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Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan

Plants interact with microorganisms in the environment during all stages of their
development and in most of their organs. These interactions can be either beneficial or
detrimental for the plant and may be transient or long-term. In extreme cases,
microorganisms become endoparastic or endophytic and permanently reside within a
plant, while the host plant undergoes developmental reprogramming and produces new
tissues or organs as a response to the invasion. Events at the cellular and molecular level
following infection have been extensively described, however the mechanisms of how
these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In
this review, we summarize recent findings concerning the signalling molecules that
regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In
particular, we will focus on the molecules secreted by plants that are most likely to act
as guidance cues for microorganisms. These compounds are found in a wide range of
plant species and show a variety of secondary effects. Interestingly, these compounds
show different attraction potencies depending on the species of the invading organism,
suggesting that cues perceived in the soil may be more complex than anticipated.
However, what the cognate receptors are for these attractants, as well as the
mechanism of how these attractants influence these organisms, remain important
outstanding questions. Host-targeting marks the first step of plant—microorganism
interactions, therefore understanding the signalling molecules involved in this step plays
a key role in understanding these interactions as a whole.

Keywords: chemotaxis, endophytes, endoparasites, gall-forming bacteria, arbuscular mycorrhizal fungi, plant
pathogenic nematode
INTRODUCTION

Plants do not live in solitary isolation but instead are constantly interacting with other organisms in
their environment. Organisms known to interact with plants include herbivores, commensals,
symbionts, and pathogens from multiple kingdoms. These organisms can interact with essentially
any plant organ throughout all stages of plant development. Certain plant parasites and symbionts
infect host-plant tissues and spend the majority of their lives within their host (Compant et al., 2010;
Hassani et al., 2018). Such manipulation of host development has evolved independently several
.org July 2020 | Volume 11 | Article 11671
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times and can be found in multiple classes of organisms,
including bacteria, fungi, nematodes, mites, and insects (Barash
and Manulis-Sasson, 2009; Dodueva et al., 2020).

Plant endoparasite/endophyte-induced structures can have
profound effects in agriculture. Colonization by symbionts
usually grants certain advantages to the host plant, such as
enhanced nutrient acquisition, and is thus generally preferred (if
not required) in agriculture (Khare et al., 2018). On the other
hand, parasite-induced ectopic structures are typically signs of
disease that reduce crop performance, and can sometimes be fatal.
However, what remains unclear is how these organisms locate
their hosts. Despite plants being sessile, endoparasites and
endophytes nevertheless need to make an effort to locate their
host plants. Some endoparasites and endophytes have very specific
host ranges, while for others plant hosts are obligatory to complete
their life cycles. As such, host-seeking is clearly a vital behavior in
plant endoparasites and endophytes and one that requires intricate
regulation. It is generally accepted that to locate host plants,
endosymbionts and endoparasites sense attractants secreted by
these plants. However, the mechanisms by which these attractants
are perceived and identified generally remain unclear.

This review aims to explore the current status the chemotactic
behaviors of plant endoparasite/endophyte, particularly those
that induce host-plant structural remodeling. The chemotactic
behavior and chemosensory mechanisms of bacteria, fungi, and
nematodes toward plants will be introduced, summarizing
chemotactic signaling systems established in these respective
taxa using model organisms. The chemotactic mechanisms and
known attractants for plant-infecting members of each taxon will
then be discussed.
ENDOPARASITIC AND ENDOPHYTIC
BACTERIA

The best-characterized examples of plant-infecting organism-
induced plant developmental remodeling are caused by bacteria.
Rhizobium radiobacter, the causative agent of crown gall disease,
stimulates tumor formation on the shoots and roots of many
plant species, while various rhizobia species colonize plant roots
and form nodules to provide organic nitrogen in exchange for
carbohydrates (Escobar and Dandekar, 2003; Poole et al., 2018).
Multiple species of bacteria have been shown to migrate toward
root exudates, and the rhizosphere is indeed known to be
colonized by many species of microorganisms (Walker et al.,
2003; Berendsen et al., 2012). However, the specific components
within root exudates that soil bacteria respond to largely remain
to be deciphered. In addition, exudate compositions also vary
among root regions, adding temporal and spatial variations to
bacterial behavior in the rhizosphere (Scharf et al., 2016). Lastly,
root exudates can mediate bacterial colonization not only
through chemotaxis but also through other means, such as
promoting nodulation or inducing flagellin expression (Kierul
et al., 2015; Li et al., 2016).

Chemotaxis has been well-characterized in the model
organism Escherichia coli. The perception of chemotactic
Frontiers in Plant Science | www.frontiersin.org 2
signals in E. coli is mediated by the core complex, which
consists of four methyl-accepting chemotaxis proteins (MCPs)
that act as chemoreceptors, and redox receptor Aer, histidine
kinase CheA and adaptor protein CheW (Yang and Briegel,
2020). The core complexes in turn form large hexagonal clusters
on the plasma membrane, known as the chemosensory array,
and are responsible for phosphorylating downstream signalling
modules upon chemoattractant binding (Yang and Briegel,
2020). Downstream targets of the core complex include CheB,
which mediates sensory adaptation and inhibits the MCPs as a
negative feedback signal, and CheY, which controls flagella-
mediated locomotion (Wadhams and Armitage, 2004). By
favoring long-flagella-mediated propulsion in the presence of
chemoattractants, the bacterial cell gradually moves closer to
the attractant.

The number of chemoreceptors and the tertiary structures of
the core complex show great diversity among bacterial taxa,
although in general the chemotactic machinery seen in E. coli is
well-conserved among bacteria and serves as a suitable model
system (Table 1). Currently, 19 bacterial chemotaxis systems
have been identified; 17 based on the E. coli Che system, with two
other unique systems known as type IV pili motility (Tfp) and
alternative cellular function (ACF) (Wuichet and Zhulin, 2010).
More than half of the motile bacteria possess multiple
chemosensory systems, highlighting the importance of
processing and fine-tuning chemosensory signalling and
responses (Wuichet and Zhulin, 2010). Expectedly, the number
and diversity of MCPs expressed in a given taxon correlate with
its lifestyle and metabolism complexity (Lacal et al., 2010).
Several species of soil bacteria have been documented to be
attracted by organic acids, for which the cognate chemoreceptors
have been identified in many species (Sampedro et al., 2015;
Table 2). Other common bacterial chemoattractants include
sugars and sugar alcohols (Bowra and Dilworth, 1981; Burg
et al., 1982; Alexandre et al., 2000; Meier et al., 2007; Miller et al.,
2007; Table 2).

Rhizobium radiobacter (formerly known as Agrobactetrium
tumefaciens), the causative agent of crown gall disease, is perhaps
the best-known endoparasitic organism that manipulates plant
development. R. radiobacter probably targets molecules
specifically released by wounding, since it infiltrates plant
tissues via wound sites. As such, R. radiobacter has been
shown to be attracted to various sugars, amino acids, opines,
and phenolics (Ashby et al., 1987; Ashby et al., 1988; Loake et al.,
1988; Kim and Farrand, 1998). One of the chemoreceptors,
ChvE, has been shown to be essential for host-finding and
shares structural homology with E. coli proteins known to bind
galactose and glucose, suggesting ChvE may similarly function as
a chemoreceptor for sugars (Cangelosi et al., 1990). Interestingly,
R. radiobacter expresses two CheW homologues, both of which
are required for chemotaxis towards plant tissue, yet neither is
encoded in the Che operon (Huang et al., 2018).

Rhizobium leguminosarum is one of the best characterized
rhizobia and is related to R. radiobacter; they both belong to the
Rhizobiaceae family. R. leguminosarum forms nodules in the
roots of legumes, such as peas, clovers, and various beans, and is
July 2020 | Volume 11 | Article 1167
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an important contributor to nitrogen fixation. Its genome
contains two chemotaxis operons, where Che1 is likely to be
the main driver mediating chemotaxis toward sugars and is
essential for host-finding and nodulation (Miller et al., 2007).
R. leguminosarum has been shown to be attracted to amino acids
and flavonoids (Armitage et al., 1988). In addition, two of its
chemoreceptors, McpB and McpC, are known to positively
regulate nodulation, but their ligands remain unknown (Yost
et al., 1998). The importance of these two receptors may be more
relevant depending on the host species and competing soil
microbiota (Yost et al., 1998).

Sinorhizobium meliloti is another well-characterized member
of the Rhizobiaceae family. S. meliloti has been shown to colonize
specific regions of alfalfa roots, confirming their preference for
cues from specific parts of the roots (Gulash et al., 1984). The S.
meliloti genome contains nine chemoreceptors, all of which were
shown to be required for chemotaxis toward sugars, amino acids,
and organic acids (Meier et al., 2007). Two CheY homologues are
also present, with CheY2 controlling the unidirectional flagella
motor speed, while CheY1 terminates the chemotaxis signal
(Sourjik and Schmitt, 1996; Platzer et al., 1997; Sourjik and
Schmitt, 1998; Attmannspacher et al., 2005). The chemotactic
machineries are encoded in two operons (Meier et al., 2007; Meier
and Scharf, 2009). The Che1 operon of S. meliloti contains the
CheD deamidase that modulates chemoreceptor activities (Scharf
et al., 2016). S. meliloti also expresses CheS, a novel protein that
complexes with CheA to facilitate dephosphorylation of CheY1
(Dogra et al., 2012). CheT is another novel protein in S. meliloti
Che1 operon required for chemotaxis, though its function is
currently unknown (Scharf et al., 2016). S. meliloti has been
Frontiers in Plant Science | www.frontiersin.org 3
documented to be attracted to luteolin, 4’,7-dihydroxyflavone,
4’,7-dihydroxyflavanone, and 4,4’-dihydroxy-2-methoxychalcone,
all of which are found in root exudates (Caetano-Anollés et al.,
1988; Dharmatilake and Bauer, 1992). In addition, S. meliloti has
been shown to be attracted to amino acids in alfalfa seed exudates,
which is mediated by McpU, as well as to common sugars (Götz
et al., 1982; Malek, 1989; Meier et al., 2007; Webb et al., 2014;
Webb et al., 2017a). Other known S. meliloti attractants include
quaternary ammonium compounds (betonicine, choline, glycine
betaine, stachydrine, and trigonelline), which are recognized by
McpX (Webb et al., 2017b).
ENDOPARASITIC AND ENDOPHYTIC
FUNGI

The other prominent class of organisms known to invade plant
tissues is the fungi. Unlike bacteria, fungi are immobile and under
most circumstances are not chemotactic. Nevertheless, plant-
symbiotic and parasitic fungi make deliberate efforts to mediate
hyphae growth toward potential hosts via chemotropism. Hyphae
chemotropism towards plants was first described in Uromyces
appendiculatus growing towards soybean leaf stomata, with the
tips of hyphae recognized as the area responsible for sensing
chemical cues and processing chemotropism (Turrà and Di
Pietro, 2015; Turrà et al., 2016). By 1905, it was noted that the
constituents of host exudates dictated the type of fungi attracted,
which consolidates the importance of chemotaxis in plant
parasitism (Massee, 1905).
TABLE 1 | Chemotactic genes of endoparasites and endophytes discussed in this review.

Endoparasite,
endophyte

Chemotactic gene Model organism
orthologues

Predicted functions Reference

Rhizobium
radiobacter
(bacteria)

ChvE E. coli galactose/glucose-
binding protein (GBP)

Putative sugar chemoreceptor Cangelosi et al., 1990

CheW1, CheW2 E. coli CheW Scaffold protein binding chemoreceptor and
histidine kinase CheA

Huang et al., 2018

Rhizobium
leguminosarum
(bacteria)

McpB, McpC E. coli MCPs Chemoreceptors with unknown ligands Yost et al., 1998

Sinorhizobium
meliloti
(bacteria)

McpE, McpS, McpT, McpU,
McpV, McpW, McpX, McpY,
McpZ

E. coli MCPs Chemoreceptors for sugars, amino acids and
organic acids

Meier et al., 2007

CheY1, CheY2 E. coli CheY Binds and changes the rotation direction of
flagellar motor,

Sourjik and Schmitt, 1996;
Sourjik and Schmitt, 1998

CheD E. coli CheD Deaminase that regulates chemoreceptor
activities

Scharf et al., 2016

CheS N/A Regulates phosphorylation of CheY1 Dogra et al., 2012
CheT N/A Required for chemotaxis, function unknown Scharf et al., 2016

Fusarium
oxysporum
(fungi)

STE2 S. cerevisiae Ste2 Chemoreceptor for unknown host signal Turrà et al., 2015
Fmk1 S. cerevisiae Fus3 and Kss1 MAP kinase for chemotropism signaling, Di Pietro et al., 2001

Meloidogyne
incognita
(nematode)

Mi-odr-1 C. elegans odr-1 Membrane-bound guanylyl cyclase that produces
cGMP secondary messenger

Shivakumara et al., 2019

Mi-odr-3 C. elegans odr-3 Ga protein that regulates cyclic nucleotide
metabolism

Shivakumara et al., 2019

Mi-tax-2, Mi-tax-4 C. elegans tax-2 and tax-4 Subunits of cyclic nucleotide-gated cation
channel involved in G-protein-mediated signalling

Shivakumara et al., 2019
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TABLE 2 | Chemoattractants of endoparasites and endophytes discussed in this review.

Attractant
class

Perceived by Attractants Notes References

Sugars and
alcohols

Rhizobium radiobacter
(bacteria)

Sucrose, glucose, fructose, maltose,
lactulose, galactose, raffinose,
stachyose, arabinose

May be perceived by chemoreceptor ChvE Loake et al., 1988; Cangelosi
et al., 1990

Rhizobium leguminosarum
(bacteria)

Mannitol, galactose Perception requires the Che1 chemotaxis
operon

Miller et al., 2007

Sinorhizobium meliloti
(bacteria)

Fructose, galactose, maltose,
mannitol, sucrose

Perception requires all 9 chemoreceptors
McpE, McpS-McpZ

Meier et al., 2007

Sucrose, glucose, arabinose,
galactose

Malek, 1989

Meloidogyne incognita
(nematode)

Mannitol Signal transduction may require Mi-odr-1,
Mi-odr-3, Mi-tax-2 and Mi-tax-4

Fleming et al., 2017; Shivakumara
et al., 2019

Organic
acids

Rhizobium leguminosarum
(bacteria)

Pyruvate, succinate Perception requires the Che1 chemotaxis
operon

Miller et al., 2007

Sinorhizobium meliloti
(bacteria)

Citrate, fumarate, malate, succinate Perception requires all 9 chemoreceptors
McpE, McpS-McpZ

Meier et al., 2007

Meloidogyne incognita
(nematode)

Vanillic acid, lauric acid Signal transduction may require Mi-odr-1,
Mi-odr-3, Mi-tax-2 and Mi-tax-4.

Dong et al., 2014; Fleming et al.,
2017; Shivakumara et al., 2019

Amino
acids

Rhizobium radiobacter
(bacteria)

Valine, arginine Loake et al., 1988

Rhizobium leguminosarum
(bacteria)

Homoserine Armitage et al., 1988

Sinorhizobium meliloti
(bacteria)

All standard amino acids Perception requires all 9 chemoreceptors
McpE, McpS-McpZ

Götz et al., 1982; Malek, 1989;
Meier et al., 2007; Webb et al.,
2014; Webb et al., 2017a

Citrulline, g-aminobutyric acid,
ornithine

Perception requires chemoreceptor McpU Webb et al., 2017a

Homoserine Götz et al., 1982
Meloidogyne incognita
(nematode)

Argenine, lysine Signal transduction may require Mi-odr-1,
Mi-odr-3, Mi-tax-2 and Mi-tax-4

Fleming et al., 2017; Shivakumara
et al., 2019

Phenolics Rhizobium radiobacter
(bacteria)

Acetosyringone, sinapinic acid,
syringic acid

Ashby et al., 1987; Ashby et al.,
1988

Meloidogyne incognita
(nematode)

Tannic acid Signal transduction may require Mi-odr-1,
Mi-odr-3, Mi-tax-2 and Mi-tax-4

Fleming et al., 2017; Shivakumara
et al., 2019

Flavonoids Rhizobium leguminosarum
(bacteria)

Apigenin, naringenin, kaempferol Armitage et al., 1988

Sinorhizobium meliloti
(bacteria)

Luteolin, 4’,7-dihydroxyflavone, 4’,7-
dihydroxyflavanone, and 4,4’-
dihydroxy-2-methoxychalcone

Caetano-Anollés et al., 1988;
Dharmatilake and Bauer, 1992

Phyto-
hormones

Gigaspora margarita
(fungi)

Strigolactone Likely perceived by novel receptors not
conserved in plants.

Akiyama et al., 2005; Akiyama
and Hayashi, 2006; Gutjahr,
2014; Boyer et al., 2014

Meloidogyne incognita
(nematode)

6-Dimethylallylaminopurine, salicylic
acid, gibberellic acid, Indole-3-acetic
acid

Signal transduction may require Mi-odr-1,
Mi-odr-3, Mi-tax-2 and Mi-tax-4

Fleming et al., 2017; Shivakumara
et al., 2019

Organic
amines

Sinorhizobium meliloti
(bacteria)

Betonicine, choline, glycine betaine,
stachydrine, trigonelline

Perception requires chemoreceptor McpX Webb et al., 2017b

Meloidogyne incognita
(nematode)

Cadaverine, 1,3-diaminopropane,
putrescine

Oota et al., 2019

Opines Rhizobium radiobacter
(bacteria)

Octopine, nopaline, mannopine,
agrocinopines A+B

Kim and Farrand, 1998

Others Rhizobium leguminosarum
(bacteria)

Unknown host signal Perception requires chemoreceptors McpB
and McpC

Yost et al., 1998

Fusarium oxysporum
(fungi)

Unknown host signal Perception requires a-STE2 chemoreceptor
and Fmk1 MAPK kinase, signal requires
peroxidase activity from host

Turrà et al., 2015

Trichoderma harzianum
(fungi)

Unknown host signal requires stress, peroxidase and oxylipin
activities from host

Lombardi et al., 2018

Meloidogyne incognita
(nematode)

Calcium chloride Wang et al., 2018
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In a similar way to how E. coli serves as a model for bacterial
chemotaxis, studies using Saccharomyces cerevisiae and
Neurospora crassa have provided invaluable insights into
fungal chemotropism (Table 1). S. cerevisiae cells develop
mating projections known as shmoos in the presence of the
opposite mating type, by detecting secreted mating peptide
pheromone a or a. These pheromones are perceived by seven
transmembrane G-protein-coupled receptors; MATa cells
express Ste2, which binds the a- pheromone, while MATa
cells express Ste3, which binds the a-pheromone (Hagen et al.,
1986; Blumer et al., 1988). The receptors function as guanine
exchange factors and activates the Ga subunit (GPA1) upon
pheromone-binding, which promotes the dissociation of the Gbg
subunits (STE4 and STE18) from the complex (Schrick et al.,
1997). This then initiates a signalling cascade mediated by Fus3
and Kss1 (MAPK), leading to transcriptional regulation, cell
cycle arrest, cell shape alternation, and ultimately shmoo
development toward the mating partner (Arkowitz, 2009). In
an analogous case, female hyphae of Neurospora crassa
(trichogyne) grow towards male spores via chemotropism. This
process is mediated by the spore pheromone peptides MFA-1
and CCG-4, which are perceived by the receptors PRE-1 and
PRE-2 (orthologues of Ste2 and Ste3), respectively (Kim and
Borkovich, 2004; Kim and Borkovich, 2006). Pheromone
perception in N. crassa initiates a similar MAPK signalling
cascade mediated by heterotrimeric G-proteins (Dettmann
et al., 2014). Another case of chemotropism in N. crassa is
anastomosis, where hyphae from cells of an identical genotype
(sometimes the same cell) are attracted towards each other,
followed by fusion (Leeder et al., 2011). The anastomosis
chemotropism signal is similarly transduced by a MAPK
cascade using orthologues of Fus3 and Kss1 (Read et al., 2009).
The N. crassa anastomosis signal may be a peptide pheromone
(Roca et al., 2005), and it has been hypothesized that both parties
use the same signalling molecule, which positively regulates itself
(Read et al., 2012). Lastly, hyphae repellants may also play a role
in chemotropism, and the direction of hyphae growth is likely to
be a balance between attraction and repulsion (Leeder
et al., 2011).

Hyphal chemotropism in response to plants is well-
characterized in pathogens of the genus Fusarium, which are
ubiquitous, filamentous ascomycete fungi. Fusarium oxysporum
spores respond to host cues in order to germinate, and its hyphae
elongate toward host roots using chemotropism. Although F.
oxysporum does not manipulate the host’s developmental
program, it nevertheless serves as a good model to decipher
how yeast chemotropism has been specialized for pathogenesis.
F. oxysporum requires the a-STE2 signalling module and Fmk1
(an orthologue of Fus3 and Kss1) for infection (Di Pietro et al.,
2001; Turrà et al., 2015). Considering F. oxysporum does not
undergo sexual reproduction, the conserved mating pheromone
chemotropism pathway may have evolved to detect host signals
(Turrà et al., 2015). F. oxysporum has been shown to be able to
distinguish between live and dead cells, suggesting it is likely to
be able to perceive certain live cell-exclusive signals (van der
Does et al., 2008). Furthermore, F. oxysporum root-targeting
Frontiers in Plant Science | www.frontiersin.org 5
behavior has been shown to require the secretion of a haem-
containing peroxidase released from root wounds (Turrà et al.,
2015), suggesting the product of this peroxidase may be a
potential chemoattractant, in addition to nutrients such as
amino acids and sugars. On the other hand, the biocontrol
agent Trichoderma harzianum has been shown to be
preferentially attracted to root exudate secreted by tomato
plants under stress; peroxidase and oxylipins are required in
the exudate for this attraction to occur (Lombardi et al., 2018).
Interestingly, stress did not enhance the attraction of tomato root
exudate to F. oxysporum, even though peroxidase has been
shown to be an important element in F. oxysporum
chemotropism (Turrà et al., 2015; Lombardi et al., 2018). The
specific identities of the peroxidase-dependent attractants for F.
oxysporum may be more complicated than expected.

The fungal counterparts of the bacterial rhizobia are the
arbuscular mycorrhizal fungi (AMF). AMF include the
Glomeromycetes, obligate symbionts that form highly
branched structures known as arbuscules to mediate nutrient
exchange with their host root’s cortical cells. AMF provide their
plant hosts with various nutrients, predominantly inorganic
phosphate, while receiving photosynthetic products such as
hexoses and fatty acids from their host (Jiang et al., 2017;
Luginbuehl et al., 2017). AMF have been estimated to colonize
~80% of all land plants, while fossil records suggest plant—AMF
symbioses occurred as early as 460 million years ago, coinciding
with the colonization of land by plants (Martin et al., 2017;
Strullu-Derrien et al., 2018). These lines of evidence suggest AMF
may be a key factor in plant terrestrial adaptation. AMF probably
locate their host plants by recognizing molecules from root
exudates, as root exudates have been shown to promote AMF
spore germination and hyphal branching. The phytohormone
strigolactone (SL) has been shown to promote hyphal branching
in Gigaspora margarita (Akiyama et al., 2005; Akiyama and
Hayashi, 2006; Table 2), while pea plants deficient in SL
synthesis show reduced AMF colonization (Gómez-Roldán
et al., 2008). Specifically, SL treatment stimulates AMF
mitochondria proliferation and shape change, and increases
metabolism (Besserer et al., 2006; Besserer et al., 2008; Besserer
et al., 2009). SL also induces spore germination in AMF (Besserer
et al., 2006; Besserer et al., 2008). Together, these lines of
evidence confirm that secreted SL is indeed a vital positive
regulator of AMF colonization. No fungal receptor of SL has
yet been identified, but it is likely to be different from the plant SL
receptor, since G. margarita perceives different forms of SL than
plants do (Gutjahr, 2014; Boyer et al., 2014), and the
Rhizophagus irregularis genome does not appear to contain
orthologues of plant SL receptors (Tisserant et al., 2012).

On the other hand, SL is probably not the only molecule that
AMF target for host-localization. Plants deficient in SL synthesis
show a reduction in, but not the abolishment of, AMF
colonization (Gómez-Roldán et al., 2008), while AMF non-host
plants have also been shown secrete SL from their roots, albeit at
lower levels (Goldwasser et al., 2008; Yoneyama et al., 2008). It
seems plausible that SL-insensitive AMF can still colonize roots if
encountered by chance, and SL merely functions to enhance
July 2020 | Volume 11 | Article 1167
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host-guidance but is not essential for colonization. AMF species
including Gigaspora gigantean and Glomus mosseae, and
ectomycorrhizal fungal species including Pisolithus tinctorius
and Paxillus involutus have been shown to prefer host roots
over non-hosts or dead plants (Koske, 1982; Horan and Chilvers,
1990; Sbrana and Giovannetti, 2005). Since SL appears to be
ubiquitously found in all plants, the presence of SL alone is not
sufficient to dictate AMF colonization. Other root-derived AMF
branching factors probably exist, but the situation is complicated
since different compounds may have different effects on the same
AMF, while the same compound may have different effects on
different AMF (Nagahashi and Douds, 2000; Nagahashi and
Douds, 2007). Different forms of SL may also have different
attracting strengths and activities.
ENDOPARASITIC NEMATODES

Another class of endoparasitic plant pathogens known to cause
novel organ formation and developmental reprogramming of the
host is the nematodes. The major nematode plant pathogens
comprise the root-knot nematodes (RKNs, genus Meloidogyne),
the cyst nematodes (CN, generaHeterdera andGlobodera) and the
pine-wilt nematodes (PWN, Bursaphelenchus xylophilus).
Although RKNs and CNs appear to have evolved independently,
both use infection mechanisms that have much in common. In
both cases, second-instar juveniles (J2) roam freely in the soil
searching for the roots of appropriate host plants. Once a suitable
root has been identified, the J2s infect the root and inject effectors
that reprogram the host’s vascular cells to form specialized feeding
organs (Bartlem et al., 2014; Favery et al., 2016). RKNs stimulate
host cells to undergo endoreduplication and form multi-nucleated
giant cells, while CNs merge multiple host cells together to form
syncytia (Siddique and Grundler, 2018). The nematodes then feed
on these specialized organs and develop to maturity, whereupon
females emerge from the roots to lay eggs and release the next
generation to the environment.

J2 host-targeting behavior is therefore critical in plant parasitic
nematode biology, and chemotaxis towards plant exudates has
been associated with this behavior. Soybean, pea, potato, tomato,
and rice root exudates have all been shown to attract J2s of various
plant pathogenic nematodes (Papademetriou and Bone, 1983;
Zhao et al., 2000; Reynolds et al., 2011; Xu et al., 2015; Yang
et al., 2016; Čepulytė et al., 2018). Specifically, phenolics,
flavonoids, glycoside, fatty acids, and diamines in exudates and
volatiles from roots have been shown to act as nematode
attractants (Chitwood, 2002; Zhao et al., 2007; Ohri and Pannu,
2010; Ali et al., 2011; Oota et al., 2019; Table 2). In addition,
Arabidopsis seeds were also shown to attract RKN, suggesting
RKN may interact with plant seeds as well aside from roots
(Tsai et al., 2019). Furthermore, it was revealed that nematode
attractants and repellents are produced not only by plants but also
by nematodes themselves. Many plant-parasitic nematodes have
been shown to produce ascarosides, a class of glycolipid-
based signaling molecules synthesized almost exclusively by
nematodes (Manosalva et al., 2015). Depending on the types
Frontiers in Plant Science | www.frontiersin.org 6
and compositions, ascarosides can regulate the aggregation/
dispersion of conspecifics or even other nematodes (Manohar
et al., 2020). On the other hand, other compounds have also been
documented to influence nematode behavior such as carbon
dioxide; the amino acids arginine and lysine; phenolic acids; the
plant hormones salicylic acid and gibberellic acid; the growth
supplement ethephon; 6-dimethylallylaminopurine; and nitrate
analogues (Pline and Dusenbery, 1987; Wang et al., 2009; Wang
et al., 2010; Fleming et al., 2017; Hosoi et al., 2017; Table 2).

Caenorhabditis elegans has been established as a model
organism for nematodes, and its genome, cell development
pathway and nervous system have been extensively characterized.
By examining elements conserved among C. elegans and plant
pathogenic nematodes it may be possible to further expand our
knowledge of pathogenic nematode behavior. Chemotaxis in
nematodes is regulated by the amphid and phasmid sensory
organs in their head and tail, respectively. In C. elegans, a pair of
amphids acts as the main sensory organs, which contain twelve
types of sensory neurons. By using laser ablation of individual
or combinations of neurons, the corresponding stimulant
signals being transmitted by each neuron can be identified
(Mori, 1999; Rengarajan and Hallem, 2016). Despite the fact
that the neural structures of plant-parasitic nematodes are at
least somewhat conserved with C.elegans, molecular evidence
suggests plant-parasitic nematodes likely evolved from
fungivorous ancestors, which are likely evolutionarily
distant from bacterivorous C. elegans (Quist et al., 2015).
Cautions should be applied when inferring homology
relationships between plant-parasitic nematodes and C.
elegans to account for their evolutionary divergence and
different foraging preferences.

Olfactory receptors are highly expressed in the sensory
neurons and play important roles in sensing specific signals.
For example, the AWA neuron expresses the ODR-10 receptor,
which is responsible for diacetyl detection, and consequently
odr-10 mutants fail to detect diacetyl compounds (Sengupta
et al., 1996). Currently, 194 putative olfactory receptor genes
have been identified in the C. elegans genome (Taniguchi et al.,
2014). Therefore, we performed homology searches to look for
orthologues of C. elegans olfactory receptors in the genomes of
plant pathogenic nematodes, including the RKNs Meloidogyne
incognita and Meloidogyne arenaria, the CNs Heterodera glycines
andGlobodera rostochiensis, and the PWN B. xylophilus (Table 3).
Interestingly, the majority of C. elegans olfactory receptors are not
conserved among plant pathogenic nematodes, although the few
receptor orthologues that are present may be informative in
determining their chemotactic behaviors. The B. xylophilus
genome contains orthologues of SRV-11 (pentanedione
avoidance), SRV-12 (benzaldehyde attraction), SRSX-26
(butanone attraction), SRSX-32 (pyrazine attraction), SRSX-33
(pentanedione and pyrazine attraction), SRSX-37 (pentanedione
attraction), SRT-18 and SRT-25 (diacethyl avoidance).
Meanwhile, the M. incognita and M. arenaria genomes contain
orthologues of SRG-37 (pyrazine attraction). It would be
interesting to determine whether the functions of these receptors
are conserved among pathogenic nematodes and similarly regulate
July 2020 | Volume 11 | Article 1167
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chemotaxis. On the other hand, H. glycines and G. rostochiensis
genomes contain no orthologues of C. elegans olfactory receptors.
This surprisingly low level of conservation of olfactory receptors
suggests plant pathogenic nematodes have independently evolved
unique signalling pathways to detect chemical signals. Meanwhile,
four C. elegans chemosensory gene orthologues were identified in
M. incognita asMi-odr-1,Mi-odr-3,Mi-tax-2 andMi-tax-4, where
knockdown mutants showed defects in their attraction to root
exudates, volatile compounds (alcohols, ketones, aromatic
compounds, esters, thiazole, and pyrazine), non-volatile
compounds (carbohydrates, phytohormones, organic acids, amino
acids, and phenolics), as well as ascaroside signalling (Shivakumara
et al., 2019; Table 1). These putative M. incognita-specific
chemosensory signaling modules are likely to play important roles
in host-targeting, and the identification of the corresponding
olfactory receptors for these pathways may help identify specific
RKN chemoattractants.
OUTSTANDING CHALLENGES AND
FUTURE PERSPECTIVES

Aside from microorganisms, many arthropod species are also
known to be endoparasitic and can manipulate their host plant’s
developmental program during infection. Insects from the
orders Hemiptera and Hymenoptera and mites from the
superfamily Eriophyoidea include endoparasitic members that
form galls. Similar to the ectopic organs formed by endoparasitic/
endophytic microbes, galls induced by endoparasitic arthropods
function as feeding organs and/or physical barriers for protection.
Frontiers in Plant Science | www.frontiersin.org 7
Mechanisms that mediate arthropod-mediated galling through
phytohormone manipulation have been characterized in great
detail (Tooker and Helms, 2014; de Lillo et al., 2018). However,
how arthropod parasites locate their host plants has been relatively
poorly investigated, for various reasons. First, arthropods may not
rely heavily on chemotaxis to find hosts. Endoparasitic arthropods
typically have poor mobility and rely on random forces for
locomotion, such as wind (Nault and Styer, 1969; Sabelis and
Bruin, 1996). Other endoparasitic arthropods specialize in
infecting a single long-lived host plant, where progenies can
continue to infect the same host as their parents (Lindquist and
Oldfield, 1996; Manson and Oldfield, 1996). Second, arthropod-
induced galls are among the most structurally diverse, with 13,000
insect species documented to form plant galls. Galling behavior
appears to have evolved in arthropods multiple times,
possibly through horizontal gene transfer from symbiotic bacteria
or fungi (Gullan et al., 2005; Raman et al., 2005). Therefore, no
single model organism system may be sufficient to represent the
molecular signalling mechanisms for chemotaxis in endoparasitic
arthropods, and these behaviors may have to be addressed in a case-
by-case fashion.

Another major challenge in the characterization of plant
endoparasites and endophytes are tri-trophic and other
interactions that involve more parties. In nature, it is likely
that plants will simultaneously encounter several of the
endoparasites and endophytes discussed above, considering
the same chemicals may attract organisms from multiple taxons.
The outcome of these complex interactions will not be easy to
predict under controlled laboratory conditions. For example,
Fusarium solani, a plant fungal pathogen related to F. oxysporum,
has been shown to induce virulence genes in response to the
TABLE 3 | C. elegans olfactory receptor orthologues present in plant pathogenic nematodes, their predicted functions, and E-values of DNA sequence similarities.

C. elegans GPCR Predicted function Species Orthologue E-value

SRV-11 Pentanedione avoidance B. xylophilus BXY_0066100 3.00E-11
B. xylophilus BXY_1231200 4.00E-10
B. xylophilus BXY_0069300 2.00E-09

SRV-12 Benzaldehyde attraction B. xylophilus BXY_0066100 5.00E-10
B. xylophilus BXY_1231200 3.00E-07
B. xylophilus BXY_0069300 1.00E-06

SRSX-26 Butanone attraction B. xylophilus BXY_1070000 4.00E-10
B. xylophilus BXY_1013200 1.00E-07

SRSX-32 Pyrazine attraction B. xylophilus BXY_1070000 3.00E-10
B. xylophilus BXY_1013200 2.00E-07
B. xylophilus BXY_1013400 4.00E-05
B. xylophilus BXY_0557500 6.00E-04
B. xylophilus BXY_0027800 9.00E-04

SRSX-33 Pentanedione and pyrazine attraction B. xylophilus BXY_1070000 2.00E-06
B. xylophilus BXY_0809300 3.00E-06
B. xylophilus BXY_1013400 3.00E-05
B. xylophilus BXY_0557500 9.00E-05
B. xylophilus BXY_0027800 2.00E-04

SRSX-37 Pentanedione attraction B. xylophilus BXY_1013400 3.00E-09
SRT-18 Diacethyl avoidance B. xylophilus BXY_1024600 5.00E-20
SRT-25 Diacethyl avoidance B. xylophilus BXY_1024600 9.00E-20
SRG-37 Pyrazine attraction M. incognita Minc3s00775g17185 2.30E-02

M. arenaria tig00002579.g60974 5.90E-02
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isoflavanoid pisatin in host roots, which is made by plants during
stress (Straney et al., 1994; Straney et al., 2002). Similarly, the plant
pathogenic nematode M. incognita can be attracted to polyamines
from plant root exudates, which are also known to be produced in
stressed plants (Oota et al., 2019). It appears that pathogens from
multiple taxa tend to favor stressed plants, making simultaneous
infection or colonization very likely scenarios in nature. On the
other hand, SL has been shown to not only promote hyphal
branching in AMF but also the germination of parasitic plants of
the genera Striga and Orobanche (Cook et al., 1966; Cardoso et al.,
2011). The plant SL production levels fluctuate during the course of
AMF infection, with SL-synthesis genes up-regulated during early
infection, and down-regulated during later infection stages (López-
Ráez et al., 2015; Kobae et al., 2018). Furthermore, host plants utilize
overlapping signalling components in response to both AMF and
rhizobia infections, suggesting the two processes may have evolved
together (Hirsch and Kapulnik, 1998; Guinel and Geil, 2002;
Vierheilig and Piché, 2002; Parniske, 2008). Plants inoculated
with rhizobia also show reduced Orobanche infection (Mabrouk
et al., 2007a; Mabrouk et al., 2007b; Mabrouk et al., 2007c), while
SL-synthesis genes are up-regulated during rhizobia colonization
(Breakspear et al., 2014; van Zeijl et al., 2015). These lines of
evidence suggest the interactions between host plants, rhizobia,
AMF, and parasitic plants mediated by SL require more elaborate
analysis to decipher.

In general, it appears that most known attractants of plant
endoparasites and endophytes consist of common compounds
such as metabolites and plant hormones, instead of unique or
unusual compounds. Currently it remains very difficult to use
chemotactic behavior alone to explain endoparasites’/endophytes’
host range. The more likely explanation may be that soil
microorganisms sense and respond to multiple chemoattractant
simultaneously. Plants may also produce chemoattractants that
are toxic to attracted microorganisms. Lauric acid has been shown
to have different effects on M. incognita depending on
concentrations (Dong et al., 2014). Abiotic environmental
factors may also influence the behavior of soil microorganisms.
Factors such as pH, ions and temperature, redox potential,
Frontiers in Plant Science | www.frontiersin.org 8
chelating compounds, and electrical potential have been
documented to affect the behavior of plant parasitic nematodes
(Rasmann et al., 2012). Therefore, endoparasite/endophyte
host-targeting behavior is likely to be complex, involving both
biotic and abiotic factors. Nevertheless, the identification and
characterization of chemoattractants can have practical
applications in agriculture. These chemoattractants or repellants
may be applied in fields directly to manipulate the microorganisms
behaviors, and ultimately improve the growth of crop plants. The
chemotactic behaviors of different organisms may even be
combined, as C. elegans has been shown to be capable of
carrying rhizobia bacteria to plant hosts through phoresis
(Horiuchi et al., 2005). With the identification of more
chemoattractants, more sophisticated agricultural application
strategies may eventually be designed and implemented in
the future.
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