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Stressed to Death: The Role of
Transcription Factors in Plant
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and Joanna Kacprzyk*

School of Biology and Environmental Science, University College Dublin, Dublin, Ireland

Programmed cell death (PCD) is a genetically controlled pathway that plants can use to
selectively eliminate redundant or damaged cells. In addition to its fundamental role in
plant development, PCD can often be activated as an essential defense response when
dealing with biotic and abiotic stresses. For example, localized, tightly controlled PCD can
promote plant survival by restricting pathogen growth, driving the development of
morphological traits for stress tolerance such as aerenchyma, or triggering systemic
pro-survival responses. Relatively little is known about the molecular control of this
essential process in plants, especially in comparison to well-described cell death
models in animals. However, the networks orchestrating transcriptional regulation of
plant PCD are emerging. Transcription factors (TFs) regulate the clusters of stimuli
inducible genes and play a fundamental role in plant responses, such as PCD, to
abiotic and biotic stresses. Here, we discuss the roles of different classes of
transcription factors, including members of NAC, ERF and WRKY families, in cell fate
regulation in response to environmental stresses. The role of TFs in stress-induced
mitochondrial retrograde signaling is also reviewed in the context of life-and-death
decisions of the plant cell and future research directions for further elucidation of TF-
mediated control of stress-induced PCD events are proposed. An increased
understanding of these complex signaling networks will inform and facilitate future
breeding strategies to increase crop tolerance to disease and/or abiotic stresses.
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INTRODUCTION

Programmed cell death (PCD) is a genetically controlled pathway of organized cell destruction
(Danon et al., 2000). PCD is not only an essential element of plant development (Daneva et al.,
2016), but also a part of the arsenal of defense responses against biotic and abiotic environmental
stresses (Locato and De Gara, 2018). The classic example is the hypersensitive response (HR), a
rapid cell death at the initial infection site activated to restrict the growth of biotrophic pathogens
(Heath, 2000). Localized PCD events can also improve the plant’s ability to withstand abiotic
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stresses, for example, selective cell death triggered in the root
stem cell niche was recently identified as an integral part of the
cold acclimation process (Hong et al., 2017). Likewise, PCD plays
a central role in plant adaptation to hypoxic conditions by
mediating the formation of lysigenous aerenchyma, a porous
tissue comprising internal spaces and channels to transport
gases between plant shoots and roots (Evans, 2004). While
aerenchyma formation is the key adaptive trait for waterlogging
tolerance (Mustroph, 2018), it can also be induced under aerobic
conditions by other abiotic stresses. Its formation converts living
cortical tissue to air volume, thereby improving plant carbon
economy, and reducing the respiratory and nutrient cost of soil
exploration. Aerenchyma formation has also been reported to
enhance nutrient stress adaptation (Fan et al., 2003; Saengwilai
et al., 2014), as well as improve drought (Zhu et al., 2010) and salt
(Saqib et al., 2005; Akcin et al., 2015) tolerance in different plant
species. PCD can be also considered a protective mechanism when
triggered by the excess excitation energy stress, leading to signal
transduction to systemic cells and their acclimation to high light
(Wituszyńska and Karpiński, 2013). However, PCD is not always
beneficial to the plant: its activation can be an infection strategy
for necrotrophic pathogens (Coll et al., 2011) and extensive PCD
caused by severe abiotic stress may result in crop yield losses.
Climate change is associated with increasing frequency of extreme
weather events such as heavy rainfall, droughts, and heatwaves
(USGCRP et al., 2017) that exacerbate abiotic stresses and plant
diseases, challenging the global crop productivity. Therefore, there
is a growing pressure to elucidate the complex regulatory
networks behind plant pro-survival strategies, including those
involving the tightly controlled activation of PCD in specific cells
in response to environmental stimuli. Our understanding of plant
PCD is still lagging behind that of animal cell death programs.
Although recent progress in the field has identified a plethora of
new PCD regulators, the complex molecular networks responsible
for coordinating plant PCD are only just beginning to emerge
(Daneva et al., 2016). In animals, the bona fide core PCD
machinery is mainly regulated post-translationally (Fuchs and
Steller, 2011), however, there are exceptions: egl-1, the key
activator of the execution phase of apoptotic cell death in
Caenorhabditis elegans (Horvitz, 2003) is expressed at a
detectable level predominantly in cells programmed to die
(Conradt et al., 2016). Additionally, the cell death pathway can
be promoted and repressed by transcriptional regulators (Zhai
et al., 2012; Aubrey et al., 2018). At least some level of
transcriptional control of the cell death process is also likely in
plants, where blocking transcription using de novo RNA synthesis
inhibitor actinomycin D can both alleviate (Masuda et al., 2003;
Vacca et al., 2004) and induce PCD (Ning et al., 2001).
Transcription factors (TFs) are central players in eukaryotic
gene regulation, binding to DNA in a sequence specific manner
and promoting or inhibiting the activity of a transcription
initiation complex (Voss and Hager, 2014). TFs may therefore
act as molecular switches to regulate clusters of stimuli responsive
genes (Pradhan et al., 2019). The involvement of major plant TF
classes in a range of developmentally controlled PCD events was
recently comprehensively discussed (Cubrıá-Radıó and Nowack,
Frontiers in Plant Science | www.frontiersin.org 2
2019). Here, our aim is to discuss the role of TFs in PCD induced
by various environmental stimuli, both abiotic and biotic in nature
(Figure 1).
NAC TRANSCRIPTION FACTORS

NAC TFs comprise one of the largest and most studied TFs
families in plants. They contain a conserved DNA binding N-
terminus and a more variable, transcription regulating, C-
terminus (Ooka et al., 2003; Olsen et al., 2005). Several NACs
have been linked to regulation of PCD triggered by abiotic and
biotic stresses. NAC TFs have been implicated in regulation of
the HR (Yuan et al., 2019). For example, OsNAC4 has been
shown to positively regulate the HR by modulating the
expression of almost 150 genes in rice (Kaneda et al., 2009).
The OsNAC4 regulome included OsHSP90 and IREN, that act in
parallel to induce HR PCD. Expression of OsHSP90 is associated
with the loss of plasma membrane integrity but not DNA
fragmentation, while IREN, an endonuclease, is responsible for
DNA degradation but alone does not affect plasma membrane
integrity or induce cell death (Kaneda et al., 2009). The
Arabidopsis NAC4 homologue, ANAC080 promotes cell death
in response to bacterial infection by suppressing the
transcription of three target genes; LURP1, WRKY40, and
WRKY54, which negatively regulate PCD (Lee et al., 2017).
The leaves of ANAC080 overexpressing plants display
accelerated and rapidly spreading PCD following infection
with Pseudomonas syringae, while in null mutants cell death
spread was delayed. ANAC080 itself is negatively regulated by a
microRNA 164, allowing fine-tuning of the appropriate immune
response and ensuring that PCD is tightly controlled (Lee
et al., 2017).

Several NAC TFs are also involved in cell death induced by
ER stress. The accumulation of misfolded proteins in the ER
triggers the unfolded protein response (UPR), a widely conserved
pro-survival mechanism (Calfon et al., 2002). However, extreme,
or prolonged ER stress can lead to the activation of PCD
(Zuppini et al., 2004). Many environmental stimuli, such as
salinity, heat, drought, osmotic stress, and pathogens, can evoke
the ER stress responses (Park and Park, 2019). In soybean,
programmed cell death induced by both ER and osmotic stress
was linked to GmNAC30 and GmNAC81 (Faria et al., 2011;
Mendes et al., 2013). The GmNAC30 and GmNAC81TFs form
homo- or heterodimers and may act as both transcriptional
activators or repressors, with their ability to promote PCD linked
to transactivation of the vacuolar processing enzyme (VPE) gene
by a NAC81/NAC30 heterodimer (Mendes et al., 2013). VPE is
responsible for the caspase-1 activity and may contribute to PCD
via the activation of vacuolar proteases and subsequent vacuole
collapse (Hatsugai et al., 2006). Another NAC, NAC089 was
implicated in ER stress induced PCD in Arabidopsis (Yang et al.,
2014). Similarly to NAC81/NAC30 dimer, ANAC089 promotes
the induction of caspase-like activity during ER stress induced
PCD, and also appears to regulate other downstream PCD-
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associated genes including BAG6 (Bcl-2-associated athanogene
family member) and MC5 (metacaspase 5). The transcription of
NAC089 is itself promoted by two membrane bound TFs, bZIP28
and bZIP60, highlighting the multiple levels of regulation
involved in initiating the PCD cascade (Yang et al., 2014). In
rapeseed, four NAC TFs (BnaNAC55, BnaNAC56, BnaNAC87,
and BnaNAC103) have separately been shown to be involved in
PCD following treatment with diverse abiotic stressors (Niu
et al., 2014; Niu et al., 2016; Chen et al., 2017; Yan et al.,
2017). In all cases, expression of the respective TF resulted in
the development of HR-like lesions, reactive oxygen species
(ROS) accumulation, and DNA degradation, however, the
molecular mechanisms by which these TFs induce cell death
has not been examined.
Frontiers in Plant Science | www.frontiersin.org 3
PCD is commonly induced following severe genotoxic stress in
order to protect the organism from deleterious DNA mutations.
This process initially involves cell cycle arrest and attempts at
DNA repair, with apoptosis initiated if the damage is too severe
(Norbury and Zhivotovsky, 2004). In animals this DNA damage
response is largely coordinated by p53, a constitutively expressed
TF that is stabilized via phosphorylation by four DNA damage
sensing kinases; ATM, ATR, CHK1, and CHK2 (Lavin and
Gueven, 2006). p53 not only induces apoptosis by regulating the
transcription of apoptotic genes but also translocates to the
mitochondria where it can modulate mitochondrial outer
membrane permeabilization (MOMP) via direct interactions
with pro- and anti-apoptotic proteins (Vaseva and Moll, 2009).
Although several key DNA damage response genes such as ATM
FIGURE 1 | Transcription factors regulating stress induced programmed cell death (PCD). Only transcription factors (TFs) with experimentally validated role in PCD
regulation are presented. TFs promoting PCD are highlighted in red, TFs suppressing PCD are highlighted in blue.
August 2020 | Volume 11 | Article 1235
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and ATR are conserved across plants and animals, p53 is not
(Culligan et al., 2006). Instead, plants have developed a functional
homolog of p53, SOG1/ANAC008, which fulfills similar functions
in coordinating the DNA damage response (Yoshiyama et al.,
2009; Yoshiyama et al., 2014). The root meristematic stem cell
niche and its early descendants are hypersensitive to genotoxic
stress (Fulcher and Sablowski, 2009), and undergo a selective type
of PCD that is mediated by SOG1 and requires de novo protein
synthesis (Furukawa et al., 2010). More recently it has been
established that SOG1/ANAC008 is necessary not only to trigger
PCD in these cell populations but also to mediate a regenerative
response in meristematic tissue for the stem cell niche
replenishment (Johnson et al., 2018). The SOG1 direct targets
include genes implicated in response to abiotic stresses and
pathogen infection (Ogita et al., 2018). Two of SOG1 targets,
ANAC044 and ANAC085, are its closest relatives in the NAC TF
family and were suggested to also participate in SOG1-mediated
induction of stem cell death (Takahashi et al., 2019). However, it is
not clear which key downstream PCD effectors are controlled by
SOG1/ANAC008 signaling. Chilling stress was shown to induce
DNA damage dependent cell death of columella stem cell
daughters (Hong et al., 2017). This highly localized cell death
appeared to protect the stem cell niche from chilling stress and
improve the root’s ability to withstand the accompanying
environmental stresses and resume growth (Hong et al., 2017).
Considering the role of SOG1/ANAC008, ANAC044, and
ANAC085 in regulation of PCD induced by DNA damage, it
would be interesting to test the effect of these TFs on adaptation
and survival of roots under the chilling stress.

The role of NACTFs in lysigenous aerenchyma formation is also
slowly emerging. The meta-analysis of quantitative trait loci (QTL)
associated with abiotic stress tolerance identified a NAC domain TF
as a key candidate gene for aerenchyma formation in barley
(Hordeum vulgare) under waterlogging conditions (Zhang et al.,
2017b). Several NACTFs were linked to aerenchyma formation also
in rice (Oryza sativa). For example, transgene overexpression of
stress‐inducible OsNAC5 and OsNAC9 resulted in enhanced
aerenchyma formation in rice, especially under the root-specific
promoter, and correlated with enhanced drought and salinity
tolerance (Redillas et al., 2012; Jeong et al., 2013). Rice offers an
interesting model for further studies delineating the transcriptional
regulation of developmental and environmentally induced
lysigenous aerenchyma, as this tissue forms constitutively in rice
roots but is further induced by flooding (Yamauchi et al., 2013).
ETHYLENE RESPONSIVE ELEMENT
BINDING FACTORS TRANSCRIPTION
FACTORS IN THE REGULATION OF
PLANT PROGRAMMED CELL DEATH

The ethylene responsive element binding factors (ERFs) belong to
the AP2/ERF superfamily, characterized by the presence of one (in
ERF) or two (in AP2) 60-70 residue AP2/ERF DNA binding
domains (Nakano et al., 2006). This expansive group of
Frontiers in Plant Science | www.frontiersin.org 4
transcriptional regulators display a wide range of roles in
responding to various forms of abiotic stress (Mizoi et al., 2012;
Li et al., 2017; Najafi et al., 2018). MACD1 and ERF102 are two
ERFs linked to phytotoxin induced cell death (Mase et al., 2013) and
both act downstream of ethylene signaling and are positive
regulators of programmed cell death induced by the phytotoxins
AAL and fumonisin B1. ERF TFs are also involved in regulation of
HR PCD, for example NbCD1 is an ERF that is expressed in
response to multiple HR elicitors, and its conditional expression is
sufficient to induce cell death (Nasir et al., 2005). Expression of
NbCD1 also results in high levels of H2O2 generation, ion leakage,
and DNA fragmentation. Additionally, NbCD1 modulates
transcription via its ERF-associated amphiphilic repression (EAR)
motif. NbCD1 positively regulates HR cell death by suppressing the
transcription of almost 60 genes, including HSR203, a negative
regulator of the HR (Nasir et al., 2005). The tobacco transcriptional
repressor NtERF3 is another EAR motif containing TF that has
been identified as an inducer of HR-associated PCD following
Tobacco mosaic virus infection (Ogata et al., 2012). As with
NbCD1, overexpression of NtERF3 was sufficient to induce HR-
like lesions on tobacco leaves, while deletion of the EAR motif from
this TF prevented the HR cell death. Subsequent analysis of the
Arabidopsis, rice, and tobacco genomes enabled the identification of
dozens of closely related group VIII ERF genes (Ogata et al., 2013).
Interestingly, overexpression of several group VIII-a ERFs
(containing an EAR-motif) induced cell death, while
overexpression of group VIII-b ERFs (lacking an EAR-motif)
failed to induce cell death morphology in Arabidopsis (Ogata
et al., 2013). However, the degree of cell death induced by
different EAR-motif containing ERFs varied significantly, and the
expression of fusion proteins consisting of group VIII-b ERFs fused
to EAR motifs also failed to induce cell death, suggesting that the
presence of an EAR motif alone is not sufficient to induce a
transcriptional program resulting in PCD (Ogata et al., 2013).

ERF TFs are also involved in the regulation of PCD induced by
abiotic stress. For example, ERF109 is implicated in salt stress
tolerance, acting as a negative regulator of PCD in Arabidopsis
(Bahieldin et al., 2016). This TF prevents PCD by inducing
expression of Bax-inhibitor 1, which inhibits the pro-apoptotic
Bax protein (Bahieldin et al., 2016). Ethylene is involved in
lysigenous aerenchyma formation (Yamauchi et al., 2013) and
treatment with ethylene inhibitors decreases aerenchyma
formation under hypoxia (Drew et al., 1981; Gunawardena et al.,
2001a). ERFs have been linked to both aerenchyma formation and
waterlogging tolerance in several species and recently, the PhERF2
TF was found to modulate PCD during waterlogging response in
petunia (Yin et al., 2019). Overexpression of PhERF2 increased
survival of waterlogged seedlings while the silencing lines
exhibited compromised waterlogging tolerance with increased
leaf chlorosis and necrosis. The root cells of PhERF2
overexpressor plants displayed condensed, moon-shaped nuclei,
characteristic of PCD, suggesting that this TF may positively
regulate aerenchyma formation (Yin et al., 2019). Multiple
transcriptome profiling analyses reported differential expression
of ERFs in response to conditions inducing aerenchyma, such as
waterlogging and hypoxia (Rajhi et al., 2011; Safavi-Rizi et al.,
August 2020 | Volume 11 | Article 1235
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2020) or in tissues undergoing developmental aerenchyma
formation (Yoo et al., 2015; Du et al., 2018). However,
functional validation studies are required to determine if the
identified ERFs indeed contribute to aerenchyma induction.
RAV1 seems to be a promising candidate, as the RAV1-like gene
was induced specifically in maize cortical cells (aerenchyma‐
forming tissue) in response to waterlogging and this up-
regulation was blocked upon pretreatment with ethylene
perception inhibitor 1-methylcyclo-propene (1-MCP) (Rajhi
et al., 2011). RAV1 was later proposed to underlie Subtol6, a
major QTL associated with submergence tolerance in maize
(Campbell et al., 2015). The RAV1 TF was also suggested to
regulate the initial steps of constitutive aerenchyma formation in
sugarcane that involve cell wall polysaccharide modifications
(Tavares et al., 2019). This is in line with work by Gunawardena
et al. (2001b) who proposed that one of the earliest, ethylene-
promoted, changes associated with aerenchyma formation are the
alterations to cell wall polysaccharides. The role of RAV1 in
regulation of PCD is plausible, as RAV1 overexpression in
Arabidopsis results in accelerated senescence (Woo et al., 2010)
and a RAV1 homologue was strongly induced in pepper leaves
during the early response to pathogen infection, abiotic elicitors,
and environmental stresses (Sohn et al., 2006). RAV1 itself might
be regulated post-transcriptionally by microRNAs (Tavares
Queiroz de Pinho et al., 2020), allowing tightly controlled
expression of its target genes.
WRKY TRANSCRIPTION FACTORS IN
PROGRAMMED CELL DEATH
REGULATION

WRKY transcription factors are a diverse group of transcriptional
regulators that integrate plant responses to environmental stress
and regulate development (Bakshi and Oelmuller, 2014). WRKY
TFs are categorized by the presence of 60 conserved amino acid
residues at the N-terminus (Bakshi and Oelmüller, 2014; Phukan
et al., 2016). TheWRKY TF family targets genes containing a CRE
containing W-box element (TGAC) (Eulgem et al., 2000). Several
WRKY TFs are involved in the regulation of cell death during
biotic stress. In tobacco, WRKY1 was first identified as a positive
regulator of HR PCD, following its phosphorylation and activation
by the salicylic acid (SA) induced kinase SIPK (Menke et al., 2005).
WRKY18,WRKY40, andWRKY60 also modulate transcription of
pathogen responsive genes via the formation of homo- or
heterodimers (Xu et al., 2006). A triple knockout Arabidopsis
line lacking all three TFs was more susceptible to infection by
Botrytis cinerea, a necrotrophic fungal pathogen that promotes
host cell death in a HR-like manner. The same KO line displayed
increased resistance to P. syringae, a bacterial pathogen that is
biotrophic during the early stages of infection (Xu et al., 2006).
This suggests that this network of WRKY TFs may function to
suppress HR cell death during the initial infection, although the
transcriptional program they promote to achieve this has not yet
been identified. The WRKY52 TF from the grapevine (Vitis
quinquangularis) has the opposite role, as transgenic expression
Frontiers in Plant Science | www.frontiersin.org 5
of VqWRKY52 in Arabidopsis results in significantly greater cell
death following infection by both B. cinerea and P. syringae, and
thus increased and reduced susceptibility to the necrotrophic and
biotrophic pathogens respectively (Wang et al., 2017). Finally,
transient expression of phospho-mimicking mutants of WRKY7,
8, 9, 11, 12, and 14 is sufficient to induce cell death in Nicotiana
benthamiana, with these TFs appearing to act downstream of a
MAPK phosphorylation cascade (Adachi et al., 2015).
Interestingly, the degree of cell death induced by these TFs was
correlated to their ability to induce a respiratory burst oxidase
homologue (RBOH) derived ROS burst, which has previously
been shown to be required for resistance to biotic and abiotic
stress, and for certain forms of PCD (Xie et al., 2014; Li et al.,
2015). However, the relevance of such experiments involving
phospho-mutants to physiological HR mechanisms is not clear.

Transcriptomic analyses suggested that WRKY TFs can regulate
constitutive and environmentally induced lysigenous aerenchyma
induction in rice (Yoo et al., 2015; Viana et al., 2018). However,
WRKY53 and WRKY33 showed higher expression under
submergence conditions in the waterlogging sensitive maize
genotypes compared to tolerant lines (Campbell et al., 2015).
Further research is therefore required to delineate the role of
WRKYs in aerenchyma formation, which may differ between
developmentally or environmentally induced aerenchyma.
Interestingly, HaWRKY76, a divergent transcription factor from
sunflower, conferred submergence tolerance when overexpressed in
Arabidopsis, which in part can be linked to enhanced formation of
lysigenous stem aerenchyma (Raineri et al., 2015).
OTHER TRANSCRIPTION FACTORS
CONTRIBUTING TO MODULATION OF
ENVIRONMENTALLY INDUCED
PROGRAMMED CELL DEATH

Several other TF classes are also likely to contribute to the
transcriptional regulation of life-and-death decisions in
response to environmental stress. Auxin response factors
(ARFs), which bind to auxin response elements (Li et al., 2016)
and similarly to other TF families, possess an N-terminal DNA
binding domain combined with a C-terminal domain suited to
protein-protein interactions (Ulmasov et al., 1997). Although
ARFs are typically associated with growth and developmental
processes, their involvement in PCD regulation is possible, as
supplementation of auxin or auxin analogues has been shown to
block PCD following biotic and abiotic stresses such as exposure
to the bacterial effector thaxtomin A or photorespiratory induced
oxidative stress (Kerchev et al., 2015; Awwad et al., 2019). The
molecular mechanisms responsible for this death-suppressing
effect and potential involvement of ARFs require further
research. The interplay between auxin and ethylene was
suggested to regulate aerenchyma formation in maize under
waterlogging stress where the auxin associated genes such as
IAA3, IAA14, and IAA16 were shown to be upregulated in the
tolerant genotypes (Thirunavukkarasu et al., 2013). The IAAs are
the short-lived, early auxin response proteins that interact with
August 2020 | Volume 11 | Article 1235
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ARFs and inhibit the transcription of their target genes (Luo
et al., 2018). The IAAs- and ARFs- dependent auxin signaling
was also linked to formation of constitutive aerenchyma in rice
(Yoo et al., 2015; Yamauchi et al., 2019).

Another family of TFs linked to plant PCD modulation are the
MYBs, a diverse family of eukaryotic transcription modulators
with roles in both development and stress responses (Dubos et al.,
2010). In Arabidopsis, AtMYB30 is a positive regulator of HR cell
death, that was initially discovered due to its strong upregulation
immediately following infection with HR inducing bacterial
effectors (Daniel et al., 1999; Vailleau et al., 2002). The
expression of AtMYB30 is dependent on SA accumulation, and
plants with knock-down, knock-out, or overexpression mediated
perturbations in AtMYB30 levels in turn display altered SA levels,
suggesting that the TF functions at least partially as an SA
signaling amplification loop (Raffaele et al., 2006). It has been
subsequently shown that AtMYB30 enhances the expression of
several genes involved in very long chain fatty acid (VLCFA)
synthesis and may also promote PCD by utilizing VLCFAs or their
derivatives as cell deathmessaging molecules (Raffaele et al., 2008).
The ectopic expression of rapeseed (Brassica napus) BnaMYB78 in
N. benthamiana has also been shown to induce a form of HR-like
cell death associated with H2O2 production, although the function
of this TF in B. napus or indeed of its Arabidopsis homologue
remain to be investigated (Chen et al., 2016). ManyMYB TFs have
been proposed as putative regulators of aerenchyma formation by
transcriptome profiling studies (Thirunavukkarasu et al., 2013;
Valliyodan et al., 2014) and a meta-analysis of major QTL for
waterlogging tolerance (Zhang et al., 2017b). During hypoxic
treatment of wheat roots, expression of the TaMyb1, when
analyzed using in situ hybridization, was elevated in root
epidermal, endodermal, and cortex tissue peripheral to
aerenchyma containing cortex (Lee et al., 2006). Further
examination of the expression pattern of this TF sequentially
during aerenchyma formation may provide more insights into its
role in hypoxia responses. The MYB transcription factors
S4877491 and S4910460 showed higher expression during
flooding in waterlogging tolerant soybean genotype with
enhanced aerenchyma formation (Valliyodan et al., 2014).
Moreover, four MYBs were differentially expressed in rice root
tissue forming constitutive aerenchyma (Yoo et al., 2015).
However, functional studies are required in order to determine
if MYB TFs indeed play a role in the regulation of cell death during
aerenchyma formation in response to environmental stimuli.
MITOCHONDRIA, TRANSCRIPTION
FACTORS, AND CELL FATE REGULATION

The role of mitochondria in plant PCD has been widely documented
(Van Aken and Van Breusegem, 2015) although details of this
involvement have not yet been fully elucidated. Mitochondria act as
stress sensing organelles, with both extrinsic (environmental) and
intrinsic (cellular) stimuli affecting the mitochondrial respiratory
status (Schwarzlander and Finkemeier, 2013). Such changes can
trigger signaling pathways, that either regulate mitochondria
Frontiers in Plant Science | www.frontiersin.org
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directly, which may result in events leading to PCD activation
(Garmier et al., 2007; Gao et al., 2008; Scott and Logan, 2008; Bi
et al., 2009; Wu et al., 2015; Zancani et al., 2015), or induce
changes to nuclear gene expression via retrograde signaling
(Rhoads, 2011; Schwarzlander and Finkemeier, 2013).
The output of mitochondrial retrograde signaling not only
feeds back to the mitochondrion but also regulates the
functions of other cellular compartments (Schwarzlander
et al., 2012; Schwarzlander and Finkemeier, 2013), thereby
ensuring a coordinated response to environmental or intrinsic
perturbations. The role of mitochondrial retrograde signaling in
fine-tune regulation of cell fate decisions in plants is emerging,
with transcription factors mediating some of the key pathways.
Stress responsive mitochondrial proteins were identified by
transcriptomic meta-analyses of the mitochondrial protein
transcript abundance under a variety of stress conditions or
during genetically or chemically induced mitochondrial
dysfunction (Van Aken et al., 2009b; Schwarzlander et al.,
2012; Wang et al., 2018). Alternative oxidase (AOX), probably
the most widely studied stress induced mitochondrial protein
and a classical marker of mitochondrial retrograde signaling
(Van Aken et al., 2009a; Wang et al., 2018), has been implicated
in the negative regulation of PCD response. AOX is a non-
proton-pumping, terminal oxidase in the mitochondrial electron
transport chain (ETC) (Vanlerberghe, 2013). By uncoupling the
electron flow and ATP production, AOX acts as a safety valve,
preventing over-reduction of ETC components and dampening
the generation of O2

− and nitric oxide in the mitochondria
(Vanlerberghe, 2013). Unsurprisingly for a regulator of
mitochondrial and cellular homeostasis, numerous studies
report stress-induced PCD phenotypes in plants with altered
AOX levels in response to miscellaneous abiotic and biotic
factors (Ordog et al., 2002; Lei et al., 2003; Mizuno et al., 2005;
Amirsadeghi et al., 2006; Kiba et al., 2008; Li and Xing, 2011; Liu
et al., 2014). The pro-survival role of AOX conserved across the
plant kingdom; it was recently shown to protect the unicellular
algae Chlamydomonas reinhardtii from cell death induced by
high light (Kaye et al., 2019) and AOX isoforms are induced by
chemical and environmental stresses in cereal species such as rice
and barley (Wanniarachchi et al., 2018). Indeed, the modulation
of the AOX pathway has been recently proposed to offer crop
protection against the challenges imposed by climate change
(Florez-Sarasa et al., 2020). More recently, another stress-
responsive mitochondrial protein has been linked to PCD
regulation. Om66 (outer mitochondrial membrane protein of 66
kDa), previously annotated as AtBCS1 (cytochrome BC1 synthase
1), is induced by SA (Ho et al., 2008), mitochondrial and
chloroplast perturbations (Van Aken and Whelan, 2012) and
by biotic stress signals and UV light (Zhang et al., 2014).
Interestingly, the OM66 transcript is also rapidly induced by
the touch stimulus (Van Aken et al., 2016a), a mechanism that
has not yet been investigated in the PCD context. Arabidopsis
thaliana protoplasts treated with UV light exhibited increased
cell death rates when OM66 was overexpressed, and reduced cell
death in the loss of function mutants; the OM66 overexpressor
(OM66OE) plants also demonstrated accelerated senescence and
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increased drought tolerance (Zhang et al., 2014). The OM66 OE
was more tolerant to the biotrophic P. syringae but showed
increased susceptibility to the necrotroph B. cinerea (Zhang et al.,
2014). In line with the observed PCD phenotypes, the gene
expression analysis revealed changes in pathogen defense
signaling, cell death, and senescence in OM66 OE lines (Zhang
et al., 2014).

While the molecular mechanisms behind the regulation of
cell death-suppressing AOX and cell death-promoting OM66 are
still being uncovered, several TFs were demonstrated to play a
role. There is an overlap between AOX and OM66 regulation in
response to mitochondrial dysfunction, although the rapid touch
induction of OM66 seems to be mediated by a distinct signal
transduction pathway (Van Aken et al., 2016a). Under non-stress
conditions, the TF abscisic acid insensitive 4 (ABI4) acts as
AOX1a repressor in A. thaliana, with de-repression induced by
rotenone or abscisic acid (ABA) itself (Giraud et al., 2009)
suggesting that additional ABA response factors may regulate
AOX1a, both positively and negatively (Wang et al., 2018).
MYB29 is a general negative regulator of mitochondrial stress
response, repressing both AOX1a and OM66 indirectly via
regulation of the expression of various ERF and WRKY
transcription factors (Zhang et al., 2017a). The expression of
OM66 and AOX1a under mitochondrial stress conditions is also
regulated by WRKY transcription factors, with likely functional
redundancy suggested between them (Van Aken et al., 2013; Van
Aken et al., 2016a). Knockout and overexpressor studies suggest
that under stress conditions such as high light or actinomycin
treatment, WRKY40 generally acts as a repressor of genes
commonly affected by both chloroplast and mitochondrial
perturbation, while WRKY63 is their activator (Van Aken
et al., 2013). Interestingly, under no stress conditions, OM66
but not AOX1a was induced in WRKY63 OE line, highlighting
differences in the pathways involved in regulation of these
mitochondrial stress signaling genes (Van Aken et al., 2013).
ANAC017 is an ER-tethered transcription factor and among the
best characterized positive regulators of mitochondrial
retrograde signaling (Ng et al., 2013). Once released from the
ER, ANAC017 modulates the transcription of hundreds of
nuclear and mitochondrial encoded genes, involved in energy
metabolism, redox balance, mitochondrial fission, and hormone
signaling, with both AOX1a and OM66 among its target genes
(Ng et al., 2013; Van Aken et al., 2016a). ANAC017 creates a
positive feedback loop by inducing the expression of another ER
bound TF, ANAC013, which activates its own expression, as well
as promoting expression of the same target genes as ANAC017
(Van Aken and Pogson, 2017). The anac017 knockout plants
show a complete loss of OM66 and AOX1a induction by
mitochondrial perturbation, while the rapid touch induction of
OM66 remains unchanged in anac017 background, and instead
is regulated by a complex signaling network involving WRKY40
and WRKY15, which themselves are also induced by touch,
suggesting a negative feedback loop (Van Aken et al., 2016a; Xu
et al., 2019). Moreover, the presence of OM66 is required for the
touch induction of WRKY40 (Xu et al., 2019). While the PCD
rates induced by environmental factors have not been
Frontiers in Plant Science | www.frontiersin.org 7
investigated in ANAC017 mutant/transgenic lines, the
overexpression of ANAC017 causes reduced cell viability and
expansion, as well as early senescence, likely due to disturbed
mitochondrial signaling (Meng et al., 2019). Moreover, the
anac017 knockout mutants are more sensitive to drought stress
(Ng et al., 2013) and submergence (Meng et al., 2020) and show
increased accumulation of ROS under stress conditions (Meng
et al., 2020). Additionally, the double mutants with loss of
function in both ANAC017 and mitochondrial RNA
polymerase (resulting in reduced activity of ETC complexes I
and IV) display distinctive PCD-associated lesions (Van Aken
et al., 2016b).

To conclude, mitochondria integrate stress signals and
environmental stimuli resulting in perturbation of mitochondrial
function (Rhoads, 2011; Schwarzlander and Finkemeier, 2013). The
mitochondrial stress responsive proteins, such as AOX1a and
OM66, can modulate cell fate decisions, and are regulated by
complex, partially overlapping retrograde signaling networks
involving numerous TFs, including WRKY15, WRKY40, MYB29
and ABI4, WRKY63, ANAC013, ANAC017. Detailed PCD
phenotyping, in both abiotic and biotic context, is required for
plants with reduced/enhanced expression of these TFs in order to
further elucidate their role in modulation of cell death pathways,
ideally in combination withmonitoring of mitochondrial retrograde
signaling. Methods such as root hair assay (Kacprzyk et al., 2014;
Kacprzyk et al., 2016) or measurements of aerenchyma formation
may provide useful tools to easily obtain quantitative information
on the rates of PCD induced by numerous environmental stimuli in
such mutants/transgenes. Finally, it remains to be established if the
touch signaling, involving rapid upregulation of cell death
promoting OM66, and activation regulatory network that
mediates the responses to abiotic and biotic stresses, has an effect
on plant’s susceptibility to subsequent PCD triggers by
environmental stimuli.
CONCLUSION AND PERSPECTIVES

Our understanding of PCD regulation in response to
environmental stimuli is expanding. Increasing numbers of
TFs are implicated in the transcriptional control of stress-
induced cell fate decisions in plants. Details of the signaling
pathways associated with the individual TFs are also emerging
(Table S1), however, an integrative (meta)-analysis of gene
regulatory network activated during PCD induced by abiotic
and biotic stresses is required. Approaches allowing quantitative
assessment of rates and timing of PCD, occurring in response to
abiotic and biotics stresses will support further elucidation of TF
mediated control of cell death processes in plants. The complex
regulatory networks activated in response to environmental
stresses need to be studied in the PCD context, including
delineation of the cooperative action between individual TFs
and detailed characterization of their targetomes. Furthermore,
exploring the interplay between microRNAs and TFs implicated
in stress induced PCD will reveal another layer of gene regulatory
network(s) involved. Such research will be expedited by
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technological advances, like ultra-affordable transcriptomics
(Alpern et al., 2019) and resources such as AtTORF-Ex seed
collections (Arabidopsis thaliana TF ORF over-Expression)
(Weiste et al., 2007). Cautious, fine-tuned control of PCD
activation is required in plants to successfully cope with the
environmental challenges they cannot escape. In particular,
recent advances in the understanding of organellar retrograde
signaling highlight the ability of TFs to act as molecular switches
between pro-death and pro-survival responses. Further research
into these PCD regulatory nodes is thus crucially important for
future crop improvement strategies.
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