curry, 2008; Chu et al., 2017). Different apple surface features
have different epidermal wax compositions. The glossy quality of
apples is largely due to the alcohol in the epidermal wax
(Veraverbeke et al., 2001). The greasy surface characteristics of
apples during storage are mainly due to fluctuations in secondary
alcohols (Veraverbeke et al., 2001; Yang et al., 2017). One of the wax
components in apple epidermis, alpha-farnesene, leads to the
accumulation of superficial scald on apples (Rowan et al., 2001).
Alkane content decreases and fatty acid content increases during
storage of apples (Dong et al., 2012).
BIOSYNTHESIS, REGULATION AND
DEPOSITION OF APPLE CUTICULAR WAX

Biosynthesis
The cuticular wax biosynthetic pathways have been reported in
Arabidopsis (Lee and Suh, 2013; Yeats and Rose, 2013), but they
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remain unclear in apple. Apple cuticular wax contains the same
composition as that of Arabidopsis, including alkanes, alcohols,
aldehydes, fatty acids, wax ester, and ketones (Belding et al., 1998),
we speculate that the same wax components have similar synthetic
pathways. Furthermore, apple evolved a unique synthetic pathway
for triterpenes. Identifying the wax synthesis-related genes is
conducive to our objective (Lashbrooke et al., 2015; Qi et al.,
2019; Zhang et al., 2019a; Zhang et al., 2019b; Zhong et al., 2020).
The apple expression sequence tag and genomic sequence analyses
identified candidate genes, including CER1, CER4, CER10, LACS2,
KCS7/2, LCR, FDH, PAS2, WBC11, LTPG1, and WIN1, which are
specifically expressed in the peel of different apple varieties. These
studies suggest that these genes may participate in the synthesis of
apple skin wax (Velasco et al., 2010; Albert et al., 2013). Therefore,
we speculated that the apple synthetic pathways are partly similar to
those in Arabidopsis. Very long chain fatty acids (VLCFAs) are
precursors of cuticular wax biosynthesis, and its derivatives that
subsequently form are the main ingredients of plant cuticular wax
(Bernard and Joubès, 2013). Epidermal wax synthesis is the first de
novo synthesis of C16 and C18 fatty acids that is activated into C16-
and C18-coenzyme A (CoA) by long chain acyl–CoA synthetase
(Yeats and Rose, 2013). VLCFAs form alcohols and wax esters
through the alcohol-forming pathway, and aldehydes, alkanes,
secondary alcohols, and ketones are produced through the alkane-
forming pathway (Moggia et al., 2016; Yang et al., 2017).

The precursors and pathways of triterpene biosynthesis have
been revealed in apple (Figure 1A). Pentacyclic triterpenes
account for large proportion of apple epicuticular waxes (Belding
et al., 1998). Along with long chain fatty acids and secondary
metabolites, triterpene biosynthesis occurs particularly in the waxy
coating of leaves and fruits, such as apples and pears (Kunst and
Samuels, 2003). Ursolic acid (UA), oleanolic acid (OA), and
betulinic acid (BA) are the main triterpene types in most
commercial apple varieties (McGhie et al., 2011). Triterpenoids
are synthesized from the 30-carbon intermediate squalene, and
squalene is converted into 2,3-oxidosqualene by squalene epoxidase
(Brendolise et al., 2011). The first step in the biosynthesis of all
triterpenes is cyclization of the 30-carbon precursor 2,3-
oxidosqualene. Lupeol, a-amyrin, b-amyrin, and germanicol are
the primary carbon framework of apple triterpenes. They are
cyclized by members of the oxidosqualene cyclase (OSC) family
(Phillips et al., 2006). MdOSC1 and MdOSC3 encode a
multifunctional oxidosqualene cyclase that produces a-amyrin, b-
amyrin, and lupeol. MdOSC4 and MdOSC5 cyclize 2,3-
oxidosqualene into lupeol and b-amyrin. In addition, MdOSC4
cyclizes the production of germanicol. Finally, MdCYP716A175
catalyzes the C-28 oxidation of a-amyrin, b-amyrin, lupeol, and
germanicol, producing UA, OA, BA, and morolic acid (Andre
et al., 2016).

Regulation
Cuticular wax biosynthesis and deposition are co-regulated by
environmental factors and genetic characteristics (Hen-Avivi
et al., 2013; Lee and Suh, 2013). Environmental stimuli
include: humidity, light, temperature, and pathogen load. As
for humidity, drought conditions make the epidermal wax more
complete, preventing water loss to ensure a normal supply of
August 2020 | Volume 11 | Article 1165

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Advances in Apple Cuticular Wax
water for apple (Trivedi et al., 2019). Studies in various species
have shown that more cuticular wax is deposited under light than
dark conditions (Li R. J. et al., 2019). In addition, the morphology
and properties of apple cuticular wax change directly with
temperature (Roy et al., 1994). As apple cuticular wax is
closely associated with post-harvest storage, the temperature is
critical for post-harvest storage (Lara et al., 2014). Formation of a
thicker cuticular wax is one of the strategies plants use to resist
pathogen infection. In general, an increase in deposition of
cuticular wax has been detected in apple infected with a
pathogen (Zhang et al., 2019b).
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The deposition of cuticular wax has been regulated at the
transcriptional, post-transcriptional, and translational levels in
apple and other model plants. Structural genes that encode
enzymes have strong effects on cuticular wax. Apple MdCER1
and MdCER2 affect cuticular wax permeability and resistance to
drought by promoting the formation of epidermal wax (Qi et al.,
2019; Zhong et al., 2020). Cuticular wax is also regulated at the
transcriptional level. SPL9 positively regulates ECERIFERUM1
(CER1) to significantly alter cuticular wax contents in response
to light. DEWAX forms a heterodimer with SPL9 and interferes
with SPL9 DNA binding ability to CER1, revealing how changes
A

B

C

FIGURE 1 | A model of the biosynthesis, regulation, and deposition of apple cuticular wax based on progress made in apple and other plants. (A) Apple cuticular
wax biosynthetic pathway. Blue and green represent the same and different synthetic pathways as in Arabidopsis. TP, transport protein. (B) Environmental and
genetic co-regulatory networks of cuticular wax biosynthesis at different regulatory levels. Blue represents the structural genes related to cuticular wax synthesis;
green represents the transcriptional factors related to cuticular wax synthesis; red represents E3 ubiquitin ligase; orange represents the histone acetylation genes
(HDA15 and GCN5). (C) Simple deposition diagram of the apple fruit cuticle. Different colors represent different apple cuticular wax components and positions. The
graphics are not drawn according to the true ratio.
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Advances in Apple Cuticular Wax
in the light/dark cycle alter epidermal wax deposition (Li R. J. et al.,
2019). MYB16 and MYB106 coordinate with WIN1/SHN1 to
regulate cutin and VLCFA biosynthesis. MYB106 induces the
expression of WIN1/SHN1, which is involved in the regulatory
cascade of cuticle development (Aharoni et al., 2004; Oshima et al.,
2013; Zhang et al., 2019a). MYB96 promotes cuticular wax
biosynthesis by directly binding to the KCS/KCR promoters in
response to abscisic acid (ABA)-mediated drought (Seo et al., 2011).
Additionally,MYB30 expression is induced by infection of bacterial
pathogens, leading to upregulated expression of the FAE complex;
thus, positively regulating epidermal wax deposition (Raffaele et al.,
2008; Zhang et al., 2019b). Improper cuticular wax deposition is
accompanied by decreased expression of the wax biosynthetic genes
and MdSHN3 TF in rusty apples (Lashbrooke et al., 2015; Legay
et al., 2015). In addition, cuticular wax biosynthesis is regulated at
the translational and post-translational levels. For example, GCN5
regulates H3K9/14 acetylation at the CER3 promoter regions
involved in the accumulation of stem cuticular wax, which
emphasizes the epigenetic involvement in cuticular wax
biosynthesis (Wang T. et al., 2018). MYB96 positively regulates
cuticular wax deposition, as it recruits the histone modifier HDA15
to participate in ABA signaling (Seo et al., 2011; Lee and Seo, 2019).
A (RING)-type protein DROUGHT HYPERSENSITIVE (DHS)
mediates ubiquitination of ROC4, and weakens its binding to
downstream structural genes to regulate wax synthesis in response
to drought conditions (Wang Z. et al., 2018). The F-box E3 ubiquitin
linkages SMALL AND GLOSSY LEAVES1 (SAGL1) mediates
proteasome-dependent degradation of CER3 in response to
changes in humidity (Kim et al., 2019). A regulatory network
about how plants alter wax content to cope with environmental
change is depicted based on previous studies (Figure 1B). These
results will play an important role in the study of apple
wax synthesis.

Deposition
The main ingredient of cuticular wax is synthesized in the
endoplasmic reticulum, but deposited on the plant surface
(Kunst and Samuels, 2003). Increasing evidence suggests that
the LTP and ABC proteins play an important role in the transfer
and deposition of monomers during cutin self-assembly in
Arabidopsis (McFarlane et al., 2010; Kim et al., 2012). It is
unclear whether these two transport proteins and/or others are
involved in the transport of apple epidermal wax, which needs to
be demonstrated by subsequent studies.

After transport, the cuticle is deposited in the aerial organs of
land plants, including the stems, leaves, flowers, and fruits
(Pollard et al., 2008). The deposition and distribution of cutin
can be observed by transmission electron microscopy. Cutin
forms a sealed protective layer around the surface of the apple to
prevent non-stomatal water loss and invasion by pathogenic
bacteria (Martin and Rose, 2013). Deposition of the wax layer is
generally accompanied by cutin as when the secondary cell wall
is lignified (Yeats and Rose, 2013). The deposition structure of
the apple fruit cuticle is described in Figure 1C. The cuticle is
primarily composed of cutin/cutan, which are polymerized from
W-hydroxy fatty acids and waxes synthesized from very-long-
Frontiers in Plant Science | www.frontiersin.org 4
chain aliphatic molecules (Lara et al., 2014). The epidermal wax
film and epidermal wax crystals cover the cuticle proper, which is
a mixture of intracuticular wax and cutin. The cuticular layer
mainly includes cell wall polysaccharides and cutin and may also
contain intracuticular waxes (Yeats and Rose, 2013). The cuticle
proper and the cuticle layer constitute the cuticle.
FUNCTION OF APPLE CUTICULAR WAX

As apple cuticular wax accompanied the evolution of land plants,
cuticular wax is the indemnification of the survival of plants in a
new terrestrial environment. Similarly, the role of cuticular wax
in apple has been demonstrated. One of the functions of apple
cuticular wax is to prevent water loss. The cuticle plays a major
role as a barrier for water and solutes and regulates gas exchange
when stomata are closed or are not present (Riederer and
Schreiber, 2001). Aquatic and terrestrial plants have different
abilities to exchange CO2 and O2 due to differences in cuticular
wax (Kim et al., 2019; Trivedi et al., 2019). Apple varieties with
thicker cuticular wax suffer from less water loss and can be stored
for a longer period compared to those with thinner wax layers
(Knoche and Grimm, 2008; Curry, 2012).

In addition, the cuticle protects the plant against pathogenic
attack. Forming a thick wax layer on the apple epidermis is a
strategy to resist pathogen infection (Veraverbeke et al., 2001).
The wax layer prevents infection of pathogens because epicuticular
wax self-cleans, so dust or bacteria are readily removed from the
plant surface (Bargel et al., 2006). Another possible reason is
creating conditions that are not beneficial for the majority of plant
pathogens. Pathogen infection and reproduction generally require
humid conditions, but the water-repellency of epicuticular waxes
has an extreme water removal capacity and hence the surface is
virtually dry, which significantly controls the growth of pathogenic
bacteria (Li-Beisson et al., 2013). A disrupted wax microstructure
or environmental pollutants can cause a significant increase in
fungal spores during the development of apple fruit or during
postharvest storage (Samuels et al., 2008).

Fruit rust is a common disease of apple cultivars, which
adversely affects the appearance of fruits (Faust and Shear,
1972). Economic losses are caused by fruit rust because
consumers prefer apples with a waxy-skin without rust.
Microscopic cracks in the cuticle cause a disorder of the fruit
skin known as russet (Wood, 2001). Apple russet results from the
appearance of micro-cracks and the formation of a corky
suberized layer (Lashbrooke et al., 2015). Severe destruction of
the waxy skin is prerequisite for the formation of apple rust. The
arrangement of the epidermal cells and the thickness of the
cuticular wax on the fruit surface are essential factors affecting
the formation of apple rust (Curry, 2012; Legay et al., 2015). The
balanced distribution of wax, cutin, suberin, and lignin is
beneficial to keep the apple surface glossy and clean (Wang
et al., 2020). Intact cuticular wax is indispensable to extend
the shelf life of apples. Damage to the integrity and order of the
epidermal wax can lead to the formation of rust or increase the
potential for the occurrence of rust. Fruit rust has a strong
August 2020 | Volume 11 | Article 1165
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relationship with the surface structure of the fruit (Khanal et al.,
2013). Non-rust apple varieties generally have the characteristics:
neatly arranged cells, a uniform wax layer, a tight stratum
corneum layer, and few gaps (Knoche and Grimm, 2008; Legay
et al., 2015). Studies have shown that the composition of
triterpenes is closely related to apple rust. Differences in terpenoid
components may be the cause of fruit rust. UA and OA are
significantly predominant in waxy apple, whereas BA significantly
dominates in russeted apples (Andre et al., 2016). Triterpene-
caffeates have been detected in suberized tissues, such as russeted
apple skin and apple bark, but not in waxy, nonsuberized apple skin
(Brendolise et al., 2011; Andre, 2013). In addition to being related to
apple rust, triterpenes also display a wide range of important
biomedical properties, including anti-inflammatory, anti-cancer
(He and Liu, 2007), anti-HIV, and antifungal (Andre et al., 2012;
Szakiel et al., 2012). New elite apple varieties could be developed
using apples rich in triterpenes. These apple triterpenes can be used
in the medical industry after genetic engineering.
PROSPECTS

Apple cuticular wax balances the distribution of nutrients on the
apple surface, resists mechanical stress and pathogen infection,
maintains physiological integrity, and prolongs the fruit storage
period. Until now, the main components, crystalline structure, and
metabolic pathways of apple cuticular wax were clear, several
structural genes and transcription factors have also been identified
Frontiers in Plant Science | www.frontiersin.org 5
to be involved in apple cuticular wax regulatory pathways. However,
the regulatory pathways and networks at the molecular level remain
largely unknown, which need to be investigated in the future. In
addition to its features as a protective barrier, apple cuticular wax
directly determines the glossy quality of apples. However, which
components and crystalline structures are crucial for glossy quality
are unknown. Also, the research methods and techniques to
determine fruit glossy quality are difficult. There is not a complete
system established to study apple glossy quality; therefore, new
technologies and methods need to be developed to determine apple
glossy quality.
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