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Differences in photosynthetic capacity among tree species and tree functional types are
currently assumed to be largely driven by variation in leaf nutrient content, particularly
nitrogen (N). However, recent studies indicate that leaf N content is often a poor predictor
of variation in photosynthetic capacity in tropical trees. In this study, we explored the
relative importance of area-based total leaf N content (Ntot) and within-leaf N allocation to
photosynthetic capacity versus light-harvesting in controlling the variation in
photosynthetic capacity (i.e. Vcmax, Jmax) among mature trees of 12 species belonging
to either early (ES) or late successional (LS) groups growing in a tropical montane
rainforest in Rwanda, Central Africa. Photosynthetic capacity at a common leaf
temperature of 25˚C (i.e. maximum rates of Rubisco carboxylation, Vcmax25 and of
electron transport, Jmax25) was higher in ES than in LS species (+ 58% and 68% for
Vcmax25 and Jmax25, respectively). While Ntot did not significantly differ between
successional groups, the photosynthetic dependency on Ntot was markedly different.
In ES species, Vcmax25 was strongly and positively related to Ntot but this was not the case
in LS species. However, there was no significant trade-off between relative leaf N
investments in compounds maximizing photosynthetic capacity versus compounds
maximizing light harvesting. Both leaf dark respiration at 25˚C (+ 33%) and, more
surprisingly, apparent photosynthetic quantum yield (+ 35%) was higher in ES than in
LS species. Moreover, Rd25 was positively related to Ntot for both ES and LS species. Our
results imply that efforts to quantify carbon fluxes of tropical montane rainforests would
be improved if they considered contrasting within-leaf N allocation and photosynthetic
Ntot dependencies between species with different successional strategies.
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INTRODUCTION

Tropical forests play an important role in controlling the global
carbon cycle and, thus, the rate of ongoing climate change
(Lewis, 2006; Stocker et al., 2014). They store more than half
of the carbon in the world’s forests (Pan et al., 2011), and provide
roughly one-third of the global terrestrial primary production
(Beer et al., 2010). Reliable quantification of the carbon uptake of
tropical forests across time and space thus requires understanding
of how carbon fluxes (carbon gain through photosynthesis and
carbon loss through respiration) vary among environmental
conditions and tree functional types. More specifically, Dynamic
Global Vegetation Models (DGVMs) and Earth System Models
(ESMs) require accurate representation of the factors controlling
variation in the maximum rates of photosynthetic carboxylation
(Vcmax) and electron transport (Jmax), as well as leaf respiration
(Rogers, 2014; Walker et al., 2014). For tropical forests in general
and African rainforests and tropical montane forests in particular,
much remains to be explored regarding these controls.

Most DGVMs and ESMs employ the photosynthesis model
by Farquhar et al. (1980), which represents the variation in Vcmax

and Jmax (at a reference temperature) as either fixed values for
different plant functional types or as linear functions of area-
based total leaf nitrogen content (Ntot; Kattge et al., 2009;
Thornton et al., 2009; Zaehle et al., 2010; Rogers, 2014; Walker
et al., 2014). However, a recent global meta-analysis found that
interspecific variation in Vcmax and Jmax was much more closely
related to photosynthetic N use efficiency than to Ntot (Ali
et al., 2015). Moreover, several studies in tropical rainforests
have found that area-based leaf nutrient content (i.e. N,
phosphorous) is often a poor predictor of the large interspecific
variation in photosynthetic capacity (Coste et al., 2005; van de
Weg et al., 2012; Houter and Pons, 2014; Dusenge et al., 2015;
Bahar et al., 2016; Hasper et al., 2017). Some of these studies have
indicated that the fractional investment of leaf N into compounds
maximizing photosynthetic capacity (i.e. Vcmax and Jmax) is a
considerably stronger determinant of interspecific variation in
Vcmax and Jmax than Ntot (Coste et al., 2005; Dusenge et al., 2015;
Hasper et al., 2017). Yet, more research is needed to confirm this
pattern since these studies were conducted on seedlings in a
greenhouse (Coste et al., 2005) or on a rather small number of
rainforest tree species (six in Dusenge et al., 2015; five in Hasper
et al., 2017). The strength of the relationship between
photosynthesis and Ntot may depend on leaf phosphorus (P)
content (Reich et al., 2009). However, Vcmax – N relationships
were similarly weak at both high and lower altitude in Rwanda, in
spite of leaf P content being twice as high at the higher site
(Dusenge et al., 2015). Furthermore, leaf P content and
photosynthetic N use efficiency (Vcmax per unit leaf N) were not
correlated in a large study of Andean and Amazonian rainforest
species (Bahar et al., 2016).

Part of the reason for why interspecific variation in
photosynthetic capacity is often poorly related to total leaf
nutrient content may be that species with different successional
strategies differ in within-leaf N allocation. Fast-growing and
short-lived early-successional (ES) tree species usually make
Frontiers in Plant Science | www.frontiersin.org 2
greater investments in N-rich molecules involved in
photosynthesis and respiration than slow-growing and long-
lived late-successional (LS) tree species, regenerating in low
light under tree canopies (Raaimakers et al., 1995; Valladares
and Niinemets, 2008; Xiao et al., 2018). In contrast, leaves of LS
species are often more long-lived and make larger fractional
investments in rather N-poor structural compounds and
pigmentation. However, these patterns do not always hold true
for tropical tree species. A study with seedlings of 14 rainforest
species found that while leaf mass per unit leaf area (LMA)
increased with species’ shade tolerance, photosynthetic capacity
and Ntot content did not systematically change (Coste et al.
(2005). Another study on 17 rainforest tree species, reported that
photosynthetic capacity decreased with increasing species’ shade
tolerance while LMA and Ntot did not change (Houter and Pons,
2014). These studies thus suggest that interspecific variation in
photosynthetic capacity in tropical trees is often controlled by
within-leaf N allocation, but more research is needed to explore
the link between within-leaf N allocation strategies and other
plant traits (e.g., other leaf traits, life history traits).

A recent study on six tropical montane rainforest tree species
indicated that there may be a trade-off involved in within-leaf N
allocation, such that ES species with high fractional N
investments into compounds that maximize photosynthetic
capacity (i.e. Vcmax and Jmax) invest less N into compounds
involved in light-harvesting (i.e., chlorophyll and photosystems),
and vice versa for LS species (Dusenge et al., 2015). Such
differences between ES and LS species are in line with the
“carbon gain hypothesis” put forward to explain plant shade-
tolerance. It states that shade-tolerant LS species have plant traits
that maximize carbon gain under low light conditions (e.g., low
respiration and LMA, high chlorophyll content and quantum
yield of photosynthesis; Valladares and Niinemets, 2008).
However, the study by Dusenge et al. (2015) found that LS
species, in spite of indications of higher chlorophyll content,
actually had significantly lower quantum yield than ES species.
Clearly, more research is needed to better understand the roles
played by different plant traits in controlling shade-tolerance in
tropical forests (Valladares et al., 2016; Poorter et al., 2019).

Africa harbors 27% of all tropical forests (Scatena et al., 2010)
and 13% of all tropical montane forests (elevation > 1000 m a.s.l;
Spracklen and Righelato, 2014). However with respect to ecological
and biogeochemical understanding of carbon dynamics, the
available data on African tropical forests is scarce, mainly due to
the lack of an extensive long-term observation network (Lewis
et al., 2009). This is particularly the case for mountainous
ecosystems (Mountain Research Initiative EDW working group;
Pepin et al., 2015). Here, we investigated physiological, chemical
and structural properties of leaves in mature individuals belonging
to 12 tree species—five ES and seven LS species—growing in one of
Africa’s largest remaining tropical montane rainforests, Nyungwe
forest in Rwanda. The overall aim of this study was to explore the
controls of interspecific variation in photosynthetic capacity and
other leaf gas exchange traits in tropical montane rainforest tree
species. Based on previous research, the following predictions
were tested:
September 2020 | Volume 11 | Article 500479
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1. ES species have higher photosynthetic capacity (higher Vcmax,
and Jmax) than LS species;

2. Area-based total leaf N content is a poor predictor of
photosynthetic capacity;

3. Successional groups differ in their within-leaf N allocation;
4. There is a trade-off in the allocation of leaf N between

investments into compounds maximizing photosynthetic
capacity versus compounds maximizing light harvesting;

5. Key predictions of the “carbon-gain hypothesis” do not apply
to montane rainforest tree species.

A previous study in Nyungwe forest showed that neither
intra- nor interspecific variation in photosynthetic capacity was
related to leaf P content (Dusenge et al., 2015), which was not
investigated here.
MATERIALS AND METHODS

Study Site and Plant Species
Data were collected on mature trees (Table 1) in Nyungwe
National Park (2°17—2°49’ S, 29°03—29°29’ E; elevation 1600–
2950 m, investigated plots at 1950–2500 m). Nyungwe National
Park (hereafter called “Nyungwe”) is located in the southwestern
part of Rwanda, Central Africa, within the Albertine Rift
ecoregion (Plumptre et al., 2007). Nyungwe covers 1013 km2

and forms, together with the contiguous Kibira national park in
Burundi, the largest block of tropical mi-elevation montane
forest remaining in Africa, with large areas encompassing a
mixture of primary and secondary forest due to its disturbance
history (Plumptre et al., 2002).

At a meteorological station located at Uwinka (2° 28’43”S, 29°
12’00” E, 2465 m altitude; Nsabimana, 2009; Nyirambangutse
et al., 2017), the average day and night air temperatures during
2007–2015 were 15.8°C and 13.5°C, respectively, and the
difference between the warmest and coldest month was 1.1°C.
The mean relative humidity was 84% and annual rainfall
was 1855 mm.
Frontiers in Plant Science | www.frontiersin.org 3
Nyungwe harbors more than 260 tree and shrub species, with
24 recorded as endemic to the Albertine rift (Plumptre et al.,
2002). The 12 species investigated in this study were selected to
represent common ES and LS species, according to data from 15
half ha monitoring plots recently established in the forest (Table 2
in Nyirambangutse et al., 2017). The most abundant ES and LS
species in Nyungwe are Macaranga kilimandscharica and
Syzigium guineense, respectively, each accounting for 18% of the
total number of trees with a diameter at breast height ≥ 30 cm
according to a forest-wide survey (Plumptre et al., 2002). The
other ES species co-occurred with M. kilimandscharica, except H.
abyssisnica which was found at edges and gaps, while the five of
the six other LS species clearly co-occurred with S. guineense.
Ocotea kenyensis occurred together with bothM. kilimandscharica
and S. guineense but has been described as a LS species in the
literature (Tesfaye et al., 2002). It was present mostly as rather
large trees in our plots, indicating that when co-occurring withM.
kilimandscharica it might be a survivor of earlier disturbance
events. The 12 studied species together account for 76% of the total
basal area of all trees with diameter at breast height ≥5 cm in the
15 monitoring plots (Table 1).

Leaf Gas Exchange Measurements
Field measurements of leaf gas exchange in mature trees were
conducted from late February to early August 2015 between
9:00 and 17:00 h, using two portable leaf gas exchange
instruments (LI6400; LI-COR Inc., Lincoln, NE, USA) with
the standard 2 cm × 3 cm leaf chamber and a light source (6400-
02B LED Light Source). Fully expanded newly mature sun
leaves without visible damage were selected and measured for
responses of net photosynthetic rate (An) to eight CO2

concentrations (range 60–2000 mmol mol-1; so called A-Ci

curves) at a photosynthetic photon flux density (PPFD) of
1800 mmol m-2 s-1. Then, An was measured at five different
levels of PPFD (0, 25, 50, 75, and 100 mmol m-2 s-1; so called
light-response curves) at a CO2 concentration of 400 mmol
mol-1 of air entering the leaf chamber. The relative air humidity
was kept between 60% and 80% during the measurements to
TABLE 1 | Description of early-successional (ES) and late-successional (LS) tree species investigated in this study.

Species Family Successional groupa Diameter at breast
height (cm)

%BA in plots Tree height (m)

Hagenia abyssinica (Bruce) J.F.Gmel. Rosaceae ES 28 ± 14 0.3 8 ± 5
Harungana montana Spralet Clusiaceae ES 41 ± 21 2.3 20 ± 2
Macaranga kilimandscharica Pax Euphorbiaceae ES 22 ± 5 24.8 15 ± 4
Prunus africana (Hook. f.) Kalkm. Rosaceae ES 35 ± 13 0.6 19 ± 6
Polyscias fulva (Hiern.) Harms Araliaceae ES 52 ± 13 3.4 20 ± 3
Carapa grandiflora Sprague Meliaceae LS 40 ± 22 2.6 19 ± 5
Cleistanthus polystachyus Hook.f. ex Planch. Euphorbiaceae LS 31 ± 15 2.6 18 ± 4
Faurea Saligna Harv. Proteaceae LS 53 ± 21 6.1 25 ± 7
Ficalhoa laurifolia Hiern. Theaceae LS 37 ± 12 2.5 22 ± 4
Ocotea kenyensis (Chiov.) Robyns & Wilczek Lauraceae LS 40 ± 18 3.0 22 ± 5
Strombosia scheffleri Engl. Olacaceae LS 31 ± 10 1.2 20 ± 6
Syzygium guineense (Willd.) DC. Myrtaceae LS 50 ± 21 26.6 20 ± 5
Septembe
r 2020 | Volume 11
Means ± SE are represented for n = 5–7 species per successional group and 7–15 trees per species.
aThe classification of the species into successional groups was based on information in the following publications in combination with our own observations of abundance in plots
dominated by Macaranga kilimandscharica (main ES species) and Syzygium guineense (main LS species) trees: Bloesch et al., 2009; Fischer and Killmann; Bussmann, 2002; Tesfaye
et al., 2002; Fashing, 2004; Fashing et al., 2004; Eilu and Obua, 2005; Kindt et al., 2014; Rutten et al., 2015.
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avoid stomatal closure. Measurements of the response of An to
Ci were performed only if the starting value of stomatal
conductance (gs) was above a minimal threshold of 0.03 mol
m-2 s-1. Measurements of dark respiration (Rd) were conducted
on a neighboring leaf, which had been covered by tinfoil and
acclimated to darkness for a least 30 min prior to the
measurement, to avoid post-illumination CO2 burst (Atkin
et al., 1998). Most measurements were conducted at a leaf
temperature of 20°C, but 12 measurements conducted under
unusually warm conditions were made at 25°C.

Leaf gas exchange was measured on one leaf per tree in at least
eight trees per species. The trees were selected from as many of
the 15 forest plots as possible (some species were, however,
present in only a few plots) to account for possible differences
among plots (e.g., fertility). The total number of measured leaves
was 116. Sun leaves were made accessible by cutting 1 to 2 m
branches using a saw mounted on a 20 m long telescopic pole.
The branches were immediately placed into a water-bucket prior
to gas exchange measurements. The short-term effect of cutting
was previously evaluated for Nyungwe tree species, showing no
significant effect on Vcmax and a quite small negative effect (−8%;
p < 0.05) on Jmax (Dusenge et al., 2015). It was therefore unlikely
that branch excision caused a sufficient disruption of xylem water
Frontiers in Plant Science | www.frontiersin.org 4
continuity to substantially affect gas exchange measurements, as
it may occur in some tropical tree species (Santiago and
Mulkey, 2003).

After the measurement campaign from late February to April,
it was found that a leak had been present in one of the two
instruments used. The conductance of the leak was quantified and
used to recalculate An and Ci data on the assumption that the CO2

concentration around the leaf chamber was 400 mmol mol-1.
Species-specific Vcmax values determined for the adjusted data
were very similar to the Vcmax values determined for data from the
instrument without a leak (on average 1% difference). However,
we refrain from reporting Jmax data for the measurements affected
by the leak since the leak correction was considerably larger at high
compared to low CO2 concentrations inside the leaf chamber (e.g.,
about five times as large at 2000 mmol mol-1 than at 60 mmol mol-1,
at an ambient outside CO2 concentration of 400 mmol mol-1). As
result, we present no Jmax data for two out of 12 species.

Leaf Gas Exchange Data Analyses
The photosynthesis model by Farquhar et al. (1980), with
modifications of photosynthetic temperature dependencies by
Bernacchi et al. (2001), was used to parameterize Vcmax and Jmax

from A-Ci curve data by the least squares method. The rates of
carboxylation-limited (Ac) and electron transport-limited net
photosynthesis (Aj) were calculated as:

Ac =
Vcmax(Ci − G *)

Ci + Kc 1 + O
Ko

� � − Rl (Eqn 1)

and

Aj = J
Ci − G *

4 Ci + 8G
= Rl (Eqn 2)

where Ci is the leaf intercellular CO2 concentration, Kc and Ko

are Michaelis-Menten constants for CO2 and O2, respectively; G*
is the CO2 compensation point in the absence of mitochondrial
respiration; Rl is the non-photorespiratory CO2 release in the
light; and J is the rate of electron transport. For Kc, Ko, and G*,
the values at 25°C as well as the temperature sensitivities were
taken from Bernacchi et al. (2001). The internal leaf conductance
for CO2 was not estimated and therefore “apparent” Vcmax and
Jmax values are reported, based on Ci rather than on the CO2

concentration at the chloroplast. The parameterization of Vcmax

and Jmax were done based on partial pressure units (Pa) of CO2

(Ci and G*) and O2; not on mole-based units.
Values of Vcmax, J, and Rl were determined simultaneously

with the only a priori restriction made to the A-Ci fitting that
data points with Ci below 100 µmol mol-1 were forced to be
Vcmax-limited. Values of Jmax were estimated from J as in Medlyn
et al. (2002). The uncertainty of the values of the curvature of the
light-response (0.9) and quantum yield of electron transport
(0.3 mol electrons mol-1 photons) used when calculating Jmax

from J has only a minor effect on the estimated value of Jmax

(Medlyn et al., 2002). Values of Jmax were reported only if the Aj

limited part of the A-Ci curve had at least two data points, or
from one single data point if Ci > 1000 µmol mol-1 and/or Aj was
TABLE 2 | Summary report with results of a two-factor mixed-effects ANOVA
and a linear mixed-effects model (see Statistical Analysis section).

Parameter Factor F-value p-value

Mixed-effects ANOVA

Vcmax25 Succ 9.8 0.011
Jmax25 Succ 11.6 0.009
Jmax25/Vcmax25 Succ 0.2 0.66
A280 Succ 9.4 0.012
AQY Succ 10.7 0.008
Rd25 Succ 6.9 0.025
Ntot Succ 0.4 0.54
LMA Succ 1.4 0.26
Chl Succ 1.6 0.23
Linear mixed-effects model

Vcmax25 Ntot 0.67 0.41
Succ 8.7 0.015
Ntot*Succ 5.8 0.018
NLH 11.7 0.001

NR+B Succ 4.2 0.067
NLH*Succ 0.5 0.5
Ntot 7.14 0.009

Rd25 Succ 7.14 0.023
Ntot*Succ 0.15 0.7

Ntot LMA 72.2 <0.001
Succ 0.0083 0.93
LMA*Succ 1.5 0.22
NLH 5.7 0.019

AQY Succ 4.8 0.052
NLH*Succ 2 0.16
Bold numbers represent p < 0.05. Traits analyzed were: maximum rates of Rubisco
carboxylation capacity (Vcmax25, µmol m-2 s-1) and electron transport (Jmax25, µmol m-2 s-1)
at 25°C; photosynthetic rates at a constant intercellular (Ci) CO2 concentration of 280 ppm
(A280, µmol m-2 s-1); the ratio of Jmax25 to Vcmax25 (Jmax25:Vcmax25 ratio); leaf mass per unit
leaf area (LMA, g m-2) and area-based total leaf nitrogen content (Ntot, g m-2); leaf dark
respiration measured at 25˚C; apparent quantum yield of photosynthesis (AQY); fractional
investments of total leaf N content into compounds maximizing photosynthetic capacity
(NR+B) and compounds maximizing photosynthetic light-harvesting (NLH).
September 2020 | Volume 11 | Article 500479
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at least 10% lower than Ac at the Ci value of that data point. These
criteria caused the exclusion of only two Jmax values. Light-
saturated net photosynthesis at a common Ci of 280 µmol mol-1

(A280; assuming the intercellular to ambient CO2 concentration
to be 0.7) was calculated based on the fitted photosynthesis
model for each leaf. Values of Vcmax, Jmax, and A280 are reported
for a reference leaf temperature of 25°C using temperature
response equations from Bernacchi et al. (2001), although most
measurements were conducted at 20°C. Reported values of Rd

were standardized to a leaf temperature of 25°C (Rd25) using a
Q10 value of 2.14, as suggested for tropical species (Atkin and
Tjoelker, 2003).

The apparent (i.e. based on incident rather than absorbed
radiation) quantum yield of photosynthesis was determined as
the slope of the light-response curve in the PPFD range 25–50
mmol m-2 s-1.

Leaf Structural and Chemical Traits
After gas exchange measurements, leaves were collected and the
dry mass of leaf discs of known area was recorded after drying at
70°C until constant weight in order to calculate leaf mass per unit
leaf area (LMA, g m-2). Discs were then ground to fine powder in
a ball mill, which was weighed and analyzed for N concentration
using an elemental analyzer (EA 1108; Fison Instruments,
Rodano, Italy).

Leaves were also measured for SPAD values, a proxy of leaf
chlorophyll content (Uddling et al., 2007) optically measured
using a SPAD meter (SPAD model 502; Minolta corporation,
Ltd., Osaka, Japan). Ten evenly distributed readings were made
across each leaf, again avoiding major veins. Leaf chlorophyll
content was estimated from SPAD measurements using an
equation for tropical tree species provided by Coste et al. (2010).

Within-Leaf N Allocation
The leaf N investments were determined for the following
components of the photosynthetic apparatus: Rubisco (NR);
bioenergetics, including coupling factors, electron carriers
except for photosystems, and Calvin-Benson cycle enzymes
except for Rubisco (NB); and light-harvesting complexes and
photosystems (NLH).

The NR was estimated using the equation and parameters
provided by (Niinemets and Tenhunen, 1997):

NR =
0:160 Vcmax

Vcr
(Eqn 3)

where Vcmax is the maximum rate of carboxylation, 0.160
converts Rubisco to N [g N in Rubisco (g Rubisco)-1] and Vcr

the specific activity of Rubisco at 25°C [20.78 mmol CO2 (g
Rubisco)-1 s-1].

The NB was estimated as:

NB =
Jmax

156� 8:06
(Eqn 4)

where it is assumed that N in bioenergetics is proportional to Jmax,
that 156 is the ratio of electron transport to cytochrome f content
in mol mol-1 s-1 and that 8.06 is the amount of cytochrome f per
Frontiers in Plant Science | www.frontiersin.org 5
unit N in bioenergetics in mmol g-1 (Niinemets and Tenhunen,
1997). The sum of NR and NB (NR+B) was used as a measure of
leaf N in compounds determining the maximum photosynthetic
rate, i.e. photosynthetic capacity

The NLH was estimated according to Evans and Poorter
(2001) as:

NLH = 41� 0:0155� Chl (Eqn 5)

where Chl is the area-based chlorophyll content (g m-2), 41 is the
N content per unit chlorophyll in light-harvesting complexes and
photosystems in sun exposed leaves in mol mol-1, and 0.0155 is
the molar mass ratio of N to chlorophyll. We divided NR+B and
NLH by Ntot to get the fractional investments (g g-1) to
compounds maximizing photosynthetic capacity and light
harvesting, respectively.

For leaves lacking Jmax data (see Leaf Gas Exchange
Measurements section above), NB was estimated by assuming
that these leaves had the same Jmax/Vcmax ratio as other leaves of
the same species for which Jmax data were available. In two
species lacking Jmax data altogether, the Jmax/Vcmax ratio was
assumed to be the mean of all other species (which did not
significantly differ among the other species or between ES and LS
species). The fraction of the total leaf N was markedly smaller for
NB (4%) than for NR (21%), causing small uncertainty in the
estimation of NR+B introduced by this NB data gap filling.

Statistical Analysis
To analyze the effect of successional identity on photosynthetic
capacity (Vcmax25, Jmax25 and Jmax25/Vcmax25 ratio), Rd25, AQY,
LMA, chlorophyll content, and Ntot, we used a two-factor mixed-
effects ANOVA, with successional identity as a main factor and
species as a random factor nested within successional group. The
relationship between Vcmax25 and Ntot was analyzed with a linear
mixed-effects model following Zuur et al. (2009) with Vcmax25 as
response variable, successional identity as a categorial factor, Ntot

as a covariate, and species as a random factor with trees as
replicates. We had five and seven species for early- and late-
successional (Table 1), respectively, and for each species 7–15
trees were measured. Differences were considered statistically
significant if p < 0.05. All analyses were performed in R (version
3.5.2), and the following packages were used: lme4 (for mixed-
effects modelling), dplyr (for data manipulation), and ggplot2 and
cowplot (for graphing).
RESULTS

Basal rates of photosynthetic capacity (i.e. Vcmax25 and Jmax25)
differed between ES and LS species. Vcmax25 was 58% higher in ES
(71 ± 9 µmol m-2 s-1) than in LS (45 ± 3 µmol m-2 s-1) species
(Figure 1A; Table 2). Similarly, Jmax25 was 68% higher in ES (171 ±
21 µmol m-2 s-1) than in LS (102 ± 6 µmol m-2 s-1) species (Figure
1B). Values of A280 were 58% higher in ES (14 ± 2 µmol m-2 s-1)
than LS (9 ± 1 µmol m-2 s-1) species (Figure 1C). The Jmax25/
Vcmax25 ratio (2.4 across all species) was not statistically significant
between ES and LS species, despite the relatively larger difference
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ziegler et al. Contrasting Photosynthetic-N Allocation Strategies
in Jmax25 compared to Vcmax25 between ES and LS species (Figure
1D). Leaf dark respiration at 25˚C (Rd25) was 33% higher in ES (1.6
± 0.1 µmol m-2 s-1) compared to LS species (1.2 ± 0.1 µmol m-2 s-1)
(Figure 2A, Table 2). Similarly, apparent photosynthetic quantum
yield (AQY) was 35% higher in ES (0.042 ± 0.003 mol mol-1
Frontiers in Plant Science | www.frontiersin.org 6
photon) than in LS (0.031 ± 0.003 mol mol-1 photon) species
(Figure 2B). Additionally, neither total leaf nitrogen (Ntot, 2.4 g m

-

2 across all species), nor LMA (128 g m-2), nor chlorophyll content
(0.84 g m-2) differed between ES and LS groups (Figure 3; Table 2;
Supplementary Table 2).
A B

DC

FIGURE 1 | Photosynthetic traits at 25˚C. Maximum rates of (A) Rubisco carboxylation capacity (Vcmax25, µmol m-2 s-1) and (B) electron transport (Jmax25, µmol m-2

s-1), (C) photosynthetic rates at a constant intercellular CO2 concentration (Ci) of 280 ppm (A280, µmol m-2 s-1), and (D) the ratio of Jmax25 to Vcmax25 (Jmax25/Vcmax25)
in early-successional (ES, white) versus late-successional (LS, gray) tree species in Nyungwe forest. The asterisks (in A–C) indicate statistical significance (p < 0.05).
Error bars represent SE with n = 5–7 species per successional group and 7–15 trees per species.
A B

FIGURE 2 | (A) Leaf dark respiration measured at 25˚C (Rd25, µmol m-2 s-1) and (B) apparent quantum yield of photosynthesis (AQY, mol mol-1 photon) for early-
successional (ES, white) and late-successional (LS, gray) tree species in Nyungwe forest. The asterisks (in A, B) indicate statistical significance (p < 0.05). Error bars
represent SE with n = 5–7 species per successional group and 7–15 trees per species.
September 2020 | Volume 11 | Article 500479

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ziegler et al. Contrasting Photosynthetic-N Allocation Strategies
The relationship between Vcmax25 and Ntot differed between
ES and LS species (Figure 4; Table 2). In ES species, Vcmax25

increased with Ntot, while in LS species there was no such
dependency at all. At low Ntot (~ 1 g m-2), Vcmax25 was similar
in both groups. At higher Ntot, however, ES species had
considerably higher Vcmax25 than LS species and this
difference increased progressively with the magnitude of Ntot.
However, Rd25 was positively related with Ntot for both ES and
LS species, with similar slopes but different intercepts
(Figure 5; Table 2).
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There was a positive relationship between the fraction of total
leaf N investments into compounds maximizing photosynthetic
capacity (NR+B) versus compounds involved in light-harvesting
(NLH), with both ES and LS species displaying similar slopes
(Figure 6, Table 2).

For both ES and LS species, Ntot was positively related to LMA
(Supplementary Figure 1; Table 2). There was also a negative
relationship between NLH and AQY for both groups, with similar
slopes and a nearly significantly lower intercept (p = 0.052) for LS
species (Supplementary Figure 2; Table 2).
A B

FIGURE 3 | Leaf structural and chemical traits. (A) Leaf mass per unit leaf area (LMA, g m-2) and (B) area-based total leaf nitrogen content (Ntot, g m-2) in early-
successional (ES, white) and late-successional (LS, gray) tree species in Nyungwe forest. Error bars represent SE with n = 5–7 species per successional group and
7–15 trees per species.
FIGURE 4 | Relationship between maximum rates of Rubisco carboxylation
capacity at 25˚C (Vcmax25, µmol m-2 s-1) as a function of area-based total leaf
nitrogen content (Ntot, g m-2) in early-successional (ES) and late-successional
(LS) tree species in Nyungwe forest. Different symbol colors represent each of
the 12 studied species, and symbol shapes represent successional groups
(ES = circle; LS = triangle). Black solid (ES: Vcmax25 = 13.9 Ntot + 38.6) and
dashed (LS: Vcmax25 = -1.6 Ntot + 49.1) lines are overall regression lines for
ES and LS groups, respectively. Colored lines represent regression lines for
each species belonging to ES (solid) and LS (dashed) groups, respectively,
but with common successional group-specific slopes. n = 5–7 species per
successional group and 7–15 trees per species.
FIGURE 5 | Relationship between dark respiration at 25˚C (Rd25, µmol m-2

s-1) as a function of area-based total leaf nitrogen content (Ntot, g m-2) in
early-successional (ES) and late-successional (LS) tree species in Nyungwe
forest. Different symbol colors represent each of the 12 studied species, and
symbol shapes represent successional groups (ES = circle; LS = triangle).
Black solid (ES: Rd25 = 0.27 Ntot + 0.99) and dashed (LS: Rd25 = 0.27 Ntot +
0.5) lines are overall regression lines for ES (solid) and LS (dashed) groups,
respectively, but with common slopes since these did not significantly differ.
Colored lines represent regression lines for each species belonging to ES
(solid) and LS (dashed) groups. n = 5–7 species per successional group and
7–15 trees per species.
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DISCUSSION

With the overall aim to explore the controls of interspecific variation
in photosynthetic capacity in tropical montane rainforest trees, we
investigated physiological, morphological and chemical leaf traits in
mature trees of 12 Central African montane rainforest tree species
with contrasting light requirements. These species together
represent about 60% of large trees (stem diameter at breast height
≥ 30 cm) in Nyungwe forest—Africa’s largest remaining mid-
elevation montane rainforest block (Plumptre et al., 2002; Chao
et al., 2011). The results highlight a marked difference in
photosynthetic N dependency between different successional
groups, with photosynthetic capacity strongly related to total area-
based leaf N content (i.e. Ntot) in ES species but not in LS species.

Photosynthetic capacity was markedly higher in ES compared
to LS species (Figure 1). This difference was caused by strongly
contrasting relative investments of leaf N to compounds
maximizing photosynthetic capacity, since Ntot was similar in
the two successional groups (Figure 3). These results confirm
our first and third predictions. The second prediction, of poor
dependency of photosynthetic capacity on Ntot, was true for LS
species but not for ES species (Figure 4). The lack of significant
relationship in LS species is in line with other recent studies on
tropical rainforest tree species (e.g. Coste et al., 2005; van de Weg
et al., 2012; Houter and Pons, 2014; upland species: Bahar et al.,
2016; Hasper et al., 2017; Gvozdevaite et al., 2018). However, it
contrasts with a study in lowland forests of subtropical China
showing a positive relationship between Ntot and photosynthetic
capacity in LS species but not in ES species (Zhang et al., 2018).
Frontiers in Plant Science | www.frontiersin.org 8
Our results on LS species also differ from those of global meta-
analyses demonstrating a significant positive relationship
between Ntot and photosynthetic capacity in tropical trees
(Kattge et al., 2009; Reich et al., 2009; Walker et al., 2014).

There are several possible reasons for why meta-analyses report
positive relationships between Ntot and photosynthetic capacity
while specific field studies do not. First, as we show here,
photosynthetic N dependency seems strongly linked to species
successional strategy (Figure 4). A field study focusing primarily
on LS species may therefore not detect any significant relationship
between Ntot and photosynthetic capacity while a meta-analysis
including both ES and LS species would do so. Second, the meta-
analyses included several studies that examined the canopy vertical
variation in Ntot and photosynthetic capacity (Porté and Loustau,
1998; Carswell et al., 2000; Kumagai et al., 2001; Meir et al., 2002;
Sholtis et al., 2004; Calfapietra et al., 2005; Domingues et al., 2005;
Tissue et al., 2005). Since both Ntot and photosynthetic capacity are
typically higher in sun leaves than in shade leaves this contributes to
the overall relationship between the two variables in these studies
(e.g. Carswell et al., 2000). Third, meta-analyses included data from
tropical areas with large variation in soil fertility (both N and P)
while such variation is considerably lower in most specific field
studies. This is well illustrated in a recent field study on 210 tree
species from lowland Amazonian (lower soil fertility) and upland
Andes (higher soil fertility) tropical rainforests, in which a
significant relationship between photosynthetic capacity and leaf
Ntot was found when data from both sites were pooled together (not
necessarily a causal relationship since leaf N and P co-varied; Bahar
et al., 2016). However, when trees from upland sites with high and
fairly homogenous soil fertility were analyzed alone, no relationship
between photosynthetic capacity and Ntot was found.

Our findings are in line with a recent global meta-analysis
covering all types of plants and ecosystems which showed that
within-leaf N allocation was a crucial determinant of variation in
photosynthetic capacity (Ali et al., 2015). It further showed that
about half of the variation in photosynthetic capacity could be
attributed to environmental factors influencing photosynthetic N
use efficiency (i.e. Vcmax or Jmax divided by N content). Our study
suggests that successional group is another factor, not included in
themeta-analysis of Ali et al. (2015), whichmay explain a significant
part of variation in photosynthetic capacity. Our results suggest ES
and LS species allocate equal fractions of leaf N into compounds
maximizing photosynthetic capacity at low Ntot, but that at higher
Ntot ES species gradually increase their absolute N investments to
photosynthetic capacity while LS species do not (Figure 4). These
results are in agreement with the general understanding of how
shade-intolerant ES species and shade-tolerant LS species differ with
respect to leaf physiological traits related to carbon assimilation, i.e.
that ES species prioritize high photosynthesis and rapid growth
(Raaimakers et al., 1995; Hikosaka, 2004; Valladares and Niinemets,
2008; Reich, 2014). They provide novel insight by showing that the
typical assumption of Ntot as a key determinant of photosynthetic
capacity seems to hold for ES species but not for LS species, at least
in tropical montane forests.

In contrast to the different relationships between Vcmax25 and
Ntot in ES and LS species, Rd25 was positively related to Ntot in both
FIGURE 6 | Relationship between fractional investments of total leaf N
content into compounds maximizing photosynthetic capacity (NR+B, g g-1)
and compounds maximizing photosynthetic light-harvesting (NLH, g g-1).
Different symbol colors represent each of the 12 studied species, and symbol
shapes represent successional groups (ES = circle; LS = triangle). Black solid
and dashed lines are overall regression lines for ES (NR+B = 0.45 NLH + 0.22)
and LS (NR+B = 0.45 NLH + 0.08) groups, respectively, but with common
slopes since these did not significantly differ. Colored lines represent
regression lines for each species belonging to ES (solid) and LS (dashed)
groups. n = 5–7 species per successional group and 7–15 trees per species.
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groups (Figure 5). This may reflect that, as Ntot increases, LS
species invest the additional N at high Ntot into maintenance and
secondary metabolism (i.e. defense) rather than into increased
photosynthetic capacity (which did not increase; Figure 4).

The fourth prediction tested—that there is a trade-off in the
allocation of leaf N between investments into compounds
maximizing photosynthetic capacity versus compounds
maximizing light harvesting—was not supported by our results
(Figure 6). This hypothesis, proposed by Dusenge et al. (2015)
and corroborated by Hasper et al. (2017), was based on their
observations of a negative relationship between photosynthetic
capacity (i.e. Vcmax25 and Jmax25) and SPAD values (a proxy for
area-based leaf chlorophyll content). In the current study, we
further tested the hypothesis by explicitly investigating the
possibility of a trade-off between fractional leaf N investments
into Rubisco and bioenergetics (NR+B) and light harvesting
compounds (NLH). Strikingly, we found the opposite trend,
suggesting that the hypothesis of Dusenge et al. (2015) may
not be a general trade-off explaining species successional
strategy. It is likely that there are other within-leaf N allocation
trade-offs involved which were not investigated here. A recent
meta-analysis (Onoda et al., 2017) revealed that the trade-off
between photosynthetic N and structural N in cell walls, the two
major leaf N pools, underlies the “leaf economics spectrum”
(Wright et al., 2004; Hikosaka, 2004). However, this type of
structure-function trade-off in N allocation is unlikely to explain
the differences in the Vcmax25-Ntot relationships between ES and
LS species found in our study (Figure 4), since they did not differ
in LMA or Ntot (Figure 3) and shared a common positive LMA-
Ntot relationship (SI Figure 1).

The fifth prediction tested—that key predictions of the
“carbon-gain hypothesis” do not apply to montane rainforest
tree species—was corroborated by our study. While
photosynthetic capacity and Rd25 (as also seen in Baltzer and
Thomas, 2007) differed in a way predicted by the carbon gain
hypothesis (both lower in LS species), AQY, Ntot, chlorophyll
content, and LMA did not (Table 2). In complete contradiction
with that hypothesis, AQY was even lower in LS compared to ES
species, as also observed in a previous study on tropical montane
trees species (Dusenge et al., 2015). Furthermore, our findings
showed a negative relationship between AQY and NLH for both
groups, implying that increased allocation of leaf N to light
harvesting compounds does not necessarily improve light use
efficiency, but rather the opposite. The lack of difference in LMA
between LS and ES species was not surprising as it agrees with
several studies on both mature and young tropical rainforest
trees (e.g. Coste et al., 2005; Houter and Pons, 2014; Dusenge
et al., 2015; Mujawamariya et al., 2018; Ntawuhiganayo et al.,
2020). Some caution should be taken when interpreting
observations on sun-exposed leaves of mature trees with
respect to species shade tolerance in the understorey. However,
since species ranking of leaf traits potentially linked to shade
tolerance appears to be similar in sun and shade leaves of juvenile
as well as mature tress (Rozendaal et al., 2006; Coste et al., 2009;
Dusenge et al., 2015) our results likely have relevance for trees
growing in the shade as well.
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Implications
Most DGVMs and ESMs represent the variation in Vcmax and Jmax

(at a reference temperature) as either fixed values for different plant
functional types or as linear functions of area-based leaf N, i.e. Ntot

(Kattge et al., 2009; Thornton et al., 2009; Zaehle et al., 2010; Rogers,
2014). Our finding of contrasting photosynthetic dependencies on
Ntot in ES versus LS species suggests that both these approaches are
problematic. Constant values for different plant functional types fail
to account for factors that control variation in photosynthetic
variation within each group, e.g. the variation in Ntot of ES
species in the present study (Figure 4). The Ntot function
concept, on the other hand, fails to recognize the lack of
photosynthetic N dependency found for LS species. Our findings
suggest that future model approaches would benefit from
introducing a plant trait like within-leaf N allocation or
photosynthetic N use efficiency. Such traits may be linked to
environmental conditions, as reported earlier (Ali et al., 2015),
and also to successional strategy, as found here. Our findings also
provide important knowledge to improve the accuracy of smaller-
scale process-based models developed to estimate gross and net
primary production in tropical montane rainforests. Recent work
has supplied these models with a better understanding of the
climatic variables and functional traits driving forest productivity,
but they still currently suffer from large and unaccounted between-
species variation in photosynthetic capacity—leaf N relationships
(van deWeg et al., 2014; Fyllas et al., 2017). Additionally, our results
suggest that a better understanding of the controls of within-leaf
nutrient allocation would contribute to a deeper understanding of
plant strategies related to successional status and their position in
the “fast-slow” plant economic spectrum (Reich, 2014).
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