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Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain

Apricot (Prunus armeniaca L.) is a valuable worldwide agronomical crop, with a delicious
fruit highlighted as a functional food with both nutritional and bioactive properties,
remarkably beneficial to human health. Apricot fruit ripening is a coordinated
developmental process which requires change in the expression of hundreds to
thousands of genes to modify many biochemical and physiological processes arising
from quality characteristics in ripe fruit. In addition, enhancing fruit and nutraceutical quality
is one of the central objectives to be improved in the new varieties developed by breeding
programs. In this study we analyzed the contents of main metabolites linked to the
nutraceutical value of apricot fruits, together with the most important pomological
characteristics and biochemical contents of fruit during the ripening process in two
contrasted apricot genotypes. Additionally, the gene expression changes were
analyzed using RNA-Seq and real time qPCR. Results showed that genes with
differential expression in the biosynthetic pathways, such as phenylpropanoids,
flavonoids, starch and sucrose and carotenoid metabolism, could be possible
candidates as molecular markers of fruit quality characteristics for fruit color and soluble
solid content. The gene involves in carotenoid metabolism carotenoid cleavage
dioxygenase 4, and the gene sucrose synthase in starch and sucrose metabolism were
identified as candidate genes in the ripening process for white skin ground color and flesh
color and high soluble sugar content. The application of these candidate genes on
marker-assisted selection in apricot breeding programs may contribute to the early
selection of high-quality fruit genotypes with suitable nutraceutical values.

Keywords: apricot, RNA-Seq, qPCR, fruit quality, ripening, reference genomes, functional analysis,
candidate genes
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INTRODUCTION

Apricot (Prunus armeniaca L.) is an ancient domesticated crop
that has co-evolved with human civilization. This stone fruit
species have been used for its edible fruits, also being highlighted
as a functional food with both nutritional and bioactive
properties, including anti-oxidant and anti-inflammatory
activity (Sochor et al., 2010; Erdogan-Orhan and Kartal, 2011;
Minaiyan et al., 2014). Today, apricots are commercially
produced in 65 countries around the world. During the 2016/
2017 season, the worldwide production of apricots increased
reaching 4.25 million tons (http://www.fao.org/faostat/en/
#home), Spain being the first top fresh apricot exporter
worldwide, exporting 56 thousand tons (http://www.fepex.es/
inicio.aspx). Apricot is a member of the Prunus genus inside the
highly diverse Rosaceae family and seems phylogenetically closer
to P. armeniaca than P. persica (Mowrey and Werner, 1990;
Zhang et al., 2012; Garcıá-Gómez et al., 2018).

Apricot fruit ripening is a coordinated developmental
process which requires change in the expression of hundreds
to thousands of genes to modify many biochemical and
physiological processes. Apricot fruit displays a high variability,
giving rise to a great diversity in fruit size, shape, color, taste,
aroma, firmness, and ripening date; most of these pomological
characteristics are of interest for improving quality traits
in apricot breeding programs. Fruit ripening leads to the
breakdown of complex carbohydrates into sugars, reduces fruit
firmness, color changes, decrease titratable acidity as well as an
increase in flavor and aroma (Infante et al., 2008; Klee and
Giovannoni, 2011). Understanding these mechanisms will enable
implementing agronomical strategies that are more adaptable to
climatic conditions and optimizing the selection of new apricot
varieties with high quality and nutraceutical values. From the
point of view of the consumers, these characteristics contribute
to increase the attractiveness and acceptance of new apricot
cultivars enriched in phenylpropanoids, carotenoids, and other
nutraceutical compounds highly beneficial for human health
(Machlin, 1995; Van den Berg et al., 2000; Bazzano et al., 2002).

The development and application of High-Throughput
Sequencing (HTS) technologies and the existence of new
methods of data analysis, which enable finding associations
between genomic, transcriptomic and phenomics, have become
the new tools applied by breeders to develop new improved
varieties. The remarkable advances in computational theory
and bioinformatics algorithms have greatly accelerated the
implementation of this technology, significantly expanding the
scope of studied species. As a result, during the last few years, up to
450 plant genomes were sequenced (October 2019, http://www.
ncbi.nlm.nih.gov). From these genomes, 93 are assembled and
annotated in the Kyoto Encyclopedia of Genes and Genomes
(KEGG), KEGG Orthology (KO), ENZYME, Pathway and
InterPro database (Phytozome version 12.1.6, http://phytozome.
jgi.doe.gov), including the most important crops with high
commercial value as maize, potato, rice, or wheat (Jiao and
Schneeberger, 2017).

Another point of attention about the application of HTS
technologies to plant breeding programs remains to address the
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dynamic and adaptive aspect of gene expression over time, and
location undergoes in different scenarios because of the
environment effect, developmental stage, tissue/organ location,
and genotype. Quantitative and qualitative changes in gene
expression are studied by transcriptomic disciplines, mRNA
sequencing (RNA-Seq) being the best method for measuring
and comparing gene expression levels. Although RNA-Seq has
become a widely applied analytical technique, there is no
consensus on which pipeline is the most appropriate for the
analysis of RNA-Seq experiments. The final determination as to
which is the best depends on the strategy adopted during the
experimental design according to the initial hypothesis or the
objectives (Conesa et al., 2016). If the studied organism genome
or transcriptome is available, it will be used to identify the
transcripts by mapping. On the other hand, the analysis of
transcriptomes of non-model organisms whose genomic
or transcriptomic sequences are not publicly available can
be addressed using the genomes or transcriptomes of
phylogenetically related organisms or by performing a de novo
assembly and gene annotation (Surget-Groba and Montoya-
Burgos, 2010). The application of quality controls during each
of the phases of the analysis guarantees both the reproducibility
and the reliability of the results obtained (MacManes, 2014).

To date, the dynamic changes in gene expression during fruit
ripening process have been studied by whole transcriptome
sequencing using HTS technologies in many related apricot
species from Prunus genus including P. persica (Zhang et al.,
2010; Wang et al., 2013; Pan et al., 2015; Sanhueza et al., 2015;
Zhou et al., 2015; Pan et al., 2016; Wu et al., 2017; Ye et al., 2019),
P. salicina (Kim et al., 2015b; Fang et al., 2016), P. armeniaca (Jo
et al., 2015; Zhang et al., 2017b; Zhang et al., 2019), P. mume (Du
et al., 2013; Xu et al., 2014), and P. avium (Alkio et al., 2014;
Wei et al., 2015)

The objective of this study was the analysis of gene expression
changes of fruits in two contrasted apricot genotypes during
development and ripening process by using RNA-Seq and qPCR
to identify candidate genes responsible for the fruit differences found
between the two assayed genotypes in relation to the pomological
characteristics and biochemical and metabolite contents.
MATERIALS AND METHODS

Plant Material and Experimental Design
Plant material consisted on two apricot genotypes ‘GC 2-11’ and
‘GC 3-7’, both selections obtained from the cross between the
North American cultivar ‘Goldrich’ (G) and the Spanish cultivar
‘Currot’ (C) (Garcıá-Gómez et al., 2018). These apricot releases
showed contrasted fruit quality characteristics. ‘GC 2-11’ is self-
compatible, early blooming, and has an intermediate-sized
oblong fruit with yellow skin, red blush, and yellow flesh color.
It has high soluble solid content and a low ethylene production
rate. ‘GC 3-7’ is also self-compatible, early blooming, and has an
intermediate-sized oblong fruit with orange skin, intense red
blush, and light orange flesh color. It has a low-medium total
soluble solid content and a medium ethylene production rate.
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The sampling was carried out the epicarp (including the pericarp
and the mesocarp) due to the importance of considering all the
edible fruit for assessing the supplementation of health promoter
compounds in the diet. Besides, in the case of apricots, it is
imperative to emphasize that peel and pulp are consumed
together as an edible portion in contrast with other fruits such
as peaches. These apricot selections were cultivated in the same
experimental orchard of CEBAS-CSIC at Cieza (Murcia, South-
East Spain, 241 m above sea level, lat. 38°16′N, long. 1°16′W)
according to standard apricot orchard management. Ten fruits of
each genotype were collected at three different ripening stages
before stone hardening from both genotypes for RNA-Seq
(during the first year of study) and qPCR analysis (during the
second year) based on their skin ground color and firmness:
green fruit (Stage A), during color change (Stage B), and at
physiological ripening (Stage C) (Figure 1).

Evaluation of Pomological Characteristics
and Biochemical Contents
Pomology characteristics were analyzed including physical
characterization (fruit weight, stone weight, skin ground
color, flesh color, blush color, and firmness), biochemical
compounds (total soluble solids, titratable acidity, and
metabolite content), total chlorophyll and carotenoid content,
CO2 and ethylene release. First, ten fruits were collected at three
different ripening stages (green fruit, during color change, and at
physiological ripening) of both genotypes (‘GC 2-11’ and ‘GC 3-
7’) in 2016 for the evaluation of fruit quality characteristics. Fruit
and stone weight was measured using a Blauscal digital balance
(model AH-600), with an accuracy of 0.01 g. Skin ground color,
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blush color, and flesh color were determined with a Minolta
ChromaMeter (CR-300; Minolta, Ramsey, NJ, USA) tri-stimulus
color analyzer calibrated to a white porcelain reference plate
using a CIELAB scale with color space coordinates L*, a*, and b*.
The measure used to assess color was the Hue angle [H° =
arctangent (b*/a*)], determined around the equatorial fruit
(Brown and Walker, 1990). We take into account that values
above 90 are closer to white, between 80 and 90 to yellow, 75 and
80 to light orange, 70 and 75 to orange, and below 70 the color
tends to be more reddish. Firmness was quantified using a Lloyd
press (model LR10K; Fareham, Hants, UK) by a compression test
in Newton (N). Total soluble solid content (TSS) was measured
as percentage using a hand-held refractometer (ATAGO Co.
LTD., Tokyo, Japan). Finally, the titratable acidity (TA) was
expressed as the predominant organic acid, malic acid (g/
100 ml). TA was evaluated by titrating 2 g of sample diluted in
30 ml of distilled water with 0.1 mol l-1 NaOH to pH 8.1 by an
automatic titration system. On the other hand, total chlorophyll
(a and b) and carotenoid contents were determined by the
method of Nagata and Yashita (1992) from a pool of ten fruit
pericarps at three ripening stages (green fruit, during color
change, and at physiological ripening) of both genotypes (‘GC
2-11’ and ‘GC 3-7’) in 2017. Three biological replicates for each
ripening stage and genotype were analyzed. The dry residue
from the lyophilized powder was dissolved in acetone:hexane
(2:3) in a 1:10 w/v relation, centrifuged at 3,000 g for 10 min in a
refrigerated centrifuge at 4°C and spectrophotometrically
determined at 663, 645, 505, and 453 nm. Respiration rate and
ethylene release were measured for each sample by placing two
or three whole fruits in a sealed glass jar at 20°C per triplicate.
FIGURE 1 | Fruit pictures from P. armeniaca fruit genotypes ‘GC 2-11’ and ‘GC 3-7’ analyzed in three different ripening stages including green fruit (Stage A), during
color change (Stage B), and at physiological ripening (Stage C). Pictures were taken in a cold chamber illuminated with white leds. The photographic camera was an
Olympus Pen Mini E-PM2 with 14–42 mm focus lens.
August 2020 | Volume 11 | Article 1269
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Ethylene concentrations in the glass jar were sampled and
monitored with a Perkin Elmer Autosystem gas chromatograph
equipped with a thermal conductivity detector (TCD) and a flame
ionization detector (FID). Respiration rate was determined by
measure CO2 sampled and monitored by using a gas analyzer
(Horiba Via 510, Irving, USA). Samples of 1 ml of headspace gas
were taken from each glass jar with a calibrated syringe.

Evaluation of Metabolite Contents
Metabolite content was determined by nuclear magnetic
resonance spectroscopy (1H-NMR) from a pool of ten fruits
(pericarp portion) at three ripening stages (green fruit, during
color change, and at physiological ripening) of both genotypes
(‘GC 2-11’ and ‘GC 3-7’) in 2016. Portions from this pool (10 g)
were frozen in liquid nitrogen, lyophilized, and powdered. The
dry residue was dissolved in 0.75 ml of CD3OD and 0.75 ml of
D2O phosphate buffer containing sodium 3-trimethylsilyl-
[2,2,3,3-D4]-propionate (TSP) (0.1% w/w) as internal standard
(150 mM), vortex 1 min, centrifuged at 17,000 g 5 min and
preserve the supernatant at room temperature. The 1H-NMR
spectra of aqueous apricot extracts were recorded at 27°C on an
AVANCE III HD 500 MHz, CryoProbe Prodigy BBO (Capitani
et al., 2012). Carbohydrates (sucrose, glucose, xylose, fructose,
and myo-inositol), organic acids (fumarate, malate, succinate,
citrate, and formate) and precursors of phenylpropanoids
(chlorogenate, epicatechin, and methyl nicotinate) were
measured. Three biological replicates for each ripening stage
and genotype were analyzed.

Phenotype Data Analysis
Statistical analysis was performed in R version 3.5.1. Levene Test
was applied for homoscedasticity, Shapiro–Wilk for normal
distribution and Kruskal–Wallis Sum Rank Test as an alternative
non-parametric ANOVA test. The statistical significance threshold
was set at p-value < 0.05. Principal Component Analysis (PCA)was
also performed over the phenological and metabolite content data
to reduce the dimensionality retaining, thus identifying related
groups, trend, or outliers. PCA graph was computed and visualized
in R with the package ggbiplot (Wickham, 2016). A correlation
matrix by the Spearman method was executed to resolve the
correlation relationships between the quality traits analyzed.

RNA Isolation and High-Throughput
Sequencing
A pool of ten fruits (pericarp) at three ripening stages (green
fruit, during color change, and at physiological ripening) and
genotype (‘GC 2-11’ and ‘GC 3-7’) were collected during the
first year of study, frozen in liquid nitrogen and stored at −80°C.
Total RNA was extracted using a modified PowerPlant RNA
Isolation Kit® (Qiagen, Hilden, Germany) treated with DNAse
On-Spin Column DNase I Kit (Qiagen, Hilden, Germany).
Finally, RNA was concentrated and purified with UltraClean
Plant RNA Isolation Kit (Qiagen, Hilden, Germany). The purity
and quantity of total RNA samples were assessed using
a NanoDrop® One Spectrophotometer (Thermo Scientific,
Wilmington, USA) and normalized at the same concentration
Frontiers in Plant Science | www.frontiersin.org 4
(0.5 µg, 50 ng/µl). Integrity was established by capillary
electrophoresis in 2100 Bioanalyzer System (Agilent, Santa
Clara, U.S.A.) (Schroeder et al., 2006). Three biological
replicates were assayed for each comparison of genotype and
stage. RNA samples were sent to Sistemas Genómicos (Valencia,
Spain) for library preparation and RNA sequencing. RNA-Seq
libraries are prepared from total RNA using poly(A) enrichment
of the mRNA. mRNA enriched libraries were sequenced using
the HiSeq™2000 Sequencing System platform (Illumina, San
Diego, CA, USA), with two technical replicates each sample. The
datasets generated for this study can be found in the NCBI SRA
repository as a Bioproject entitled ‘Prunus armeniaca fruit
ripening process’, with the accession number PRJNA562811
(https://www.ncbi.nlm.nih.gov/bioproject/562811). The quality
control of raw sequencing libraries obtained was analyzed with
FastQC version 0.11.7 (Andrews, 2010) (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmomatic
version 0.38 (Bolger et al., 2014) (http://www.usadellab.org/
cms/?page=trimmomatic) was used for trimming adapter and
filter low-quality sequences (Phred score < 30) of FASTQ files.

Transcriptome Analysis and Mapping
Reference mei (P. mume_V1) (Zhang et al., 2012), peach (P.
persica_ V2) (Verde et al., 2017), and apricot (P. armeniaca_V1)
(Jiang et al., 2019) genomes and transcriptomes were
simultaneously used as reference sequences for read analysis
and mapping our candidates genes. However, for functional
candidate gene analysis, studies were focused on mei and
apricot reference genomes. Indeed, a synteny between
reference genomes was plotted by dot-plot graph executed in
D-Genies webpage (Cabanettes and Klopp, 2018) (http://dgenies.
toulouse.inra.fr/) to certify the validity of this step. For the
backward step, the annotation of P. armeniaca was download
from GDR (rosaceae.org), having blast information of the whole
list of genes (mrna) of the species. The file was parsed, and the
already identified IDs of P. mume and P. persica in the first step
were used as identifier to get the list of genes from P. armeniaca
associated with them. In the case of genes not identified,
their sequences were mapped using gmap (Wu and Watanabe,
2005) to the reference genome of apricot and physical position
(coordinates), and candidates genes were extracted by a custom
python script. If no IDs were identified, at least physical position
of these candidates genes are known. Doing this second step
avoid to re-do the whole analysis, taking advances of the new
resources and allowing also to validate the obtained results, as
can been observed. High-quality sequencing libraries were
mapped to the references genomes and transcriptomes of P.
persica and P. mume with Tophat version 2.1.1 (Kim et al., 2013)
(https://ccb.jhu.edu/software/tophat/index.shtml) and HISAT
version 2.1.0 (Kim et al., 2015a) (https://ccb.jhu.edu/
software/hisat2/index.shtml). Each genome was indexed
with Bowtie version 2.3.4.1 (Langmead and Salzberg, 2012)
(https://sourceforge.net/projects/bowtie-bio/). Finally, gene
quantification and count matrix construction were performed
with featureCounts (Liao et al., 2014) (http://bioinf.wehi.edu.au/
featureCounts/). The results obtained were normalized to
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Transcript Per Million (TPM) (Li et al., 2010). In addition,
representation of nucleotide abundance and other statistical
data on mapped and unmapped reads in Sequence Alignment
Map and Binary Alignment Map (SAM and BAM files) were
analyzed by using SAMStat version 1.5.1 (Lassmann et al., 2010)
(http://samstat.sourceforge.net). The index used to determine the
quality of alignment and assembly was the Mapping Quality
Score (MAPQ) (Li et al., 2008), which quantify the probability of
a misplaced read. The optimum MAPQ value is considered to be
greater than or equal to 30. SAMtools version 1.8 (Li et al., 2009)
(http://samtools.sourceforge.net/) is the tool used to transform,
index and sort the files generated by the mappers according to
the needs of the protocol.
Differentially Expressed Genes Analysis
Several statistical packages developed in R version 3.5.1 were
employed for Differentially Expressed Genes Analysis (DEGs).
For DEG analysis were applied five different statistical packages
setting on default parameters: edgeR version 3.24.0 (Robinson
et al., 2010), baySeq version 2.16.0 (Hardcastle and Kelly, 2010),
EBSeq version 1.22.0 (Leng et al., 2015), NOISeq version 2.26.0
(Tarazona et al., 2015) and DESeq2 version 1.22.1 (Love et al.,
2014). Inmost of the analysis TrimmedMean ofM-values (TMM)
(Robinson and Oshlack, 2010) were applied, except for EBSeq,
wheremedian normalizationwas applied. As biological replicates,
we grouped the samples from each genotype (three replicates each
‘GC 2-11’ and ‘GC 3-7’) and ripening stage (two replicates each
stage A, stage B and stage C). The DEG analysis was filtered by 0.1
false discovery rate (FDR) (Benjamini and Hochberg, 1995) and
the DEGs obtained in each method were merged in a consensus
result (Costa-Silva et al., 2017). The consensus result was
represented as Venn diagrams done with the web application
Venn Diagram (http://bioinformatics.psb.ugent.be/webtools/
Venn/).
Gene Annotation, Enrichment Analysis,
and Pathway Visualization
Gene Annotation was performed with BiomaRt version 2.38.0 in
R (Durinck et al., 2009), which provides easy access to public
databases repositories as Ensembl, KEGG, KO, Uniprot, Pfam,
Panther, Interpro and Gene Ontology (GO). We also added
the best hits found in biomaRt for Arabidopsis (Arabidopsis
thaliana L.) and peach, by Basic Local Alignment Search Tool
(BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Enrichment
Analysis was plotted with Web Gene Ontology Annotation
Plot (WEGO) (http://wego.genomics.org.cn/) web-based tool
(Ye et al., 2018) was used for visualizing, comparing, and
plotting GO annotation results in a bar chart. Singular
Enrichment Analysis (SEA) in AgriGO version 2.0 (Tian et al.,
2017) was used to plot GO hierarchical graph containing all
statistically significant terms. Broader representation of GO
terms was performed on GO Consortium web-based platform
(Ashburner et al., 2000; Consortium, 2004). DEGs were plotted
on their KEGG biosynthetic pathways with GAGE version 2.32.0
Frontiers in Plant Science | www.frontiersin.org 5
(Luo et al., 2009), and visualized with Pathview version 1.22.0
(Luo and Brouwer, 2013), both R packages.

Weighted Gene Co-expression Network
Analysis
For clustering DEGs, we perform Weighted Gene Co-expression
Network Analysis (WGCNA) with the R package WGCNA
version 1.66 (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008). WGCNA is useful for describing the
correlation patterns among gene expression across RNA-Seq
experiments. The eigengene modules (ME) are obtained using
automatic network construction function blockwise. The
clustered gene trees were created following the average method
(Wilks, 2011). Cluster analysis by gene expression is typically
the first step in data analysis, reducing the complexity and
dimensionality of the data, predict functions or identify shared
regulatory mechanism based on specific features. So, the genes
within a ME have similar expression pattern than the genes in
different modules, revealing the natural data structures and
gaining some initial insights regarding data distribution (Jiang
et al., 2004).

Complementary Gene Expression Analysis
by quantitative real-time PCR
RNA-Seq experiment was validated by using RT-qPCR in a
complementary experiment. New plant material collected during
the second year from a pool of ten fruit pericarps, with three
replicates for each ripening stage and genotype. Total RNA
was extracted following the same protocol detailed above
(RNA isolation and High-Throughput Sequencing). Specific
primers were designed with Primer3 software based on apricot
sequencing libraries (Supplementary Data Sheet 1) or from
bibliography references as carotenoid cleavage dioxygenase 4
(CCD4), sorbitol dehydrogenase (SDH), alcohol acyltransferase
(AAT), sucrose synthase (SS) and b-galactosidase (BGAL) (Adami
et al., 2013; Pirona et al., 2013). The cDNA was synthesized with
SuperScript III Reverse Transcriptase (Thermo Fisher Scientific).
RT-qPCR experiments were conducted in One Step Plus real-
time PCR system (Applied Biosystems). For all RT-qPCR
reactions, a 10 ml mix was made including 5 ml Power SYBR®

Green PCR Master Mix (Applied Biosystems), 0.5 ml of each
primer (5 mM) and 2 µl of cDNA (2.5 ng/µl). The genes from
peach 18S rRNA (S18) (Rasori et al., 2002); and plum cyclophilin
1 (CYP1) ribosomal protein L12 (RPL12) and ubiquitin (UBI)
(Niu et al., 2014) were analyzed as candidate reference genes by
RefFinder web-based tool (Xie et al., 2012) (no longer available).
Analysis was run with default settings. Amplification conditions
were 10 min at 95°C, followed by 40 cycles of 15 seconds (s) at
95°C, 1 min at 60°C, and for melt curve 15 s at 95°C, 1 min at
60°C and increasing 0.3°C till 0.15 s at 95°C. Normalized Relative
Quantification (NRQ) for the genes of interest was calculated
using the modified 2–DDCt method (Pfaffl, 2001; Vandesompele
et al., 2002). Correlations between TPM and NRQ, and TPM and
metabolite content were calculated using the Pearson correlation
coefficient (Udvardi et al., 2008). Three biological replicates and
two technical replicates were assayed.
August 2020 | Volume 11 | Article 1269

http://samstat.sourceforge.net
http://samtools.sourceforge.net/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://wego.genomics.org.cn/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
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RESULTS

Evolution of Pomological Characteristics
and Biochemical and Metabolite Contents
of Apricot Fruit During the Ripening
Process
The results obtained from the evaluation of pomological
characteristics and biochemical and metabolite contents in
fruits for both apricot genotypes at the three ripening stages
were analyzed to identify significant statistical differences
between genotypes and stages (Tables 1 and 2).

Evaluation of pomological traits evidenced the fruit color of
‘GC 2-11’ (yellow skin, red blush, and yellow flesh color) and ‘GC
3-7’ (orange skin, intense red blush and light orange flesh color)
with a bigger fruit and stone. Values of firmness, however, were
similar at the end of the ripening process (Table 1). In addition,
biochemical evaluation showed a higher soluble solid content
and a low ethylene production rate in ‘GC 2-11’ with a higher
content of carotenoids in ‘GC 3-7’. Values of acidity and
Frontiers in Plant Science | www.frontiersin.org 6
chlorophyll contents, however, were similar at the end of the
ripening process (Table 1).

On the other hand, evolution of metabolite contents showed
the clear increase of sucrose, glucose, xylose, fructose and myo-
inositol associated with the decrease of fumarate, malate,
succinate, and citrate in both genotypes during the ripening
process mainly between the stages B and C. When genotypes are
compared, a higher content of chlorogenate is shown in all the
assayed stages in ‘GC 3-7’ in comparison with ‘GC 2-11’
(Table 2).

Levene Test showed no homoscedasticity and Shapiro–Wilk
Test showed no normal distribution of the pomological,
biochemical and metabolite data, hence we applied the non-
parametric Kruskal–Wallis Rank Sum Test with a threshold of
p-value < 0.05 for significant statistical differences. Skin
ground color, blush color and flesh color, stone weight, fruit
weight, titratable acidity, and ethylene release showed
statistical differences between genotypes and ripening stages
(Supplementary Table 1). Glucose, fructose, malate, citrate,
TABLE 1 | Evaluation of fruit pomological characteristics and biochemical contents in the two apricot genotypes assayed ‘GC 2-11’ and ‘GC 3-7’ at three ripening
stages including green fruit (Stage A), during color change (Stage B), and at physiological ripening (Stage C).

Stage Stage A Stage B Stage C

Genotype ‘GC 2-11’ ‘GC 3-7’ ‘GC 2-11’ ‘GC 3-7’ ‘GC 2-11’ ‘GC 3-7’
Fruit weight (g) 52.12 ± 2.18 61.37 ± 2.29 54.98 ± 3.85 69.59 ± 3.91 59.26 ± 3.30 83.85 ± 4.46
Stone weight (g) 4.22 ± 0.22 5.04 ± 0.31 3.57 ± 0.06 4.56 ± 0.22 3.35 ± 0.11 4.21 ± 0.08
Skin ground color (H°) 111.52 ± 1.84 111.21 ± 1.69 102.72 ± 2.49 89.79 ± 6.56 95.20 ± 2.88 77.07 ± 2.93
Blush color (H°) 97.9 ± 3.59 90.8 ± 16.4 81.26 ± 13.3 64.42 ± 7.21 74.10 ± 9.00 63.88 ± 5.60
Flesh color (H°) 105.33 ± 2.84 105.96 ± 3.63 94.18 ± 18.4 86.13 ± 14.50 87.40 ± 3.21 76.69 ± 1.63
Firmness (N) 232.99 ± 36.21 288.11 ± 24.40 76.70 ± 11.05 114.80 ± 19.63 39.07 ± 8.56 40.10 ± 24.94
Total soluble solids (%) 12.3 ± 0.2 6.8 ± 0.2 14.8 ± 0.2 11.9 ± 0.4 14.1 ± 0.3 12.8 ± 0.8
Titratable acidity (malic acid g/100 ml) 2.11 ± 0.01 2.06 ± 0.04 1.98 ± 0.01 2.04 ± 0.10 1.78 ± 0.02 1.89 ± 0.05
CO2 (µl/kg h) 13.46 ± 1.49 9.12 ± 1.37 10.58 ± 5.84 11.42 ± 3.22 7.08 ± 2.44 15.08 ± 5.05
Ethylene (mg/kg h) – – 1.15 ± 1.07 1.44 ± 0.91 0.15 ± 0.10 37.86 ± 19.90
Chlorophyll a (mg/g FW) 5.34 ± 1.36 19.33 ± 0.70 1.95 ± 0.01 2.81 ± 0.28 0.29 ± 0.24 0.38 ± 0.21
Chlorophyll b (mg/g FW) 0.21 ± 0.34 1.5 ± 0.06 0.17 ± 0.20 0.11 ± 0.33 0.59 ± 0.42 0.10 ± 0.46
Carotenoids (mg/g FW) 6.22 ± 0.23 33.02 ± 5.81 59.47 ± 0.98 37.79 ± 2.17 15.88 ± 0.98 57.61 ± 1.29
Augus
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Three biological replicates were assayed.
TABLE 2 | Evaluation of metabolite contents recorded in 1H-NMR spectra in the two apricot genotypes assayed ‘GC 2_11’ and ‘GC 3_7’ 7’at three ripening stages
including green fruit (Stage A), during color change (Stage B), and at physiological ripening (Stage C).

Stage Stage A Stage B Stage C

Genotype ‘GC 2-11’ ‘GC 3-7’ ‘GC 2-11’ ‘GC 3-7’ ‘GC 2-11’ ‘GC 3-7’
Sucrose 19.370 ± 2.790 2.638 ± 0.098 36.494 ± 1.499 31.387 ± 5.782 40.128 ± 1.379 46.965 ± 10.990
Glucose 3.017 ± 0.407 15.588 ± 0.914 3.530 ± 0.083 15.951 ± 2.776 5.639 ± 0.123 11.128 ± 2.346
Xylose 0.185 ± 0.044 0.210 ± 0.017 0.251 ± 0.011 0.250 ± 0.027 0.309 ± 0.014 0.225 ± 0.053
Fructose 0.317 ± 0.042 3.440 ± 0.463 0.510 ± 0.214 1.346 ± 0.647 0.527 ± 0.033 1.521 ± 0.737
Myo-Inositol 0.292 ± 0.040 0.384 ± 0.023 0.364 ± 0.013 0.461 ± 0.081 0.402 ± 0.020 0.404 ± 0.101
Fumarate 0.006 ± 0.001 0.004 ± 0.000 0.008 ± 0.000 0.009 ± 0.001 0.011 ± 0.000 0.014 ± 0.003
Malate 3.754 ± 0.852 4.761 ± 0.373 3.086 ± 0.469 4.387 ± 0.301 3.023 ± 0.069 3.544 ± 0.611
Succinate 0.019 ± 0.002 0.008 ± 0.005 0.009 ± 0.001 0.026 ± 0.003 0.009 ± 0.011 0.016 ± 0.004
Citrate 5.309 ± 2.299 11.106 ± 0.141 2.854 ± 0.155 13.641 ± 2.061 3.456 ± 0.338 6.943 ± 2.425
Formate 0.0001 ± 0.001 0.006 ± 0.001 0.005 ± 0.000 0.001 ± 0.001 0.005 ± 0.001 0.001 ± 0.001
Chlorogenate 0.049 ± 0.003 0.128 ± 0.022 0.045 ± 0.006 0.199 ± 0.032 0.056 ± 0.004 0.077 ± 0.027
Epicatechin 0.009 ± 0.007 0.014 ± 0.0001 0.009 ± 0.001 0.018 ± 0.001 0.014 ± 0.004 0.016 ± 0.006
Methyl nicotinate 0.012 ± 0.006 0.023 ± 0.009 0.013 ± 0.004 0.019 ± 0.007 0.011 ± 0.006 0.016 ± 0.004
Metabolites identified were expressed in mg/g fresh fruit weight (FW). Three biological replicates were assayed.
| Article 1269

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
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formate, chlorogenate, and methyl nicotinate show statistical
differences only between genotypes. Sucrose, xylose, fumarate,
chlorophyll a, soluble solids, carotenoid content, and firmness
showed statistical differences only between ripening stages. CO2

releases, myo-inositol, succinate, epicatechin, chlorophyll b show
no statistical differences between genotypes or ripening stages
(Supplementary Table 2). In addition, Spearman correlation
matrix (Supplementary Figure 1 and Supplementary Data
Sheet 2) showed a positive correlation between skin ground
color, flesh color, blush color, chlorophyll content and firmness,
and between sucrose and soluble solid content, while a negative
correlation between sucrose and soluble solids with skin
ground color, flesh color, blush color, firmness and chlorophyll
content. Glucose also showed a positive correlation with
phenylpropanoids (chlorogenate, epicatechin, and methyl
nicotinate). Fumarate displayed a negative correlation with
Frontiers in Plant Science | www.frontiersin.org 7
firmness, skin ground color, blush color, flesh color, while a
positive correlation with soluble solids was also observed.

On the other hand, PCA representation of phenological traits
and metabolite content (Figure 2) showed the relationship
between variables after logarithmic transformation of the data.
The main principal components obtained explained the variance
of 42.6% for Principal Component 1 (PC1) and 33.9% for PC2.
Samples by genotype cluster together. Genotype ‘GC 2-11’
showed a positive correlation, while ‘GC 3-7’ displays a
negative correlation with PC2. Stage A in both genotypes has a
negative correlation while stage C has a positive correlation
with PC1. Variables as skin ground color, blush color, flesh
color, soluble solids and ethylene release were highly explained
by PC1, while fructose, citrate, and malate were mainly explained
by PC2. Therefore, PC1 mostly explained variance associated
with fruit color and ripening stage represented by ethylene
FIGURE 2 | PCA biplot of phenological traits (fruit weight, stone weight, skin ground color, blush color, flesh color and firmness), biochemical (Total soluble solids,
Titratable acidity, CO2, Ethylene, Chlorophyll a, Chlorophyll b, and Carotenoids) and metabolite (Sucrose Glucose, Xylose, Fructose, Myo-Inositol, Fumarate, Malate,
Succinate, Citrate, Formate, Chlorogenate, Epicatechinand Methyl nicotinate) contents during ripening process [green fruit (Sample A), during color change (Samble
B), and physiological ripening (Sample C)] in the two genotypes of P. armeniaca ‘GC 2-11’ and ‘GC 3-7’. Ellipses round samples which belongs to the same group
with a 0.68 of probability (default settings for continuous variables). Three biological replicates were assayed to evaluate each phenological, biochemical and
metabolite parameter.
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release and soluble solid content, while PC2 explained variance
associated with acid taste represented by the content of citrate,
malate, and fructose.

Sequenced Libraries Quality Control
Sequenced raw read libraries analyzed with FastQC
(Supplementary File 1) showed poor quality sequencing in 3′
and 5′ ends, with several repeated k-mers in forward reads as well
as a deficient Phred quality score along the entire length of the
reverse reads, with a high degree of repeatability and presence of
k-mers. An acceptable number of duplication sequences, k-mer
occurrence or GC percentage are organism-specific, and these
values must be homogeneous in all samples which belong to the
same experiment (Conesa et al., 2016). The high repeatability of
the genomes in plants makes tough filter the sequences without
losing valuable information, so it was decided to trim the reads
with low-quality or presence of very repetitive sequences,
suspected of being residual Illumina adapters. After removing
these fragments, the quality of the sequenced libraries was
analyzed again with FastQC (Supplementary File 2).

Mapping of Whole Transcriptomes
Optimized sequencing libraries were then aligned and
assembled with HISAT and TopHat to the reference genomes
and transcriptomes of P. persica and P. mume (Supplementary
Figure 3, Supplementary Tables 3 and 4). The percentage of total
pairs of reads mapped to the genomic sequences is higher than to
the transcriptomes. When we attend to the differences between
species, the assembly and alignment of total pairs of reads to P.
mume are higher compared to P. persica, arising 88.36% mapped
pairs of reads to P. mume genome performed with HISAT as the
best result. Initially, alignment and assembly of total pairs of
reads with HISAT lead to a higher percentage of mapped pairs of
reads, but also a higher percentage of mapped pairs of reads
aligned discordant or in multiple locations. TopHat was more
conservative in this sense, avoiding pairs of reads that align
discordantly or in multiple sites, so the pairs of reads mapped
once with TopHat were higher than those obtained with HISAT.

A comparison between the different MAPQ values on
mapping strategies addressed showed 84.62% of mapped
reads with a MAPQ ≥ 30, employing P. mume genome as
reference sequence performed with HISAT as the best result.
In opposition, we only get 67.70% of mapped reads using P.
persica transcriptome as reference sequence with TopHat as the
worst result (Supplementary Figure 4, Supplementary Tables 5
and 6). The best results were the alignment and assembly to
the P. mume genome using TopHat (82.15%), HISAT to the P.
mume transcriptome (79.48%), and TopHat to the P. mume
transcriptome (77.99%). HISAT was selected as the most efficient
mapper in terms of percentage of reads aligned with high MAPQ
values. Considering the sequence used as the reference sequence,
the mapped reads to P. mume were higher than P. persica. Thus
P. mume genome is chosen as the reference sequence, which best
fits our data.

The assemblies obtained were evaluated for accuracy with
SAMStat to determine the quality of the alignments. An average
of 51.7 million pairs of reads was generated from the six samples
Frontiers in Plant Science | www.frontiersin.org 8
sequenced. The assembly to P. mume genome performed with
HISAT was filtered by mapping quality score (MAPQ ≥ 30),
removing unmapped or multi-mapped reads with SAMtools.

Differentially Expressed Genes Analysis
Count matrix ofmapped reads to P. mume genome was performed
with featureCounts, getting the number of assigned or unassigned
reads to features (annotated genes). Unassigned featureswere likely
to align to non-coding genomic regions or unannotated genes
(Supplementary Table 7). This was the proposed strategy to
group the samples that presented greater similarity. So, Euclidian
distance matrix of gene expression was calculated after the
normalization of each library (Supplementary Table 8), and the
results were plotted in a heatmap, complemented with a
multidimensional scaling plot (MDS) and a correlation matrix
chart (Supplementary Figure 5). The higher correlation was
obtained among the samples that belong to the same genotype,
being ‘GC2-11’ the genotype, which shows less distance between its
samples. Inside each sample, thehigher distancewas foundbetween
stage A and stage C.

DEG analysis was performed grouping the samples as biological
replicates by genotype or ripening stage (Supplementary Table
9A). In the analysis without replicates (Supplementary Table 9B),
these were simulated on the assumption that read counts follow a
multinomial distribution as NOISeq does. Since version 1.20,
DESeq2 did not perform statistical analysis without replicates,
DEGs were obtained by logarithmic transformation of the count
matrix and selection of genes with fold change values over a range
of ±1.5.

After DEG analysis with five different statistical packages, the
results obtained were merged in a consensus result with common
genes. Consensus results were plotted in a Venn diagram, where
only the comparison between genotypes was of interest because
of the number of genes differentially expressed for downstream
analysis, arising from 443 DEGs (Figure 3 and Supplementary
Data Sheet 3). As consequence of the backward step from this set
of 443 DEGs, 310 of the total were identified with an P.
amerniaca IDs (Figure 3 and Supplementary Data Sheet 3,
column C). In addition, for the rest of 133 IDs with an unknown
IDs from P. armeniaca, the backward mapping allowed the
identification of 85 of them (Figure 3 and Supplementary
Data Sheet 3, column C). Only a total of 48 genes remained
without a specific ID from the reference apricot genome but with
a physical position on the genome (Supplementary Data
Sheet 4).

Gene Annotation, Enrichment Analysis,
and Pathway Visualization
To elucidate the fundamental processes altered in ripe apricot
fruit, we searched for functional enrichment categories in the set
of DEGs obtained identifying homologous genes between mei,
peach, and Arabidopsis (Supplementary Data Sheets 5 and 6).
Enrichment analysis (Figures 4 and 5) was performed over up-
and down-regulated DEGs obtained in contrast to grouping
samples by genotype. The keynote GO terms were annotated
in Molecular Function and Biological Process (Supplementary
Table 10). Plotting up-regulated and down-regulated DEGs in a
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bar chart for Molecular Function GO annotation, DEGs up-
regulated are mainly involved in ligase activity, isomerase
activity, lyase activity, sulfur compound binding, carbohydrate
binding, lipid binding, amide binding, pattern binding, receptor
regulatory activity, and peroxidase activity; while DEGs down-
regulated are implied in metal cluster binding and enzyme
regulator activity. GO terms annotated in Biological Process
are up-regulated for glycosylation, catabolic process, secretion
by cell, maintenance of location in cell, cellular homeostasis,
macromolecule organization, cellular localization, maintenance
of location, regulation of biological quality, response to biotic
stimulus, response to stress, response to external stimulus, and
response to other organisms. On the other side, down-regulated
DEGs were annotated in pigment metabolic process and cellular
component organization. DEG genes annotated are implicated
in catalytic activity (72.2%), followed by binding (25.0%),
transcription regulator activity (6.8%), and transporter activity
(2.3%). Most of these genes belong to the metabolic process
(74.7%). When we analyzed the organic metabolic process
affected, significant annotations were macromolecule metabolic
process (36.8%), carbohydrate metabolic process (26.3%),
organic acid metabolic process (15.8%), and organic cyclic
compound metabolic process. Singular enrichment analysis
(SEA) for Biological Process indicates protein phosphorylation
and drug transmembrane transport as main GO terms, for
Molecular Function highlights catalytic and transport activity
(Supplementary Figure 6).
Frontiers in Plant Science | www.frontiersin.org 9
DEGs annotated in KEGG biosynthetic pathways were mainly
located in glycolysis/gluconeogenesis (pmum00010), pentose and
glucuronate interconversions (pmum00040) starch and sucrose
metabolism (pmum00500), terpenoid biosynthesis (pmum00130),
carotenoid biosynthesis (pmum00906), phenylalanine metabolism
(pmum00360), phenylpropanoid biosynthesis (pmum00940),
flavonoid biosynthesis (pmum00941), and cyanoamino acid
metabolism (pmum00460) (Supplementary File 3). The most
affected pathways are phenylpropanoid and flavonoid biosynthesis
(Figure 6), followed by starch and sucrose, and phenylalanine
metabolism (Supplementary Figure 7).

Weighted Gene Co-Expression Network
Analysis
We got sevenME afterWGCNA including blue, brown, turquoise,
red, black, green and yellow (Figure 7). A total of 443 genes were
clustered in these seven ME. When we analyze each ME, 80 genes
belong to ME blue, 49 genes to ME brown, 226 genes to ME
turquoise, 17 genes to ME red, 17 genes to ME black, 25 genes to
ME green, and 29 genes to ME yellow (Supplementary Data
Sheet 7). Additionally, we analyzed the principal KEGG pathways
involved in fruit ripening for each ME (Supplementary Data
Sheet 8) and other genes of interest not annotated on KEGG
pathways but described in other databases. For significant
correlation in ME with quality characteristics, we set a threshold
over 0.5 for correlation coefficient and under 0.5 for p-value
statistical significance.

ME blue was positively correlated with xylose and negatively
correlated with fruit weight, stone weight, CO2 release, glucose,
fructose, citrate, formate, chlorogenate, epicatechin, and methyl
nicotinate. Cluster in this ME we find the genes of starch and
sucrose metabolism LOC103322685 (PARG04316m02 ;
EC:2.4.1.14), LOC103333663 (PARG19611m01; EC:3.1.3.12),
LOC103338042 (unknown PARG ID; EC:3.1.3.12) and
LOC103343477 (PARG01655m01; EC:3.2.1.21), phenylpropanoid
biosynthesis pathway LOC103332355 (unknown PARG ID;
EC:4.3.1.24), LOC103335298 (PARG29723m01; EC:1.1.1.324),
LOC103338042 (unknown PARG ID; EC:3 .2 .1 .21) ,
LOC103339178 (unknown PARG ID; EC:1.14.14.91) and
LOC103343477 (PARG01655m01; EC:3.2.1.21), phenylalanine
metabolism LOC103332355 (unknown PARG ID; EC:4.3.1.24)
and LOC103339178 (unknown PARG ID; EC:1.14.14.91),
LOC103338042 (EC:3.2.1.21; unknown PARG ID) and
LOC103343477 (EC:3.2.1.21; PARG01655m01) and flavonoid
biosynthesis LOC103339178 (EC:1.14.14.91; unknown PARG
ID). Other genes of interest are LOC103329206 (PAR
G00063m07) predicted as a pheophytinase, and LOC103328016
(PARG00063m07) as ABC transporter pleiotropic drug
resistance (PDR).

ME brown showed a positive correlation with blush color while
a negative correlation with fruit weight, stone weight, glucose,
fructose, myo-inositol, malate, citrate, formate, chlorogenate,
epicatechin, and methyl nicotinate. Cluster in this ME we find
genes of starch and sucrose metabolism LOC103326244
(PARG10672m01 ; EC:3 .2 .1 .21) and LOC103327693
(PARG15761m01; EC:3.2.1.26), phenylalanine metabolism
FIGURE 3 | Venn diagram which represents the consensus result obtained
from Differentially Expressed Genes Analysis (DEGs) performed on P. mume,
grouping the samples by genotype and using different statistical packages
including NOISeq, edgeR, baySeq, DESeq2, and EBSeq. Three biological
replicates and two technical replicates were assayed for each comparison of
genotype and stage.
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A

B

FIGURE 4 | Gene Ontology term enrichment of DEGs found in contrast grouping by genotype. (A) Up- and down-regulated DEGs annotated with GO terms.
(B) Up- and down-regulated DEGs annotated in Molecular Function. Three biological replicates and two technical replicates were assayed for each comparison of
genotype and stage.
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gy levels. (A) DEGs genes annotated with GO Slim into Molecular Function term. (B) DEGs
erm. (D) DEGs annotated with GO Slim into Organic substance metabolic process. GO enrichment
were assayed for each comparison of genotype and stage.
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FIGURE 5 | Gene Ontology term enrichment of DEGs found in contrast grouping by genotype for different ontolo
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A

B

FIGURE 6 | KEGG of phenylpropanoids (A) and flavonoid (B) biosynthesis pathway with the representation of DEG obtained during genotype contrast in P. mume
where several genes involved are up-regulated (red) or down-regulated (green) in ‘GC 3-7’ with respect to ‘GC 2-11’ genotype. Gene involved in each pathway is
represented in small boxes by its Enzyme Commission numbers (E.C.) code. Three biological replicates and two technical replicates were assayed for each
comparison of genotype and stage.
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Garcı́a-Gómez et al. Analysis of Apricot Fruit Development and Ripening
LOC103328252 (EC:6.2.1.12; PARG15135m02) and LOC1
03340770 (EC:2.1.1.104; PARG27724m01), phenylpropanoid
biosynthesis LOC103326244 (PARG10672m01; EC:3.2.1.21),
LOC103328252 (PARG15135m02; EC:6.2.1.12) and LOC
103340770 (EC:2.1.1.104; PARG27724m01), and flavonoid
biosynthesis LOC103340770 (EC:2.1.1.104; PARG27724m01).
Another gene of interest is LOC103326648 (PARG22281m01),
predicted as a transcription factor (TF) with MYB/SANT
domain, and LOC103331940 (PARG18142m01) predicted as
MADS-box protein SOC1.

ME turquoise showed a positive correlation with stone weight,
firmness, fructose, glucose, malate, citrate, chlorophylls content,
and methyl nicotinate, while a negative correlation with sucrose,
soluble solid content, and fumarate. We found several genes
related phenylalanine metabolism LOC103342143 (PARG0
2182m01; EC:4.3.1.24), carotenoid biosynthesis LOC103328471
(PARG01425m02; EC:5.3.99.8), phenylpropanoid biosynthesis
LOC103327307 (PARG00008m01; EC:1.11.1.7), LOC103342143
(PARG02182m01; EC:4.3.1.24) and LOC103343871 (PAR
G24274m01; EC:2.1.1.68), flavonoid biosynthesis LOC103324315
Frontiers in Plant Science | www.frontiersin.org 13
(PARG03336m04 ; EC:2 .3 .1 .74) and LOC103341429
(PARG06615m01; EC:1.17.1.3), glycolysis and gluconeogenesis
LOC103332280 (PARG18437m02; EC:5.1.3.15), and circadian
rhythm LOC103324315 (PARG03336m04; EC:2.3.1.74). Other
genes of interest were LOC103323450 (unknown PARG ID)
predicted as anthocyanidin 3-O-glucosyltransferase 7-like,
LOC103341429 (PARG06615m01) as a leucoanthocyanidin
reductase-like, LOC103322538 (PARG05244m01) as probable
pectinesterase/pectinesterase inhibitor 35, and LOC103342143
(PARG02182m01) as a phenylalanine ammonia-lyase 1. In
addition, other identified genes included the TFs LOC103327289
(PARG28632m01) predicted as MYB108, LOC103330396
(PARG12740m01), LOC103337200 (PARG23210m01) as a
probable WRKY TF 45, LOC107880999 (PARG12882m01),
LOC103332564 (PARG18828m01 ) , LOC103323278
(PARG04365m02), LOC103323316 (PARG04392m03), and
LOC103323318 (PARG04392m01) predicted as ABC
transporter-like.

ME red displayed a significant positive correlation with fruit
weight, ethylene and CO2 release, soluble solid content,
A B

FIGURE 7 | Weighted correlation network analysis during apricot fruit ripening obtained with WGCNA R package. (A) Gene dendrogram and module colors
obtained by average linkage hierarchical clustering where every leaf represents a DEG. The color row underneath the dendrogram shows the seven eigengene
modules (ME) assignments determined by the Dynamic Tree Cut (threshold set for cut the dendrogram and obtain ME clustering). (B) Heatmap representation of the
eigengene module-quality trait relationship for P. mume genotype contrast obtained when analyzing DEG expression and quantitative quality traits. Inside each
module the Pearson correlation value is indicated and between parenthesis the p-value significance of its correlation. Three biological replicates and two technical
replicates were assayed for each comparison of genotype and stage.
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fumarate, formate, epicatechin, and carotenoid content, while a
negative correlation with skin ground color, flesh color and blush
color. We found the gene from starch and sucrose metabolism
and phenylpropanoid biosynthesis LOC103330627 (PAR
G01659m01; EC:3.2.1.21), and phenylalanine biosynthesis
LOC103329641 (PARG13381m01; EC:4.2.1.20). A TF is
identified, LOC103342585 (PARG26597m01) as L10-interacting
MYB domain-containing protein-like. ME black displayed a
positive correlation with stone weight, fruit weight, ethylene
and CO2 release, glucose, fructose, formate, epicatechin, methyl
nicotinate, and carotenoids content. The only gene of interest
found in this cluster is LOC103333822 (PARG04832m02) as
sugar transporter ERD6-like 7.

ME green, however, had a positive correlation with stone
weight, fruit weight, ethylene release, glucose, fructose, myo-
inositol, citrate, formate, chlorogenate, epicatechin, and methyl
nicotinate. We find the gene of flavonoid biosynthesis
LOC103320869 (PARG07267m01; EC:1.1.1.219 and 1.1.1.234).
Other genes of interest are LOC103334507 (PARG20234m01)
predicted as 1-aminocyclopropane-1-carboxylate oxidase
homolog 11-like, and LOC103323820 (PARG03840m02)
predicted as glutathione transferase GST 23-like.

Finally, ME yellow displayed a positive correlation with stone
weight, fruit weight, glucose, fructose, myo-inositol, malate,
citrate, formate, chlorogenate, epicatechin, methyl nicotinate,
and chlorophyll a content. In yellow ME, we found a gene
involved in phenylpropanoid biosynthesis LOC103335288
(PARG29722m01; EC:1.1.1.324). Other genes of interest are
LOC103324123 (PARG03642m01) described as 1-amino
cyclopropane-1-carboxylate oxidase homolog 1-like,
LOC103330065 (PARG13187m01) as 2-hydroxyflavanone C-
glucosyltransferase, LOC103333172 (PARG19510m01) as
multidrug resistance protein from MATE family, and
LOC103324364 (PARG00058m01) predicted as pheophorbide
A oxygenase.

Gene Expression Analysis by Quantitative
Real-Time PCR
RNA-Seq was validated by analyzing fifteen genes highly
expressed through RT-qPCR. According to the analysis run in
RefFinder, we obtain a comprehensive gene stability values of
1.141 for S18, 1.565 for CYP1, 2.28 for RPL12, 4.229 for ACT, and
4.729 for UBI. The lower value of comprehensive gene stability,
most stable is the expression of a gene between samples. Then,
we use as reference genes S18, RPL12 and CYP1, the most stable
genes analyzed. These genes were described with P. persica and P.
mume annotation, and most of them are implied in the ripening
process (Supplementary Data Sheet 1). The samples taken in
the course of advanced color change (Stage B) were discarded
because of the difficulty to establish effective criteria at sampling
and the high variability found in the results obtained. All the
genes analyzed have a Pearson correlation coefficient over 0.7
in TPM-NRQ comparison (Figure 8), are genome-wide
distributed, and most of them are related to quality traits at
fruit ripening process. Performing RT-qPCR on a new set of
samples gives us the greatest confidence in the results obtained
Frontiers in Plant Science | www.frontiersin.org 14
by validating the HTS technology and the underlying
biological response.

Candidate Genes Related to Pomological
Characteristics and Biochemical and
Metabolite Contents in Apricot Fruits
Taking into account the analysis previously accomplished and
integrating the results obtained, we proposed a variety of
candidate genes for monitoring fruit ripening process linked to
quality traits in ripe fruit such as fruit color and soluble
solid accumulation.

The most important correlation with significant statistical p-
value obtained in WGCNA for starch and sucrose metabolism
found in ME blue, brown, turquoise and yellow (Figures 6 and 7,
Supplementary Data Sheets 5 and 7). In addition, we found a
positive correlation with sucrose, while fructose and sucrose have
a negative correlation and vice-versa for all the ME cited above.
In ME blue, with high negative correlation with glucose, we find
a sucrose-phosphate synthase (LOC103322685; PARG04316m02)
which leads to the transformation of D-fructose-6P and UDP-
glucose into sucrose-6’P, and two b-glucosidases (LOC103338042
(unknown PARG ID) and LOC103343477 (PARG01655m01). In
ME brown, with high negative correlation with glucose, cluster a
b-glucosidase [LOC103326244 (PARG10672m01)] implied in
starch and sucrose metabolism leading to D-glucose, and a b-
fructofuranosidase [LOC103327693 (PARG15761m01)] which
catalyze the dephosphorylation from sucrose into D-glucose
and D-fructose. ME turquoise displayed the highest positive
correlation with fructose content and lower significant p-value
due to the presence in this cluster of the gene glucose-6-phosphate
1-epimerase, which transforms D-glucose-6P between its two
stereoisomers a and b and may lead to b-D-fructose-6P through
the glucose-6-phosphate isomerase. Sucrose is transported and
accumulated into the vacuole by membrane transporter as early-
response to dehydration gene (ERD6) (Zhang et al., 2019), cluster
in ME black. Besides, SPS1 is up-regulated at the beginning of
ripening in ‘GC 2-11’, while SS is up-regulated in ‘GC 3-7’ at the
end of the ripening process (Figure 8). When we compared the
sucrose content during fruit quality evaluation (Supplementary
Table 2) and the gene expression of two suspicious genes
responsible for sucrose biosynthesis sucrose synthase [SS,
LOC103340632 (PARG27579m02)] and sucrose-phosphate
synthase 1 [SPS1, LOC103341128 (unknown PARG ID)],
Pearson correlation coefficient shows higher positive correlation
between sucrose content and SS gene expression (Pearson coef.: 0.7)
than SPS1 (Pearson coef.: −0.2) (Figure 9), SS being a candidate
gene for the biosynthesis of sucrose during fruit ripening
in apricot.

Several genes related to phenylalanine, phenylpropanoids,
and flavonoid biosynthesis, the precursors of anthocyanin
compounds, were identified in ME blue, brown, green, yellow,
and turquoise (Figures 6 and 7 and Supplementary Data Sheets
5 and 7). In the phenylpropanoid biosynthesis pathway we
find two phenylalanine ammonia lyases (PAL, LOC103332355
(unknown PARG ID) and LOC103342143 (PARG02182m01)
which catalyzes the transformation from phenylalanine to
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cinnamic acid, a trans-cinnamate 4-monooxygenase [C4H,
LOC103339178 (unknown PARG ID)] transforming cinnamic
acid to p-coumaric acid, a 4-coumarate-CoA ligase 1-like [4CL,
LOC103328252 (PARG15135m02)] catalyzing cinnamic acid or
p-coumaric acid to cinnamoyl-CoA or p-coumaryl-CoA, and in
the end of the pathway identified a probable caffeoyl-CoA
O-methyltransferase [LOC103340770, PARG27724m01)]
transforming caffeoyl-CoA to feruloyl-CoA. Following with
Frontiers in Plant Science | www.frontiersin.org 15
flavonoid biosynthesis pathway, we find the gene for chalcone/
stilbene synthase [CHS, LOC103324315 (PARG03336m04)]
catalyzing the reaction from p-coumaroyl-CoA to naringenin
chalcone. The last gene implicated on anthocyanin synthesis
identified is a bifunctional dihydroflavonol 4-reductase/flavanone
4-reductase [DFR, LOC103320869 (PARG07267m01)], which
synthesizes leucocyanidin. Other genes of interest not
annotated on KEGG pathways are a leucoanthocyanidin
FIGURE 8 | Plots for the NRQ (Normalized Relative Quantification) of 15 genes analyzed by RT-qPCR and each TPM (Transcript Per Million) value obtained in RNA-
Seq experiment. In brackets, Pearson correlation coefficient obtained from contrast between TPM and NRQ. From upper left to down right: Methanol O-anthraniloyl
transferase-like (AAT), b-galactosidase (BGAL), lycopene b-cyclase (CrtL), common plant regulatory factor 1-like (bZIP), cinnamyl-alcohol dehydrogenase (CAD),
carotenoids cleavage dioxygenase 4 (CCD4), 1-deoxy-D-xylulose-5-phosphate synthase (DXS), ethylene transduction gene (EDR1), flavonoid 3′-hydroxylase 1-like
(F3′H), glutathione transferase GST 23-like (GST), psbP domain-containing protein 6 (psbP), sorbitol dehydrogenase (SDH), sucrose-phosphate synthase 1 (SPS1),
sucrose synthase (SS) and probable serine/threonine-protein kinase PBL16 (WRKY). Three biological replicates and two technical replicates were assayed. Standard
deviations are indicated with vertical bars.
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reductase-like [ANS, LOC103341429 (PARG06615m01)], leading
leucoanthocyanidin, then anthocyanidin 3-O-glucosyltransferase
[UFGT, LOC103323450 (unknown PARG ID)] convert cyanidin
into cyanidin 3-glucoside. Flavonoid 3’-hydroxylase 1-like [F3′H,
LOC103337305 (PARG23256m01)], a cytochrome P450
responsible for anthocyanin biosynthesis, is up-regulated in
‘GC 3-7’ (Figure 8). Besides, a glutathione transferase GST 23-
like [GST, LOC103323820 (PARG03840m02)], related to the
antioxidant system ascorbate-glutathione and degradation of
hydrogen peroxide during ripening (Fuentealba et al., 2017)
and responsible for organic acid and secondary metabolism
compounds translocation into the vacuole (Shiratake and
Martinoia, 2007) was differentially expressed in contrast by
genotypes in P. mume and up-regulated in ‘GC 2-11’.

After the analysis of the blush color, this trait showed highest
negative (reddish color for lower Hue° values) correlation with
ME red (Figure 7, Supplementary Data Sheets 5 and 7), where
we found the gene LOC103342585 (PARG26597m01) as L10-
interacting MYB domain-containing protein-like.

ABC and MATE transporters find in ME turquoise, blue,
and yellow (Figure 7 and Supplementary Data Sheet 5), were
responsible for the transit of many substances like organic
acids or secondary metabolism. ATP binding cassette
ABC transporters were described as responsible for citrate
and malate accumulation. ABC transporters of Multidrug
Resistance-associated Protein (MRP) together with glutathione
transferases, found one gene in ME green, are described as
anthocyanin transporters by the deposition of large amounts of
phenolic compounds in vacuoles, being implicated in fruit
pigmentation. On the other hand, ABC transporters of
Pleiotropic Drug Resistance (PDR) subfamily are responsible
for terpenoid transport. Most of these ABC transporters were
found up-regulated in ‘GC 3-7’ (Supplementary Data Sheet 3),
which display higher levels of citrate, orange flesh and skin
ground color, and reddish blush (Supplementary Tables 1 and
2). Multidrug and toxin efflux transporters (MATE) family are
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suggested as responsible for flavonoid and other phenolic
compounds transport (Shiratake and Martinoia, 2007), up-
regulated in ‘GC 3-7’ (Supplementary Data Sheet 3).

For carotenoids biosynthesis pathway we only identified a
capsanthin/capsorubin synthase or lycopene b-cyclase [CrtL,
LOC103328471 (PARG02182m01)] in ME turquoise (Figure 7,
Supplementary File 3, Supplementary Data Sheets 5 and 7),
related to the secondary metabolism of carotenoids by lycopene
cyclization, yielding b-carotene, which does not correlate with
carotenoid content. This gene is up-regulated at the beginning of
the ripening process in ‘GC 2-11’, the light yellow flesh and skin
ground color genotype, which is the opposite of what we expect
when we take into account that this gene leads the synthesis of
b-carotene, responsible for the orange color in fruits and the
precursor of vitamin A. Going further, we analyze the expression
of carotenoid cleavage dioxygenase 4 (CCD4), which has been
reported as a carotenoid degradative enzyme responsible for
white flesh phenotype in peach. White flesh in peach was
described as a monogenic trait controlling Y locus ligated to
CCD4 gene expression (Adami et al., 2013); it is up-regulated in
‘GC 2-11’ (Figure 8). It was described in yellow/white peach that
carotenoid accumulation in skin ground color and flesh color
depends on the expression profile of lycopene b-cyclase
(PpLCYB) and carotenoid cleavage dioxygenase 4 (PpCCD4)
(Cao et al., 2017). When we calculated the Pearson correlation
coefficient between carotenoid content obtained at fruit quality
evaluation (Supplementary Table 1) and the gene expression of
CCD4 and CrtL, we obtain a negative correlation for CCD4
(Pearson coef.: −0.71) while a lower correlation with CrtL
(Pearson coef.: −0.19) taking in account the low expression
level for the CrtL gene which shows differential expression
levels between white fleshed apricot fruits of about 0.5 TPM
and yellow flesh of 0 TPM (Figure 9A). The coordinate
expression of both genes during ripening process caused an
increase in the synthesis of carotenoids in both genotypes during
color change, followed by a decrease in carotenoid content only
A B

FIGURE 9 | Cross-linked graph of relation between metabolite contents and gene expression obtained in RNA-Seq. (A) Relation of carotenoid content with the
expression of capsanthin/capsorubin synthase or lycopene b-cyclase [CrtL, LOC103328471 (PARG02182m01)] and carotenoid cleavage dioxygenase 4 (CCD4).
(B) Relation of sucrose content with the expression of sucrose synthase [SS, LOC103340632 (PARG27579m02)] and sucrose-phosphate synthase 1 [(SPS1,
LOC103341128 (unknown PARG ID)]. Standard deviations are indicated with vertical bars.
August 2020 | Volume 11 | Article 1269

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles
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in the light yellowgenotype ‘GC2-11’, whereCCD4 is up-regulated,
the expression ofCCD4being themajor determinant for carotenoid
content by degrading b-carotene into apocarotenoid compounds.

As a carotenoid precursor biosynthesis enzyme, we identified
1-deoxy-D-xylulose-5-phosphate synthase (DXS), which catalyzes
the fusion of pyruvate and glyceraldehyde-3-phosphate in the 2-
C-methyl-D-erythritol 4-phosphate pathway (MEP pathway),
yielding 1-deoxy-D-xylulose 5-phosphate (DXP), precursor
compound in carotenoid biosynthesis (Brandi et al., 2011). It is
found up-regulated in ‘GC 2-11’.

Skin ground color and flesh color were negatively correlated
with ME green and yellow (Figure 7, Supplementary Data Sheets
5 and 7), which are also positively correlated with ethylene burst,
which is described as the regulator of some genes involved
in carotenoid biosynthesis pathways (Marty et al., 2005)
(Supplementary File 3). Some apricot varieties, as climacteric
fruits, release ethylene in the final ripening stages. It has been
described that the loss of firmness as a result of the degradation of
galactosyl-containing polymers by b-galactosidase, up-regulated
in ‘GC 3-7’ (Figure 8), stimulates ethylene release (Kovacs and
Nemeth-Szerdahelyi, 2002). We find the genes responsible for
ethylene biosynthesis LOC103334507 (PARG20234m01) and
LOC103324123 (PARG03642m01), both predicted as 1-
aminocyclopropane-1-carboxylate oxidase homolog like (ACO).
However, no correlation was found between ethylene release
and ACO expression even though it was described in apricot
that ACO was strongly up-regulated during ripening before
ethylene production (Mbéguié-A-Mbéguié et al., 1999). The
other candidate gene involved in ethylene perception assayed was
Ethylene transduction gene (EDR1), responsible for ethylene
response transduction gene at fruit ripening in peach (Wang
et al., 2017), and it is up-regulated in ‘GC 2-11’, which did not
produce ethylene. No candidate genes were proposed for
ethylene signaling.

Related with loss firmness at ripening process, we found a
pectin methylesterase inhibitor gene [PMEI, LOC103322538
(PARG05244m01)], cluster in ME turquoise (Figure 7,
Supplementary Data Sheets 5 and 7) and up-regulated in ‘GC
2-11’ (Supplementary Data Sheet 3), with a slow loss offirmness
if we compared to ‘GC 3-7’ (Supplementary Table 1). The
modification of pectins during ripening resulted in tissue
softening and an overall loss of firmness. The inhibition of this
enzymatic activity may avoid or retard softening in ripe fruit
(Femenia et al., 1998). Another gene assayed was b-galactosidase
[BGAL, LOC103340681 (PARG27772m02)] which induced loss
of firmness during ripening by the degradation of galactosyl-
containing polymers (Kovacs and Nemeth-Szerdahelyi, 2002)
and found up-regulated in ‘GC 3-7’ at the end of the ripening
process. Besides, we analyze the expression of cinnamyl-alcohol
dehydrogenase [CAD, LOC103335323 (PARG29726m01)],
involved in lignin biosynthesis, which may be related to
firmness during fruit development (Gabotti et al., 2015; Zhang
et al., 2017b). It is up-regulated in ‘GC 3-7’ at the beginning of
the ripening process.

For chlorophyll degradation and color green loss from green to
ripe fruit (Supplementary Table 2), we found differential
Frontiers in Plant Science | www.frontiersin.org 17
expression in genes related with chlorophyll dephytylation in
ME blue LOC103329206 (PARG00063m07) as a pheophytinase,
and ME yellow LOC103324364 (PARG00058m01) as a
pheophorbide A oxygenase (Guyer et al., 2014) (Figure 7 and
Supplementary Data Sheet 5). Another gene related with
photosynthesis was psbP domain-containing protein 6 [psbP,
LOC103326460 (PARG10392m01)]; as part of the photosystem
II, PsbP increases the affinity of the water oxidation site for
chloride ions and provides the conditions required for high-
affinity binding of calcium ions (Kochhar et al., 1996). It is
differentially expressed in contrast by genotypes in P. mume.

Finally, we get some TF as a MADS-box TF found in ME
brown (Figure 7 and Supplementary Data Sheet 5), with a major
expression in fruit tissues related to fruit development (Xu et al.,
2014; Wells et al., 2015). A common plant regulatory factor 1-like
[bZIP, LOC103332281 (PARG18436m04)], which was a
homologous gene of CPRF1_PETCR in Petroselinum crispum
and bind to chalcone/stilbene synthase (CHS) gene promoter, a
key enzyme during anthocyanin biosynthesis, was up-regulated in
‘GC 2-11’ at the end of the ripening process. Furthermore, a
probable serine/threonine-protein kinase PBL16 (WRKY), a plant
specific TF that controls environment response to a biotic
stimulus, was up-regulated at the beginning of ripening in ‘GC
2-11’.
DISCUSSION

Pomological Characteristics and
Biochemical and Metabolite Contents
in Apricot Fruits
The biosynthesis of carotenoids was responsible for the orange
color in the skin ground color and flesh color in both genotypes.
In adition, anthocyanins were responsible for the reddish blush
color, arise the acquisition of definitive color of the ripe fruit. The
content of phenylpropanoids (chlorogenate, epicatechin, and
methyl nicotinate), precursors of anthocyanin biosynthesis,
showed a slight decrease during the ripening process in ‘GC 3-
7’ while no significant changes in ‘GC 2-11’. The principal
differences found between genotypes and stages were related to
skin ground color, flesh color, and blush color. In genotype ‘GC
2-11’ the carotenoid content increased during the ripening
process reaching the maximum amount during color change,
followed by an abrupt decrease at physiological ripening. On the
other hand, carotenoid content in genotype ‘GC 3-7’ undergoes a
gradual but constant increase throughout the ripening process,
reaching higher levels than ‘GC 2-11’ at the end of the ripening
process. If we pay attention to the skin ground color and flesh
color changes, it is correlated with the carotenoid content, while
the biosynthesis of phenylpropanoid may be correlated with
blush color intensity. Chlorophyll content decreased in both
genotypes until it is completely degraded, finishing the ripening
process with the total loss of green hue and the acquisition of
final light yellow/orange fruit color.

Metabolite evolution of apricot fruits during the ripening
process agrees with recent results in peach (Lillo-Carmona et al.,
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2020). Total soluble solids measured as a percentage is an
approximation to the strength of the solution as the percentage
of sucrose in fruit juice, but it was affected by the presence of
other solutes, while results of carbohydrate content obtained at
1H-NMR is an accurate and more reliable result. Sucrose and
glucose were the major soluble sugars in apricot ripe fruit,
reaching the peak of maximum concentration at ripe fruit,
higher in genotype ‘GC 3-7’ than in ‘GC 2-11’. At the beginning
of the ripening process, glucose content was higher than sucrose,
but sucrose content enhanced significantly at the end of ripening,
surpassing the amount of glucose in both genotypes. These results
represented the pattern of sugar accumulation during the
development and ripening of the fruit undergoes from being
glucose-predominant to sucrose-predominant at the end of the
fruit ripening process.

During the development of apricot fruit, there was a
continuous accumulation of organic acids, and their final
concentration was determined by the balance between the
biosynthesis of organic acids, its degradation, and the vacuolar
storage. Malate and citrate were the most abundant organic acids
in apricot fruit, and titratable acidity decreases as a result of its
degradation during ripening. At green fruit, malate is the
predominant compound, whereas the ratio was changing with
the rapid increase of citrate at ripening stage when the malate
declined at physiological ripening. However, citrate also
decreased at the ripening stage; the ratio between citrate and
other organic acids increases, becoming the major organic acid at
ripe fruit. The significant decrease in citric acid and the small
reduction of malic acid contributed to acidity loss. When we
compared the amount in organic acids in both genotypes, ‘GC 3-
7’ had higher levels of organic acids than ‘GC 2-11’, which
resumed in higher titratable acidity.

Finally, there was a pronounced release of ethylene and
firmness decline. In climacteric fruit, ethylene is the principal
ripening trigger, partially responsible for fruit softening rate and
carotenoid biosynthesis (Hayama et al., 2006; Kita et al., 2007). In
this sense, apricot fruit was described as differentially sensitive to
ethylene (Mbeguie-A-Mbeguie et al., 2002). ‘GC 3-7’ release
much more ethylene than ‘GC 2-11’, which may be related
with the faster softening occurred during ripening and the
orange fruit color in ‘GC 3-7’ in contrast with slowly softening
and light yellow fruit color in ‘GC 2-11’.
Mapping of Whole Transcriptomes
The alignment and assembly of RNA-Seq reads in the
non-model organism P. armeniaca to the genomes and
transcriptomes of P. persica and P. mume show very different
results depending on the protocol applied. A significantly higher
percentage of aligned reads with MAPQ ≥ 30 were obtained
when we map HISAT to the genome sequence of P. mume in
comparison with P. persica. Although up to now P. persica has
been used as a model species in the study of the genus Prunus sp.,
this taxon belongs to the subgenus Amygdalus, different from the
subgenus Prunus to which apricot belongs (Potter, 2012). In our
case the use of the genome of P. mume as a reference sequence
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owing its closer phylogenetic proximity, because these species
belong to the same subgenus Prunus and Armeniaca section
(Potter, 2012), seems an ideal strategy as has been confirmed
by the posterior analysis using the reference genome of this
species for our backward step. These mapping results were
also contrasted with the reference genome of P. armeniaca,
allowing us the identification of the physical position
(coordinates) of candidates genes.
Differentially Expressed Genes and
Enrichment in Relation to Pomological
Characteristics and Biochemical and
Metabolite Contents
There was no agreement on which protocol for DEG
identification is the most appropriate, so the consensus among
five DEG identification methods guarantees a list of DEGs with
more accuracy, sensitivity, and robustness in gene expression
estimation reliable results (Costa-Silva et al., 2017). DEGs
without replicates will not be considered because they are only
useful for exploring the data but will not provide the kind of
proper statistical inference on differences between samples or
estimate the biological variability of each gene (Love et al., 2014;
Conesa et al., 2016; Love et al., 2016).

The DEG identification method was the crucial decision
for the differential expression analysis in RNA-Seq data and
will be the key to understand the phenotype–genotype
variation through the biological interpretation of the data. The
confidence in the quantitative analysis depends on this point
more than on depth read or read length.

It is essential to include at least three replicates to capture the
biological variability between samples. Accordingly, after the
exploration of concordance between the samples, we decided to
group the samples by genotypes. It means that as DEG analysis
result, we obtained those genes differentially expressed in apricot
fruit during ripening process among the two genotypes ‘GC 2-11’
and ‘GC 3-7’.

The annotation of DEGs using GO terms as ontologies to
represent biological knowledge offered a detailed source for
functional transcriptomic studies based on a dynamic, structured,
and controlled vocabulary. GO terms provide a classification that
covers several domains by developing a comprehensive and
computational model of biological systems, ranging from
molecular to organism level (Consortium, 2004). Gene Set
Enrichment Analysis of DEGs and pathway identification defines
even more precisely the exact physiological process affected,
describing a comprehensive knowledge representation.

During the development and ripening the main biological
processes affected were catalytic activity, binding, and transporter
activity, which means degradation, modification, or translocation of
molecules; most of these processes are related to secondary
metabolism. Transcription regulator activity also appears
represented as the importance of gene expression regulation
during the ripening process. Main GO terms up-regulated
annotated in Biological Process are glycosylation and catabolic
process, while down-regulated is pigment metabolic process. This
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is strongly correlated with carbohydrate metabolism and pigment
content biosynthesis in each of the genotypes under study.

KEGG enrichment analysis of DEGs identifies affected
pathways, phenylpropanoid biosynthesis being the most altered
pathway. Phenylpropanoid pathway synthesizes the precursor
compounds of anthocyanins, which are linked to reddish blush
color (Ye et al., 2019) in the genotype ‘GC 3-7’. Other precursors
of anthocyanin compounds are flavonoids, phenylpropanoid
biosynthesis, and phenylalanine metabolism, also up-regulated
in ‘GC 3-7’. Finally, we can describe the pathways related
with soluble solid content, starch and sucrose metabolism and
glycolysis/glucogenesis, responsible for the biosynthesis of
sucrose from glucose and fructose, increasing soluble solid
content as responsible to the sweet taste in the ripe fruit
apricot. Some genes of starch and sucrose metabolism pathway
were up-regulated in ‘GC 3-7’, which could be correlated with the
higher sucrose and soluble solid content in this genotype.

Candidate Genes Related to Pomological
Characteristics and Biochemical and
Metabolite Contents in Apricot Fruits
A large-scale transcriptomic studies of apricot and related species
ripening process showed a significant up- and down-regulated
transcript levels of genes related to stress conditions, cell wall
metabolism, transcription factors (MADS-box, AUX/IAA, bZIP,
bHLH, and MYB), heat shock proteins (HSPs), ethylene
biosynthesis, starch and sucrose metabolism, organic acids
metabolism, phenylpropanoid and carotenoid biosynthesis
(Trainotti et al., 2003; Grimplet et al., 2005; Trainotti et al.,
2006; Trainotti et al., 2007; Manganaris et al., 2009; Manganaris
et al., 2010; Manganaris et al., 2011).

The principal enzymes involved in starch and sucrose
metabolism are sucrose synthase (SS), sucrose phosphate
synthase (SPS), and sorbitol dehydrogenase (SDH). These are
under tight regulatory control, increasing its expression at the
end of the ripening process, which is consistent with the
correlation analysis between enzyme activity and sugar
accumulation (Xi et al., 2016; Zhang et al., 2019). The drastic
increase of SS and sucrose during the ripening process is
responsible for the rapid increase of soluble solid content in
fruits (Meixia et al., 2006). In addition, a high positive correlation
between sucrose content and SS expression during fruit ripening
has been shown for the genotype ‘GC3-7’. However, this
correlation was not observed for the for the genotype ‘GC2-1’
when sucrose content was increased from stage A to stage C
(Figure 9B). Another significant increase in glucose and fructose
was found due to the increase in the activity of sorbitol oxygenase
(SO) and sorbitol dehydrogenase (SDH), where sorbitol was
converted to glucose and fructose via these two enzymes, which
suggest that the accumulation of these sugars mainly comes from
sorbitol catalysis. Though there were no significant differences
between epicarp and mesocarp, as the sweetest sugar, fructose
ratio is significantly higher in the flesh than in the skin, which is
consistent with the fact that sweet taste is stronger in the flesh
than in the skin (Xi et al., 2016; Zhang et al., 2019). Thus, SDH
[LOC103333266 (PARG19420m03)], described as a possible key
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factor during climacteric ripening in Japanese plum (Fernandez i
Marti et al., 2018), and SS [LOC103340632 (PARG27579
m02)] described as the main enzyme responsible for sugar
accumulation in apricot fruit (Xi et al., 2016), were both
proposed as candidate genes responsible for the increase of
sugar content during fruit ripening in apricot.

The red blush present in the skin of apricot was due to the
presence of anthocyanins. The major anthocyanin compounds
found in apricot fruit are cyanidin-3-O-rutinoside, cyanidin-3-
O-glucoside, and peonidin-3-O-rutinoside (Bureau et al., 2009).
The early anthocyanin biosynthesis genes (EBGs) are chalcone
synthase (CHS), chalcone isomerase (CHI), flavanone 3-
hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), flavonoid
3′5 ′-hydroxylase (F3′5 ′H), and dihydroflavonol 4-reductase
(DFR), which lead to the production of flavonols. The late
anthocyanin biosynthesis genes (LBGs) are anthocyanidin
reductase (ANR), leucoanthocyanidin reductase (LAR),
anthocyanidin synthase/leucoanthocyanidin dioxygenase (ANS/
LDOX), and UDP flavonoid 3-O-glucosyltransferase (UFGT). The
TF MYB10 has been implicated in the regulation of the last three
enzymes of the metabolic pathway DFR, ANS and UFGT, which
were the key to explain contrasting patterns of anthocyanin
accumulation in peach and Japanese plum (Ravaglia et al., 2013;
Gonzalez et al., 2016). While EBGs are regulated by R2R3-MYB
TFs without co-regulators, LBGs need MBW complex (Tanaka
et al., 2008; Petroni and Tonelli, 2011; Xu et al., 2015). The
expression of flavonoid biosynthesis genes correlated with
anthocyanin accumulation and red coloration, but there was
some variability in the specific step involved. In most species,
only LBGs correlated well with anthocyanin synthesis, such as
tomato (Povero et al., 2011) and pepper (Borovsky et al., 2004).

However, in other species the transcript levels not only of
LGBs, but also of some EBGs were higher in red compared to
non-red fruits, such Chinese bayberry (Niu et al., 2010), apple
(Takos et al., 2006a; Takos et al., 2006b), pear (Feng et al., 2010),
grape (Boss et al., 1996), cherry (Wei et al., 2015), peach
(Ravaglia et al., 2013), Japanese plum (Gonzalez et al., 2016),
mei (Zhang et al., 2017a), and apricot (Lin-Wang et al., 2010;
Kayesh et al., 2013). In apple, peach, Japanese plum, and sweet
cherry, the transcript level of MYB10 was up-regulated during
fruit red coloration development (Takos et al., 2006a; Lin-Wang
et al., 2011; Cheng et al., 2015; Wei et al., 2015; Gonzalez et al.,
2016). Besides, it was described in apricot that anthocyanin
biosynthesis is regulated by a MYB10 TF inducing the
expression of DFR. Almost the whole precursor pathways for
anthocyanin biosynthesis are identified from phenylalanine to
cyanidin 3-O-glucoside, the last steps to synthesize cyanidin-3-
O-rutinoside, and peonidin-3-O-rutinoside are not yet
elucidated, although it is known that the enzymes involved
must be of the type UDP-rhamnose as anthocyanidin-
3-glucoside rhamnosyl transferase. Similar to this function,
we identified some genes with UDP-glucuronosyl/UDP-
glucosyltransferase activity like 7-deoxyloganetin glucosy
ltransferase-like isoform X1 [LOC103319666 (PARG08586m01)]
and 7-deoxyloganetin glucosyltransferase-like [LOC103323807
(unknown PARG ID)] as possible candidates. Taking all
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together, the genes found as MYB [LOC103342585 (PARG
26597m01)], CHS [LOC103324315 (PARG03336m04)], ANS
(LOC103341429), UFGT (LOC103323450, unknown PARG ID),
DFR [LOC103320869 (PARG07267m01)], 7-deoxyloganetin
glucosyltransferase-like isoform X1 [LOC103319666 (PARG
08586m01)] and 7-deoxyloganetin glucosyltransferase-like
[LOC103323807 (unknown PARG ID)] may be the most
probable candidate genes responsible for anthocyanin
biosynthesis in apricot. Another interesting gene was the TF
bZIP [LOC103332281 (PARG18436m04)], bind to chalcone/
stilbene synthase (CHS) gene promoter, key enzyme during
anthocyanin biosynthesis, and it was up-regulated in ‘GC 2-11’
at the end of ripening process.

In apricot, the amount of carotenoids in the tissues is not
attributed solely to the ability to synthesize carotenoids; the
regulatory mechanisms based on degradation and accumulation
of carotenoids were postulated as responsible for carotenoid
content (Marty et al., 2005). We analyze the carotenoid cleavage
dioxygenase 4 (CCD4), responsible for the enzymatic cleavage of b-
carotene resulting in the production of volatile norisoprenoids
(apocarotenoids) and related to fruit aroma during ripening
(Zhang et al., 2019). This gene cosegregated with the Y locus,
which seems to control white/yellow flesh in peach, and it was
suggested as a molecular marker for white peach cultivar selection
(Brandi et al., 2011; Adami et al., 2013; Ma et al., 2014). Further
investigation on carotenoid profile compounds and the potential
role of CCD4 allelic segregation in different apricot varieties
will be needed to validate this result. We also propose the
gene DXS [LOC103335117 (PARG01985m01)] as carotenoid
biosynthesis precursor.

Concerning texture in peach, the expression of genes involved
in softening started before the appearance of the ethylene
climacteric rise at S3 stage, regarding the occurrence of the
ethylene climacteric. Moreover, some cell wall modifying
enzymes expressed in S3 could be involved in cell enlargement
associated with the vigorous fruit growth that occurred after stone
hardening (Trainotti et al., 2003; Trainotti et al., 2006). Pectins, the
main compound responsible for firmness in apricot fruit,
comprised a highly complex polysaccharide network with a
structurally diverse range of glycan chains, glycosidic linkages,
and other substituents, such as acetyl and methyl groups. Most
studies of pectin depolymerization have focused on a small group
of enzymes: pectin methylesterase (PME), b-galactosidase (b-
GAL), polygalacturonase (PG), and pectin lyases (PL). PL
showed maximum expression just before climacteric stage
causing massive degradation of pectins and decreasing its
expression before ethylene release (Brummell et al., 2004;
Vicente et al., 2007). By contrast, the other pectin-degrading
enzymes (PG, PME, and b-GAL) show a typical ripening-
pattern expression increasing its expression at the ripening stage
during ethylene release. PMEmainly catalyzes the de-esterification
of high methyl esterified pectin to generate low methyl esterified
pectin, which can be further hydrolyzed by PG (Chen et al., 2000;
Vicente et al., 2007). So, PL would appear to have the task to carry
out an early degradation of pectins, making themmore susceptible
to the subsequent attack of other degrading enzymes as PME and
Frontiers in Plant Science | www.frontiersin.org 20
b-GAL. Other enzymes probably involved were acetyl esterase
(AE), rhamnogalacturonan hydrolases, and lyases (RG) and pectin
methylesterase inhibitor (PMEI) (Chen et al., 2000; Vicente et al.,
2007). PMEIs were found up-regulated in half-ripe and ripe stage
during fruit ripening. PMEIs also play a role in plant defense
mechanism against pathogens. Their expression do not correlate
well with fruit firmness in apricot and may correlate with fruit
susceptibility to pathogen attacks (Chen et al., 2000). Expansins
(EXPs) also affect pectin depolymerization by non-hydrolytic
activity, and one expansin transcript was found increased during
apricot ripening, possibly by increasing substrate accessibility to
other enzymes (Brummell et al., 2004). Finally, cinnamyl-alcohol
dehydrogenase (CAD), as a precursor for phenylpropanoid
compounds in lignin biosynthesis, was described as responsible
for cleavage stone by affecting the deposition of lignin in the
endocarp of apricot fruit (Zhang et al., 2019). Considering all the
above, we proposed as candidate genes for firmness control during
ripening process CAD [LOC103335323 (PARG29726m01)], PMEI
[LOC103322538 (PARG05244m01)] and bGAL [LOC103
340681 (PARG27772m02)].
CONCLUSIONS

Within the framework of this work, we expanded our knowledge
about apricot fruit ripening, providing original information
about the dynamic expression of genes involved in the fruit
ripening process in two genotypes which differ in fruit color,
soluble solid content, and firmness. DEGs in the two assayed
apricot genotypes at three fruit ripening stages showed important
variation in the biosynthetic pathways of phenylpropanoids,
flavonoids, carotenoids biosynthesis and, starch and sucrose
metabolism. These genes could be possible candidates as
molecular markers for fruit color and soluble solid content.
We identified the gene for carotenoid biosynthesis lycopene b-
cyclase differentially expressed between genotypes but not
correlated with orange skin ground color and flesh color or
carotenoid content. The gene carotenoid cleavage dioxygenase 4,
which acts downstream lycopene b-cyclase in the carotenoid
pathways, degrading b-carotene into apocarotenoids
compounds, is highly correlated with carotenoid content and
correlated with light-yellow/white flesh. On the other hand,
sucrose content is mainly due to the expression of the gene
sucrose synthase in starch and sucrose metabolism. Carotenoid
cleavage dioxygenase 4 and sucrose synthase are identified as
candidate genes for light yellow/white fruit color and high
soluble solid content at the ripening process. This information
may be useful to improve agronomical production through the
identification of candidate genes involved in fruit ripening and
biochemical and metabolite contents that may be applied in
monitoring the ripening process in apricot fruit. The expression
of these candidate genes was highly correlated with the fruit
quality traits of interest and could be implemented in MAS to
increase the efficiency of apricot breeding programs by the early
selection of new genotypes with high-quality fruits and high
nutraceutical values. In addition, results showed the suitability of
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using different reference genomes and transcriptomes related to
Prunus species (mainly mei and apricot but also peach) as
reference sequences in transcriptomic analysis due to its
phylogenetic proximity.
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