
Frontiers in Plant Science | www.frontiersin

Edited by:
Azeddine Si Ammour,

Fondazione Edmund Mach, Italy

Reviewed by:
Matthew R. Willmann,

Cornell University, United States
Olivier Christiaens,

Ghent University, Belgium
Athanasios Dalakouras,

University of Thessaly, Greece

*Correspondence:
Petr Svoboda

svobodap@img.cas.cz

Specialty section:
This article was submitted to
Plant Pathogen Interactions,

a section of the journal
Frontiers in Plant Science

Received: 02 September 2019
Accepted: 28 July 2020

Published: 13 August 2020

Citation:
Svoboda P (2020) Key Mechanistic

Principles and Considerations
Concerning RNA Interference.

Front. Plant Sci. 11:1237.
doi: 10.3389/fpls.2020.01237

REVIEW
published: 13 August 2020

doi: 10.3389/fpls.2020.01237
Key Mechanistic Principles and
Considerations Concerning RNA
Interference
Petr Svoboda*

Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia

Canonical RNAi, one of the so-called RNA-silencing mechanisms, is defined as sequence-
specific RNA degradation induced by long double-stranded RNA (dsRNA). RNAi occurs in
four basic steps: (i) processing of long dsRNA by RNase III Dicer into small interfering RNA
(siRNA) duplexes, (ii) loading of one of the siRNA strands on an Argonaute protein
possessing endonucleolytic activity, (iii) target recognition through siRNA basepairing, and
(iv) cleavage of the target by the Argonaute’s endonucleolytic activity. This basic pathway
diversified and blended with other RNA silencing pathways employing small RNAs. In
some organisms, RNAi is extended by an amplification loop employing an RNA-
dependent RNA polymerase, which generates secondary siRNAs from targets of
primary siRNAs. Given the high specificity of RNAi and its presence in invertebrates, it
offers an opportunity for highly selective pest control. The aim of this text is to provide an
introductory overview of key mechanistic aspects of RNA interference for understanding
its potential and constraints for its use in pest control.

Keywords: RNAi, dicer, argonaute, miRNA, dsRNA, off-targeting
INTRODUCTION

RNA interference (RNAi) is one of the pathways, collectively named RNA silencing pathways, that
employ small RNAs as guides for sequence-specific silencing [reviewed in (Ketting, 2011)]. RNAi
was discovered in C. elegans and defined as sequence-specific mRNA degradation induced by long
double-stranded RNA (dsRNA) (Fire et al., 1998). Although some authors use the term RNAi as a
synonym for RNA silencing [e.g., (Ketting, 2011)], this review will adhere to the original definition
as formulated by Fire et al.

The primary aim of this contribution is to provide an overview of RNA interference mechanism
with focus on selected aspects concerning RNAi targeting and off-targeting in animals as these
would be most relevant features for discussing the use of RNAi for pest control. Therefore, I will
.org August 2020 | Volume 11 | Article 12371
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Svoboda Introduction to RNAi
purposefully not go into the details. Interested readers should
check out referenced reviews or original articles. For a thorough
overview of RNAi, readers are welcome to refer to a
comprehensive compilation of information on RNAi and
related pathways in different animal taxons and plants, which
we assembled with colleagues for the European Food and Safety
Authority (Paces et al., 2017).
PRINCIPLES OF RNA SILENCING AND
COMMON DENOMINATORS

Some kind of RNA silencing pathway (Figure 1A) exists in
almost every eukaryotic organism with some notable exceptions
among fungi and protists (Nakayashiki et al., 2006; Matveyev
et al., 2017). RNA silencing pathways utilize 20-30 nucleotide
long RNAs loaded on Argonaute proteins, which guide
sequence-specific repression through basepairing with target
RNAs. RNA silencing pathways differ in the origin and
biogenesis of small RNAs, mechanisms leading to target
repression, and biological roles [reviewed in (Ketting, 2011)].

RNA substrates giving rise to small RNA guides in RNA
silencing pathways vary in structure. They include double-
stranded RNA (dsRNA) with blunt ends, small and long RNA
hairpins with perfect and less-than-perfect complementarity,
sense and antisense RNA (basepaired or not), or single-
stranded “aberrant” RNA that would be converted to dsRNA
by an RNA-dependent RNA polymerases (RdRP) or converted
directly to small RNAs. Substrates can be converted to a small
RNA either by Dicer, an RNase III cleaving dsRNA and/or
canonical microRNA (miRNA) precursors, or by some Dicer-
independent mechanism [reviewed in (Kim et al., 2009)].

Target repression can be post-transcriptional or transcriptional.
Post-transcriptional RNA silencing could have a form of
endonucleolytic cleavage of cognate RNA (traditionally associated
with RNAi), or translational repression coupled with mRNA
destabilization (historically associated with animal miRNAs).
Transcriptional RNA silencing is common in plants but rare
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among animals [reviewed in (Wassenegger, 2005; Malik and
Svoboda, 2012)]. It may involve de novo DNA methylation or
transcriptionally repressive histone modifications.

Common biological roles of RNA silencing pathways include
regulation of endogenous gene expression, antiviral immunity,
and genome protection against transposable elements
[summarized in (Ketting, 2011)]. During evolution, RNA
silencing could evolve into a complex system of interconnected
pathways [exemplified by plants, reviewed for example in
(Borges and Martienssen, 2015)] or into a relatively simple set
up (mammalian soma). The following text will focus on RNAi
but includes also the miRNA pathway because of its close
mechanistic relationship to RNAi.
RNAi PATHWAY

The canonical RNAi pathway (Figure 1B) is initiated by cleavage
of long dsRNA into small interfering RNAs (siRNAs). One
siRNA strand then becomes loaded onto an Argonaute protein
possessing endonucleolytic activity (e.g., AGO2 in vertebrates
and arthropods). A complementary mRNA is cleaved by the
Argonaute in the middle of the siRNA:mRNA duplex. In some
taxons (e.g., plants or C. elegans), RNAi pathways employ the
above-mentioned RdRPs, which can provide an amplification
loop synthesizing small RNAs or dsRNA on targeted RNA
templates [reviewed in (Maida and Masutomi, 2011)]. C.
elegans employs so-called “transitive RNAi” where RdRP
produces secondary siRNAs extending upstream of the
targeted sequence (Sijen et al., 2001). Plants also exhibit
transitive silencing (Vaistij et al., 2002); the transitivity may
even spread downstream of the targeted sequence (Moissiard
et al., 2007).

Canonical RNAi is traditionally viewed as a defense
pathway providing antiviral innate immunity in invertebrates
and plants against viruses that produce dsRNA (Ding and
Voinnet, 2007). However, RNAi could evolve additional roles,
such as maintenance of genome integrity through suppression of
A B C

FIGURE 1 | RNA silencing pathways. (A) General concept of RNA silencing. (B) General RNAi pathway overview, and (C) miRNA pathway (animal set up).
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Svoboda Introduction to RNAi
transposable elements or control of gene expression. In plants,
for example, the basic RNAi mechanism has been integrated into
a complex pathway system of post-transcriptional and
transcriptional silencing, which employs multiple Dicer,
Argonaute and RdRP proteins and functions in antiviral
defense, protection of genome integrity, and regulation of gene
expression [reviewed for example in (Bologna and Voinnet,
2014; Borges and Martienssen, 2015)]. In C. elegans. RNAi
exists as a complex of antiviral RNAi, endo-RNAi controlling
endogenous genes, and exo-RNAi responding to dsRNA in the
environment [reviewed in (Billi et al., 2014)]. RNAi is functional
in insects (Dowling et al., 2016) and other arthropod subphyla,
including Chelicerata [ticks and mites (Kurscheid et al., 2009;
Schnettler et al., 2014; Hoy et al., 2016)] and Crustacea [shrimps
(Chen et al., 2011; Huang and Zhang, 2013; Yang et al., 2014)];
genomic data suggest that Myriapoda arthropods also have
functional RNAi (Palmer and Jiggins, 2015). In vertebrates, the
RNAi pathway has become vestigial; protein factors for siRNA
biogenesis and target repression serve the miRNA pathway
[reviewed in (Svoboda, 2014)]. This is presumably a
consequence of the innate immunity system evolving an array
of protein sensors detecting pathogen markers such as dsRNA,
which trigger the so-called interferon response [reviewed in
(Gantier and Williams, 2007)]. An important limiting factor
for functional RNAi in somatic mammalian cells seems to be
inefficient siRNA production due to the low processivity of
mammalian Dicer, which is adapted for non-processive
miRNA biogenesis (Demeter et al., 2019).
miRNA PATHWAY

While the miRNA pathway (Figure 1C) can share some
components with the RNAi pathway, it differs in several
fundamental aspects. miRNAs are genome-encoded repressors
of gene expression with defined sequences (i.e., can be precisely
annotated). While RNAi employs a population of siRNAs
stochastically generated from dsRNA to destroy a pool of
RNAs with the complementary sequence, one specific miRNA
sequence can guide repression of many different mRNAs
through imperfect miRNA:mRNA basepairing.

Animal miRNA biogenesis [reviewed in (Kim et al., 2009)]
starts with a primary miRNA (pri-miRNA), a long Pol II
transcript carrying one or more local hairpins, which can be
cut out from the pri-miRNA by RNase III activity of the nuclear
Microprocessor complex. The resulting miRNA precursor (pre-
miRNA) is transported to the cytoplasm, where it is cleaved by
Dicer. One strand of the resulting duplex is loaded onto an AGO
protein similarly to the RNAi pathway. Vertebrates have usually
four AGO paralogs; teleost fish acquired an additional AGO3
paralogue through a fish-specific genome duplication event
(Mcfarlane et al., 2011). All four mammalian AGO proteins
accommodate miRNAs equally well (Meister et al., 2004),
including AGO2, which is the only one with “slicing”
endonucleolytic activity. All four mouse AGO proteins seem to
be functionally redundant in the miRNA pathway, as shown by
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rescue experiments in embryonic stem cells lacking all four Ago
genes (Su et al., 2009).

Typical miRNA:mRNA interaction in animals occurs with
partial complementarity (described in detail further below) and
results in translational repression, which is associated with
substantial mRNA degradation. Plant miRNA biogenesis
[reviewed in (Jones-Rhoades et al., 2006)] employs one of the
Dicer paralogs (DCL1), which processes both pri-miRNA and
pre miRNA. Plant miRNAs often have higher sequence
complementarity resulting in RNAi-like cleavage of their
targets but also frequently repress translation (Brodersen et al.,
2008; Lanet et al., 2009). In animals, miRNAs can also mediate
RNAi-like cleavage, as demonstrated by reporters designed to
have full complementarity to a specific miRNA (Schmitter et al.,
2006), but naturally occurring RNAi-like endonucleolytic
cleavage of targets is rare (Yekta et al., 2004). The experimental
approach to knocking down gene expression in mammalian cells
by delivering a siRNA (either as an in vitro synthesized RNA or
expressed from a plasmid vector) is commonly called RNAi.
Mechanistically, however, the approach hijacks the miRNA
pathway and its aforementioned ability to produce RNAi-
like cleavage.
CO-EXISTENCE OF RNAi AND miRNA
PATHWAYS

While there is an apparent mechanistic overlap, there is
functional divergence of RNAi and miRNA pathways, which
likely influenced the co-existence of the two pathways in different
model systems during evolution (Figure 2). One is represented
by Drosophila, where both pathways genetically diverged such
that each pathway has a dedicated Dicer and AGO protein, while
the crosstalk between the two pathways is minimal. Dicer in the
RNAi pathway is phylogenetically more derived, which would be
consistent with its engagement in dsRNA-based antiviral defense
and host-pathogen evolutionary arms race (Murphy et al.,
2008; Obbard et al., 2009). C. elegans employs a single Dicer in
production of miRNAs and siRNAs, but has a complex system of
Argonaute proteins and RdRP amplification, which contributes
to the separation of the pathways. Mammals have a single Dicer
mainly serving for miRNA biogenesis; canonical RNAi was
functionally replaced by the interferon response, which allows
for sensing more structural features of replicating RNA viruses.
Functional RNAi in mammalian cells requires high Dicer
activity, enough dsRNA substrate, and suppression of the
interferon response (Kennedy et al., 2015; Maillard et al., 2016;
Kennedy et al., 2017; Van Der Veen et al., 2018; Demeter et al.,
2019). However, these three conditions are rarely met—a
unique example occurs in the mouse oocyte [reviewed in
(Svoboda, 2014)].

Interestingly, in one of the plant RNA silencing mechanisms,
RNAi essentially serves as an amplifier of miRNA silencing
where miRNA-mediated cleavage of mRNA targets is followed
by RdRP-mediated production of long dsRNA, which is
processed by Dicer into so-called phased siRNAs (phasiRNA).
August 2020 | Volume 11 | Article 1237
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Svoboda Introduction to RNAi
PhasiRNAs themselves are a complex small RNA category as
they can be generated by different Dicers and mediate target
cleavage as well as transcriptional silencing. (reviewed in
(Komiya, 2017; Deng, 2018).
IMPORTANT MECHANISTIC DETAILS OF
RNAi

Substrate Processing by Dicer and Types
of Small RNA Populations
RNase III Dicer (reviewed in detail in [Jaskiewicz and Filipowicz,
2008; Svobodova et al., 2016)] is the enzyme producing small
RNAs in canonical RNAi and miRNA pathways. Dicer is a large
(~200 kDa) multidomain protein (Figure 3A). Structural and
biochemical analyses (mainly in mammals but also in the
protozoan Giardia intestinalis) uncovered how canonical Dicer
generates small RNAs of defined length from long dsRNA
substrates (Provost et al., 2002; Zhang et al., 2002; Zhang et al.,
2004; Macrae et al., 2006; Macrae et al., 2007). Dicer
preferentially cleaves dsRNA at the termini (Figure 3B). A
dsRNA terminus is bound by the PAZ domain, which has high
affinity to 3’ protruding overhangs, typical termini of canonical
miRNA precursors and of processive cleavage of long dsRNA
(Lingel et al., 2003; Song et al., 2003; Yan et al., 2003; Ma et al.,
2004). A canonical Dicer functions as a molecular ruler defining
the length of a small RNA by the distance between the PAZ
domain and RNase III cleavage sites (Macrae et al., 2006). Dicer
has two RNase III domains, which form a single processing
center containing two catalytic “half sites” (Zhang et al., 2004;
Macrae et al., 2006). Each of them cleaves one strand of the
dsRNA, producing a small RNA duplex with two nucleotide 3’
overhangs and 5’ monophosphate and 3’ hydroxyl groups at the
RNA termini (Zhang et al., 2004). The length of the product
depends on the specific Dicer. A typical length of an animal
Dicer product is 22 nucleotides although 20-22 nt siRNAs was
reported for different insects (Santos et al., 2019). Giardia
produces 25 nt small RNAs, plants, which utilize several Dicer
Frontiers in Plant Science | www.frontiersin.org 4
paralogs (Figure 3A), produce shorter (21/22 nt) and longer
(24 nt) small RNAs (Jaskiewicz and Filipowicz, 2008).

Dicer can process structurally different dsRNA substrates—
e.g., small hairpins of pre-miRNAs, dsRNA with blunt ends, or
dsRNA with long single-strand overhangs or loops (Figure 3C).
As mentioned above, Dicer structure implies that Dicer
preferentially cleaves dsRNA at the termini. However, as
shown for human Dicer, it can also cleave the dsRNA stem
internally, albeit with low efficiency (Provost et al., 2002; Zhang
et al., 2002). The type of dsRNA processing determines the
composition of a small RNA population produced from each
type of the template (Figure 3C). miRNAs are precisely defined
because precursors have a uniform structure and there is just a
single Dicer cleavage event. Long blunt-end dsRNA, which is
cleaved processively from its ends, generates phased siRNAs
produced by consecutive cleavage. In this case, there may be
some variability/shifts as the termini are not as precisely defined
as 2nt overhangs of miRNA precursors. Dicers with low
processivity, exemplified by mammalian Dicers, generate
siRNAs mainly from dsRNA termini—RNAi efficiency in this
case thus depends on the efficiency of the first siRNAs at the
termini (Demeter et al., 2019). When Dicer cannot initiate
cleavage from a terminus because it is, for example obstructed
by longer overhangs, dsRNA processing is initiated by an
internal cleavage; the resulting siRNA population appear
random and there would be no evidence of phasing [e.g., (Tam
et al., 2008; Watanabe et al., 2008)].

Loading—Small RNA Sorting Onto
Argonaute Proteins
Loading of a small RNA onto an Argonaute protein is the key
step in formation of the RNAi effector complex also known as
RNA-induced silencing complex (RISC). While Argonaute
proteins interact with many other proteins [reviewed in
(Meister, 2013)], the minimal RNAi effector complex, the holo-
RISC, is a specific Argonaute loaded with a siRNA. Loading is an
important step for selecting the targeting strand and sorting
small RNAs into distinct RNA silencing pathways. As shown for
FIGURE 2 | Different scenarios of co-existence of RNAi and microRNA (miRNA) in different species.
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Svoboda Introduction to RNAi
animal Argonautes, loading a specific strand of the small RNA
duplex produced by Dicer, exhibits a thermodynamic bias where
the strand whose 5′-end is less thermodynamically stable is
preferentially loaded onto AGO as the guide strand (Khvorova
et al., 2003; Schwarz et al., 2003). This feature is important for
designing effective siRNAs for experimental repression.

Loading is assisted by a family of proteins with tandemly
organized dsRNA binding domains (dsRBDs), which interact
with Dicer and AGO proteins to form the RISC loading complex
(RLC). Sorting through RLC varies among animal taxons. For
example, C. elegans employs a single Dicer protein, but evolved
an extreme diversity of Argonaute proteins among common
model systems [25-27 Argonaute family members (Buck and
Blaxter, 2013)]. Together with RdRPs, RNA silencing in C.
elegans is a complex system of biogenesis and sorting of
primary and secondary cytoplasmic and nuclear small RNAs in
soma and germline (Yigit et al., 2006; Buck and Blaxter, 2013).
The exo-RNAi pathway in C. elegans involves loading of AGO
protein RDE-1 with primary siRNAs with the assistance of
dsRBP RDE-4 (Tabara et al., 1999; Parrish and Fire, 2001;
Tabara et al., 2002; Lu et al., 2005; Wilkins et al., 2005). This is
followed by biogenesis of secondary siRNAs (22G RNAs) loaded
on AGO protein CSR-1 (Aoki et al., 2007). C. elegans miRNAs
are exclusively loaded on ALG-1/2 AGO proteins (Correa et al.,
2010). Drosophila employs dedicated Dicer and Argonaute
proteins for RNAi (DCR-2 and AGO2) and miRNA pathways
(DCR-1 and AGO1). Loading of each AGO is assisted by two
Frontiers in Plant Science | www.frontiersin.org 5
dsRBPs: R2D2 [its orthologs exist in winged insects (Dowling
et al., 2016)] is coupled with the RNAi pathways and Loquacious
(LOQS) primarily with the miRNA pathway; these two dsRBPs
thus bridge processing of specific substrates by both Dicers and
their loading onto specific AGO proteins, although the
separation is not complete (Forstemann et al., 2007; Tomari
et al., 2007; Okamura et al., 2008; Czech et al., 2009; Okamura
et al., 2009; Ghildiyal et al., 2010). Mammals, in contrast, have
minimal if any sorting of small RNAs and load them onto all four
AGO proteins equally well (Meister et al., 2004; Burroughs et al.,
2011; Dueck et al., 2012). This is presumably because the
mammalian RNAi pathway is vestigial and the silencing
machinery primarily serves the miRNA pathway.

Targeting—The Seed Sequence
Recognition of targets is coupled with the loaded Argonaute
structure (Figures 4A, B). The human AGO2 has a bilobed
composition with a central cleft for binding guide and target
RNAs (Elkayam et al., 2012; Schirle and Macrae, 2012; Schirle
et al., 2014; Schirle et al., 2015). AGO2 binds both ends of a
siRNA. The 5’ end is buried in a pocket between MID and PIWI
domains, while the 3’ end is anchored in the PAZ domain (Ma
et al., 2004). The PIWI domain has an RNase H-like fold and
provides the endonucleolytic “slicer” activity (Song et al., 2004;
Yuan et al., 2005).

A small RNA loaded onto an animal AGO protein has five
distinct sequence modules: the anchor, seed, central, 3’
A B

C

FIGURE 3 | Dicer and production of small RNAs. (A) Domain composition of Dicer proteins in a common multicellular model system. (B) Schematic organization of
Dicer and its interaction with dsRNA [based on the mammalian Dicer structure (Lau et al., 2012)]. (C) Model examples of different types of Dicer substrates and
products. Production of phased small interfering RNAs (siRNAs) requires a double-stranded (dsRNA) terminus where Dicer will initiate processive cleavage. It could
be produced by an RdRP, typically during viral replication. In specific cases, such as plant phased siRNAs (phasiRNA), also by a cellular RdRp [reviewed in (Komiya,
2017)]. However, not all RdRP-produced dsRNAs result in the formation of phased RNAs.
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Svoboda Introduction to RNAi
supplementary, and tail (Figure 4C) (Wee et al., 2012). The 5’
end nucleotides 2 to 6 are positioned in an A-form (Figure 4B -
inset) conformation facilitating basepairing with the target
(Schirle and Macrae, 2012). Structural analysis of the human
AGO2 suggested a stepwise mechanism for interaction with
cognate RNAs, where AGO2 exposes nucleotides 2 to 5 for
initial target pairing, which then promotes conformational
changes that expose nucleotides 2 to 8 and 13 to 16 for further
target recognition (Schirle et al., 2014). Structural data were
corroborated by kinetic data and single molecule analyses, which
support the idea that different regions of the siRNA play distinct
roles in the cycle of target recognition, cleavage, and product
release (Haley and Zamore, 2004; Li et al., 2012; Wee et al., 2012;
Zander et al., 2014; Salomon et al., 2015). The seed sequence
disproportionately contributes to target RNA-binding energy,
whereas base pairs formed by the central and 3’ regions of the
siRNA provide a helical geometry required for catalysis (Haley
and Zamore, 2004). Because of the A conformation of the seed, a
loaded AGO2 exhibits kinetic properties more typical of RNA-
binding proteins and does not follow the rules by which sole
oligonucleotides find, bind, and dissociate from complementary
nucleic acid sequences (Salomon et al., 2015). Importantly, the
concept of the seed sequence is fundamental for understanding
one of the main causes of off-targeting.

Targeting—Complementarity and
Cleavage
For the Argonaute function in RNAi, a “two-state” model was
proposed (Tomari and Zamore, 2005), where the seed guides
binding to the target, while pairing of the 3’ end requires
dislodging of the 3’ end from the PAZ domain in order to cleave
the cognate RNA. Efficient cleavage requires full complementarity in
the middle of the basepaired sequence, in order to be cleaved by the
PIWI domain (Figure 4B). Mismatches in the central part of the
small RNA interfere with the cleavage and explain the high
specificity of RNAi (i.e., endonucleolytic cleavage by the AGO2
slicer activity) (Figure 4D).

Single-molecule experiments with the loaded AGO2 showed that
target binding starts at the seed region of the small RNA
(Chandradoss et al., 2015; Jo et al., 2015a; Jo et al., 2015b). AGO2
Frontiers in Plant Science | www.frontiersin.org 6
initially scans for target sites with complementarity to nucleotides
2–4 of the miRNA. This initial interaction propagates into stable
association when the target complementarity extends to nucleotides
2–8. The recognition process is coupled to lateral diffusion of AGO2
along the target RNA, which promotes the target search by
enhancing the retention of AGO2 on the RNA (Chandradoss
et al., 2015). RISC binding with the seed match can thus be
established, which is consistent with the seed-match rule of
miRNA target selection (Chandradoss et al., 2015; Jo et al., 2015a;
Jo et al., 2015b). An important conclusion from the kinetic analysis
by Wee et al. is that low-abundant miRNAs are unlikely to
contribute biologically meaningful regulations, because they are
present at concentrations below their KD for seed-matching
targets, which are in a picomolar range (3.7 pM for mouse AGO2
and 20 pM for Drosophila AGO2) (Wee et al., 2012). Importantly,
accessibility of the target for seed sequence binding is another
important factor for efficient targeting. It was shown that the
accessibility of the target site correlates directly with the efficiency
of cleavage, recognition of inaccessible sequences is impaired
because RISC does not unfold structured RNA (Ameres et al., 2007).

siRNA-mediated target recognition is highly specific.
However, discrimination of RNAi between two sequences
differing by a single nucleotide depends on the position and
type of the mismatch (Du et al., 2005; Holen et al., 2005; Haley
et al., 2010). Analysis of minimal siRNA complementarity in
Drosophila showed that perfect complementarity at positions 2–
17 is sufficient for RNAi (Haley et al., 2010). G:U wobble
basepairs are surprisingly well tolerated; target sites containing
such mismatches were silenced almost as efficiently as with full
complementarity (Du et al., 2005). Tolerated can also be A:C
mismatches (Du et al., 2005).

Of note is that consensus basepairing rules for functional
plant miRNA-target interactions differ from those for animals:
there is little tolerance of mismatches at nucleotides 2–13, with
especially little tolerance of mismatches at nucleotides 9–11, and
more tolerance of mismatches at nucleotides 1 and 14–21 (Wang
et al., 2015). Furthermore, the perfect complementarity is not as
prevalent as usually thought among plant miRNAs, as most of
the identified miRNA targets in plant cells have some imperfect
basepairing [summarized in (Jones-Rhoades et al., 2006)].
A

B

C

D

FIGURE 4 | Argonaute protein and target repression. (A) Domain composition of human AGO2. (B) Schematic organization of domains in AGO2. Magnified is the 5’
end of a small RNA and its A-like form. (C) Division of a small RNA into five different modules as described by Wee at al. (Wee et al., 2012). (D) Schematic depiction
of miRNA-like and RNAi-like silencing effects. An RNAi-like effect requires extensive sequence complementarity and AGO2.
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RdRP Enhancer of RNAi—Transitive RNAi
RdRPs can contribute to RNAi by converting single-stranded
RNA to dsRNA or by synthesizing short RNAs that could be
loaded onto AGO proteins. Importantly, all RdRPs identified so
far seem to come from one ancestral RdRP, whose orthologs
were found in plants, fungi and some animals (Cerutti and
Casas-Mollano, 2006; Murphy et al., 2008). Homologs of
RdRPs exist in numerous metazoan taxons, including
Nematoda (e.g., Caenorhabditis elegans), Cnidaria (hydra),
Chelicerata (tick), Hemichordata (acorn worm), Urochordata
(sea squirt), but appear absent in the genomes of others,
including Platyhelminthes (planaria), Hexapoda (Drosophila),
or Craniata (vertebrates). Consequently, transitive RNAi
generating secondary sequences upstream of the region
targeted by siRNAs was not observed in Drosophila or mouse
(Schwarz et al., 2002; Roignant et al., 2003; Stein et al., 2003).
Therefore, the absence of an RdRP gene in the genome can help
as an indicator of the absence of the amplification loop.

Environmental and Systemic RNAi
It was shown in pioneering experiments in C. elegans that RNAi
can be induced by simply soaking the worm into dsRNA solution
(Tabara et al., 1998) or feed it bacteria expressing dsRNA
(Timmons and Fire, 1998). These spectacular effects combined
two distinct phenomena: (i) environmental RNAi where cells can
uptake long dsRNA or small RNAs from the environment, and
(ii) systemic RNAi where silencing can spread across cellular
boundaries. While both phenomena can co-exist in one species,
they might be distinct because the RNAi mediator spreading
across cellular boundaries can be a different RNA molecule that
the original inducing RNA molecule taken up from the
environment. As the biology of systemic and environmental
RNAi is complex and beyond the scope of this contribution,
readers can look for more details into reviews on this topic, such
as (Whangbo and Hunter, 2008; Huvenne and Smagghe, 2010;
Ivashuta et al., 2015).

dsRNA can be taken up via specific transmembrane channel
mediated uptake (e.g., C. elegans or flower beetle) or through
alternative endocytosis [e.g., in Drosophila, reviewed in more
detail in (Whangbo and Hunter, 2008)]. Non-cell autonomous
RNAi has been reported from parasitic nematodes (Geldhof
et al., 2007), hydra (Chera et al., 2006), planaria (Newmark
et al., 2003; Orii et al., 2003), some insects (Tomoyasu et al., 2008;
Xu and Han, 2008), and plants (Himber et al., 2003). Some of the
molecular mechanisms underlying systemic and environmental
RNAi have been identified, such as dsRNA-transporting
channels encoded by sid-1 and sid-2 genes (systemic RNAi-
deficient), which function in systemic and environmental RNAi
in C. elegans (Winston et al., 2002). Sid-1 encodes a conserved
transmembrane protein that forms a dsRNA channel and has
homologs (but not necessarily orthologs) in a wide range of
animals, including mammals (Feinberg and Hunter, 2003;
Tomoyasu et al., 2008; Shih et al., 2009; Shih and Hunter,
2011; Cappelle et al., 2016). In contrast, Sid-2, which encodes a
transmembrane protein, has only been found in several
Caenorhabditis species (Winston et al., 2007; Dalzell et al., 2011).
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In organisms displaying environmental and systemic RNAi,
delivery of dsRNA could be used to intervene or harm. This
phenomenon underlies strategies for crop protection [reviewed
in more detail, for example, in (Cai et al., 2018)] and further
discussed in the section Horizontal Transfer of Small RNAs and
RNAi Across Kingdoms.

Notably, dsRNA itself has a potential to be used directly
without producing a transgenic plant – as shown, for example, by
topical application of dsRNA, which protected Nicotiana
benthamiana and cowpea against infection with the potyvirus
bean common mosaic virus (Worrall et al., 2019) and other cases
[e.g., (Konakalla et al., 2019; Namgial et al., 2019)]. On a large
scale, dsRNA feeding was used, for example, to protect bees
against acute paralysis virus (Hunter et al., 2010), and spraying
dsRNA solution was used to protect plants against fungus
Fusarium graminearum (Koch et al., 2016).
OFF-TARGETING CONSIDERATIONS

One of the frequently raised questions is how specific and selective
gene targeting by RNAi is. There is not a simple answer to that
question, because there are several different strategies to induce
RNAi and each of them has different potential for inducing off-
targeting, i.e., downregulating an unintended target. Off-targeting
was typically discussed as non-specific effects within one
experimental model system [e.g., (Echeverri et al., 2006; Svoboda,
2007)]. In case of RNAi-mediated pest control, off-targeting would
mainly consider effects on gene expression in other species than the
targeted pest. There are two possible general effects on non-targeted
species: (i) RNAi (typically siRNA-based) would induce miRNA-
like repression of genes whose transcripts have complementarity to
the seed sequence (wrong genes silenced in wrong species), (ii)
RNAi would target gene(s) with high sequence similarity to dsRNA/
siRNA (right gene (or its homologs) silenced in wrong species).

In addition, off-targeting in mammalian cells was also linked
with a sequence-independent interferon response induced by
long dsRNA. Although it is not clear whether environmental
exposure to doses of dsRNA used for pest control would induce
the interferon response in humans or other mammals, it is a
testable and resolvable issue.

miRNA-Like Off-Targeting Effects
in Other Species
miRNA-like off-target repression is a common off-targeting issue,
particularly troubling RNAi experiments in mammalian cells,
where it was shown that the off-target gene repression depends
on the siRNA concentration and seed sequence (Jackson et al.,
2003; Jackson et al., 2006). Several strategies have been proposed
for achieving more selective RNAi in mammalian cells,
including good experimental design (e.g., using the lowest
effective siRNA concentration and employing specificity
controls) or using RNAi-inducing agents with increased
specificity—these include (i) chemical modifications eliminating
activity of the “passenger”(non-targeting) siRNA strand or
affecting seed pairing (Jackson et al., 2006; Chen et al., 2008;
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Fluiter et al., 2009; Snead et al., 2013; Seok et al., 2016), and (ii)
pools of more different siRNAs with the molarity of each seed
sequence proportionally diluted. Accordingly, when considering
this “miRNA-like” type of off-targeting, the two key factors are the
mechanism of RNAi induction and the concentration of the RNAi-
inducing molecule (leaving aside additional issues like small RNA
sorting into different RNA silencing pathways and a varying
crosstalk between miRNA and RNAi in different organisms). In
general, a long dsRNA, which is converted into a siRNA pool or a
pool of chosen siRNAs, principally represents a low if any risk of
miRNA-like off-targeting in contrast to a single targeting siRNA
(Stein et al., 2005; Hannus et al., 2014). However, exceptions may
emerge: an RNAi screen with long dsRNA in Drosophila showed
that some long dsRNA sequences yielded off-targeting, which
stemmed from short tandem repeat sequences in the dsRNA
(Ma et al., 2006).

Undesirable RNAi Effects in Non-Target
Species
This issue is represented by targeting a homologous gene because of
existing sequence similarity. This off-target effect is most likely to
appear in closely related species in the environment treated with
RNAi-based pest control. However, it is difficult to predict at which
point the sequence divergence will render RNAi non-effective. As
discussed above, a single nucleotide mismatch may be sufficient to
prevent targeting, but this depends on the position and type of the
mismatch (Du et al., 2005). Given the inhibitory effects of
mismatches in the seed sequence and in the central part, 90%
sequence identity with evenly distributed mismatches of an off-
target homologous gene could be sufficiently diverged to lack perfect
complementarity regions >17 nt. The effects on the off-target
homolog would also depend on the concentration of RNAi-
inducing agent; in one case in C. elegans, an 80% sequence
identity of two genes yielded cross-interference, which was
remedied by reducing concentration of microinjected dsRNA
from 1 mg/ml to 100 mg/ml (Tabara et al., 1998). In a study of
targeting a V-ATPase gene in the western corn rootworm gene with
dsRNA, a silencing of its ortholog in the Colorado potato beetle
(80% sequence identity) was observed but LC50 values showed a
ten-fold difference in activity (Baum et al., 2007). Analysis of ten
insect families in four different orders showed that the dsRNA
targeting the Snf7 gene in western corn rootworm was only active in
a subset of species in the Chrysomelidae family (leaf beetles) whose
Snf7 genes had >90% identity with the dsRNA sequence (Bachman
et al., 2013). While percentage of the sequence identity may be an
arbitrary factor as the distribution of mismatches in the sequence is
also important, these numbers imply that 80%–90% sequence
identity is around threshold for functional RNAi.

An additional important factor is how large the off-target
gene downregulation will manifest as a biologically relevant off-
target phenotype. RNAi-mediated silencing of gene homologs in
other species will likely be less efficient than downregulation of
the desired target, because the same amount of dsRNA will
produce less functional siRNAs in non-targeted species.
Therefore, while off-targeting may be detectable by qPCR, it
could be tolerated without adverse effects.
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HORIZONTAL TRANSFER OF SMALL
RNAS AND RNAi ACROSS KINGDOMS

In 2012, a study suggested that miRNAs from ingested plants
could traverse into the mammalian bloodstream and suppress
genes in the liver (Zhang et al., 2012). The report received a lot of
attention and spurred a major debate because of implications
these data could have. We reviewed this issue in detail in the
aforementioned report (Paces et al., 2017), including three
problematic areas that lacked strong experimental support: (i)
the mechanism of transport from the digestive system through
the bloodstream to the cells, (ii) the effector complex structure,
particularly its loading with single-stranded methylated plant
miRNA, (iii) the targeting stoichiometry consistent with the
above-mentioned picomolar range of miRNA KD. Some of the
follow-up studies supported the existence of functionally relevant
“xenomiRs” in humans and other mammals, while other studies
questioned or rejected the idea (Paces et al., 2017). A recent
survey of 824 datasets from human tissue and body fluids argues
that human xenomiRs are likely artifacts (Kang et al., 2017).
Among the strong arguments against biologically relevant
dietary xenomiRs in humans were: the minimal fraction of
xenomiRs (0.001% of host human miRNA counts), apparent
batch effects of xenomiRs, no significant enrichment in
sequencing data from tissues and body fluids exposed to
dietary intake (e.g., liver), no significant depletion in tissues
and body fluids that are relatively separated from the main
bloodstream (e.g., brain and cerebro-spinal fluid), and,
remarkably, the observation that the majority (81%) of body
fluid xenomiRs would stem from rodents, an unlikely dietary
source but common experimental material. These data argue that
miRNAs from the diet are not uptaken by mammals and
integrated into their miRNA pathways. At the same time,
organisms with environmental and systemic RNAi can be
susceptible to dietary uptake of dsRNA or small RNA. This
was already shown in the pioneering RNAi experiments
mentioned above – soaking in dsRNA or feeding dsRNA-
expressing bacteria could suppress gene expression in C.
elegans (Tabara et al., 1998; Timmons and Fire, 1998).

Consequently, trans-kingdom RNAi potential could be
exploited in plants expressing dsRNA and selectively targeting
RNAi-sensitive pests with an outcome of choice, e.g., repelling
the pest, immobilizing it, sterilizing it (Bhatia et al., 2012), or
killing it (Baum et al., 2007; Mao et al., 2007; Bhatia et al., 2012;
Zhang et al., 2015; Kola et al., 2016). Processing of expressed
dsRNA by plant’s RNA silencing machinery, which could reduce
amount of dsRNA ingested by a pest or cause off-targeting of
plant genes, can be prevented by localizing dsRNA expression
into chloroplasts (Zhang et al., 2015). Given the genome
sequence diversity and relatively high sequence specificity of
RNAi, an RNAi-based pesticide could represent a biodegradable,
highly selective pesticide with an adjustable selectivity for the
pest control [reviewed, for example, in (Kunte et al., 2020)].

Every new technology brings safety concerns. If the small
RNAs can spread, could an RNAi-inducing transgene in a plant
or topical application of dRNA/siRNA also affect a non-targeted
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organisms? What could be the consequences? In principle, the
off-targeting risk is inherent to the RNAi approach, but it can be
monitored and significantly reduced by a proper experimental
design. Furthermore, if RNAi were induced transiently (i.e.,
through dsRNA or siRNA), the transient nature of RNAi
would allow recovery from the off-targeting within days in the
species lacking an RdRP amplification loop producing secondary
siRNAs. It could take longer if the off-targeting triggered
transitive RNAi in the species with an RdRP and/or could
induce transcriptional silencing. Transgenerational silencing
[reviewed in (Rechavi and Lev, 2017)] has variable duration. In
C. elegans, RNAi targeting genes expressed in the soma typically
affects only the F1 progeny, a l though exceptional
transgenerational silencing for up to 13 generations was also
reported (Minkina and Hunter, 2017). Importantly, the
probability of inducing a long transgenerational off-target effect
in an organism other than the targeted one is negligible for
dsRNA sequences with good sequence divergence from closely
related species.
RESISTANCE TO RNAi

There is always a risk of resistance to RNAi. In the case of an
RNAi-based pesticide, one could expect selection for mutations
affecting RNAi efficiency rendering the RNAi-based pesticide
ineffective. This could either involve accumulation of mutations
within the sequence of the pest target gene (rather unlikely for
long dsRNA), mutations within RNAi pathway factors of the pest
(including uptake mechanisms), or evolution of bona fide RNAi
suppressor proteins, which are known defense strategy against
RNAi used by viruses (Roth et al., 2004; Haasnoot et al., 2007;
Nayak et al., 2010).

Animals lacking RNAi may be viable and fertile, as shown in
an rde-1 mutant in C. elegans (Tabara et al., 1999). In fact, wild
type isolates of C. elegans vary in the RNAi response and may
exhibit different degrees of resistance to RNAi (Tijsterman et al.,
2002; Elvin et al., 2011; Felix et al., 2011) despite the fact that
some of the mutations could make them more susceptible to
infection (Felix et al., 2011). A similar scenario could be expected
for pests targeted by RNAi that would acquire some mutations in
the RNAi pathway. Since most mutations would be recessive, the
manifestation of resistance (and strong positive selection) would
require homozygosity. Evolved resistance against dsRNA was
reported in western corn rootworm (Khajuria et al., 2018). It was
a single locus recessive mutation resulting in impaired luminal
uptake of dsRNA (Khajuria et al., 2018). Therefore, one should
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consider the reproduction and life cycle of the targeted pest to
develop an optimal treatment regimen to reduce (or not
facilitate) the probability of occurrence of homozygous RNAi
pathway mutants.
SUMMARY

RNAi offers selective gene targeting in a species-specific manner.
RNAi induced by long dsRNA or unmodified siRNA offers a
species-specific biodegradable pesticide. RNAi can be a
particularly potent tool against pests that display environmental
and systemic RNAi. The risk of potential off-targeting effects can be
minimizedwhen selecting the target and its sequence.Off-targeting
effects can bemonitored in closely related species and targets and, if
identified, they would disappear after termination of the
RNAi treatment.
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