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Silicon promotes nodule formation in legume roots which is crucial for nitrogen fixation.
However, it is very time-consuming and laborious to count the number of nodules and
to measure nodule size manually, which led nodule characterization not to be study
as much as other agronomical characters. Thus, the current study incorporated various
techniques including machine learning to determine the number and size of root nodules
and identify various root phenotypes from root images that may be associated with
nodule formation with and without silicon treatment. Among those techniques, the
machine learning for characterizing nodule is the first attempt, which enabled us to find
high correlations among root phenotypes including root length, number of forks, and
average link angles, and nodule characters such as number of nodules and nodule size
with silicon treatments. The methods here could greatly accelerate further investigation
such as delineating the optimal concentration of silicon for nodule formation.

Keywords: phenomics, root phenotype, nodule count, nodule size, legume, machine learning, image process,
high-throughput phenotyping

INTRODUCTION

Soybean is regarded as one of the three major crops in the world because of its nutritional value
(Bellaloui et al., 2013). For this reason, soybean is broadly cultivated not only for its use as an
ingredient in foods, such as soy source, soybean paste, and tofu but also for livestock feed (He and
Chen, 2013). Global soybean demands have grown steadily in recent years (Armah et al., 2011),
fueling the application of chemical nutrients to increase grain yield. As a result, nitrogen (N),
potassium (K), and phosphorus (P) are widely used in crop cultivation (Bharati et al., 1986). Among
these nutrients, N is the most essential for plant growth, so vast quantities of nitrogenous fertilizer
are used to improve crop yields (Tegeder and Masclaux-Daubresse, 2018).

Most plants need to uptake N from the soil and water via plant roots as inorganic ions,
ammonium (NH4

+), and nitrate (NO3
−) to maintain growth and development such as leaf

expansion, stem growth and production of amino acid (Masclaux-Daubresse et al., 2010;
Bloom, 2015). However, legumes form symbioses with N2-fixing bacteria in the soil that
biologically convert atmospheric N2 to NH3 for use in the plant. This symbiotic relationship
generates root nodules on the host plant in which the rhizobia are found as N2-fixing
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bacteroids (Schultze and Kondorosi, 1998; Stougaard, 2000;
Rentsch et al., 2007). Interestingly, such nodulation and
N2 fixation depend on an adequate supply of both macro-
and micronutrients (Smith, 1982). In particular, among the
micronutrients, iron (Fe) plays an important role in nodule
formation by affecting the activation of the legume host and
rhizobia (Brear et al., 2013). Molybdenum (Mo) is known as
an important micronutrient for biological N-fixation in soil
because Mo participates biochemical redox reaction when
N-fixing bacteria converts atmospheric N2 into ammonium-N
and nitrate-N forms in nodules (Mendel and Hänsch, 2002; Alam
et al., 2015). Thus, proper concentration of Mo treatment induces
increased the number and weight of nodules in leguminous crops
(Hashimoto and Yamasaki, 1976; Rahman et al., 2008; Togay
et al., 2008; Alam et al., 2015). In the case of silicon (Si),
experiments conducted in cowpea found that application of Si to
cowpea promoted nodule formation and function (Nelwamondo
and Dakora, 1999). However, whether Si application affects
either nodule formation or root morphological traits of soybean
plant is not yet known.

Si is beneficial not only for plant growth but also in conferring
tolerance to abiotic and biotic stress (Guntzer et al., 2012; Kim
et al., 2014, 2016; Jang et al., 2018). In Japan, slag silicate fertilizer
is applied to paddy fields to increase Si uptake of rice plants
because of Si-deficient soil (Ma and Takahashi, 2002). Slag is a
byproduct of iron production, so it includes various inorganic
nutrients, such as Si, Fe, Mo, and magnesium (Mg) (Ma and
Takahashi, 2002). Since Ma et al. (2006) identified Si transfer
genes in rice root, similar genes have been discovered in barley,
cucumber, tomato, maize, and soybean (Ma et al., 2006; Feng
et al., 2009; Mitani et al., 2009; Yamaji et al., 2012; Deshmukh
and Bélanger, 2016). Despite the identification of the Si transfer
genes (GmNIP2-1 and GmNIP2-2) in soybean roots, the effects of
Si on nodule formation and root morphology in soybean remain
unidentified (Deshmukh et al., 2013).

The root system is an essential organ for water acquisition
and nutrient absorption throughout a plant’s life (Zhao
et al., 2017). Moreover, roots participate in nutrient cycling
and soil formation/stabilization through interaction with soil
organisms (Bardgett et al., 2014; Faucon et al., 2017). Therefore,
understanding of root morphological traits helps predict plant
growth and development. Information about root system
architecture is derived mainly under controlled conditions at
early growth stages because manually measuring root traits is
time-consuming, laborious, and inaccurate in a fully grown plant
(Costa et al., 2001; French et al., 2009; Lobet et al., 2011). In the
field, “shovelomics” is a method of field excavation of mature root
crowns for analysis of root phenotypes, so shovelomics has been
broadly used for breeding and quantitative genetics (Colombi
et al., 2015). However, this method measures the ground nodal
root (crown root) phenotypes, disregarding the internal root
system and the root traits of the younger nodes, despite the
overwhelming impact of these roots on plant growth (York and
Lynch, 2015). This method of collecting the root data is also
time-intensive.

With the advances in data analysis, image-based measurement
technologies have become an invaluable detection system for

measuring various plant traits, such as leaf color, leaf area
index, and stem width and height (York and Lynch, 2015).
Several researchers have attempted to identify root traits by high-
throughput phenotyping (Leitner et al., 2014; Pace et al., 2014;
Lobet et al., 2017). Depending on the target traits, various image
analysis methods have been developed, such as X-ray imaging
(Mooney et al., 2012), magnetic resonance imaging (MRI; van
Dusschoten et al., 2016), 2-dimensional (2D) imaging (Pornaro
et al., 2017), and 3-dimensional (3D) imaging (Topp et al., 2013;
van Dusschoten et al., 2016). While most of these approaches
can analyze root morphological traits, such as length, area, width,
and angle, MRI, X-ray, and 3D imaging techniques are difficult
to apply in the field because of the associated costs, so 2D
image analysis has been widely used (York and Lynch, 2015;
Pornaro et al., 2017). For the same reason, the current study
used 2D imaging to acquire data on root morphological traits,
such as surface area, length, and angle, as well as root nodule
number and size in fully grown soybean plants. To analyze
morphological traits, we used WinRHIZO technology, which is
a root-measuring system. Despite the importance of nodules
for N fixation and N utilization, there is no simple way to
quantify nodules using 2D image analysis under field conditions.
For these reasons, nodule number and size were determined
by the deep learning-based detection and segmentation for
accurate detection.

In this study, we characterized various root traits, including
nodule counts and sizes, based on 2D image analysis, to examine
the effect of Si fertilization using image analysis with machine
learning techniques.

MATERIALS AND METHODS

Selection of Plant Materials
Our research team previously identified the proper concentration
and uptake ratio of Si, using 15 soybean cultivars (Park et al.,
2019). The results confirmed that cv. Taeseon showed a higher
absorbed-Si content relative to the other cultivars. Thus, cv.
Taeseon was used in the current study to investigate the effect of
Si on various phenotypic root traits.

Treatment of Si Fertilizer and Sample
Preparation
The field was located at the Gyeongsang National University
Research Farm (35◦14′N, 128◦09′E) in Jinju-si, Gyeongnam,
South Korea. The experiment was set up as a split-plot
arrangement in a randomized complete block design, with three
replications. The treatments consisted of (i) Control, (ii) Si–
soil (Si applied to soil), and (iii) Si–soil + leaf (Si applied to
soil and leaves) since Si is known to be absorbed via leaves
as well (Cao et al., 2020). Each plot size was 4 m × 4 m,
with 1 m row spacing. Before the planting, ridges (0.3 m
high × 0.7 m wide) were prepared for each plot. Soybean
seeds were sown on June 15, 2018, at a planting distance of
0.15 m using a disk hand planter (TP-10RA, AGRITECNO
YAZAKI Co., Ltd., South Korea). For Si soil application, we
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applied 1.6 kg of commercial silicate fertilizer (25% SiO2–
2% MgO–40% CaO; Pungnong Co., Ltd., South Korea) to the
soil surface, according to the manufacturer’s recommendations
(100 kg/1000 m2), at planting. Additionally, for foliar application
of Si (Si–soil + leaf), we sprayed 2.0 mM of sodium metasilicate
(Na2SiO3; Sigma-Aldrich, United States) when the 4th–5th
trifoliate leaf had fully emerged and unrolled (V4–V5 stage).
To determine the soil chemical properties in the research
area, 20 samples were taken from 0 to 30-cm depth, then
air-dried. The soil at the experimental site contained organic
matter, available phosphate, K, Ca, and Mg at 9.3 g/kg,
55 mg/kg, 0.25 cmol/kg, 4.07 cmol/kg, and 0.47 cmol/kg,
respectively (Table 1).

Phenotypic Data Collection
Root Sampling and Analysis
We applied three different Si applications as seen in “Materials
and Methods” to identify Si effects on root morphology. We
collected 30 root samples from each plot when the soybean
plants reached the R8 stage, i.e., when 95% of the pods display
full mature color, and when root growth has ceased (Nleya
et al., 2013). Before sampling, the above-ground plant parts
were removed, then a circle was marked by a round-basket
(30 cm in diameter) on the soil around the target plant.
The target root and soil were carefully removed to a depth
of 30 cm. To minimize root and nodule loss, roots were
gently washed with tap water which was contained in a basket
(width 304 mm × height 330 mm) to remove attached soil.
Weather conditions during the entire soybean growth period
is described in Figure 1. The average temperature was 11.8◦C
(October)−26.9◦C (July) and the rainfall showed 64.0 mm (June)
−319.5 mm (August) (Figure 1).

Image Analysis for Root Phenotype
Root images were acquired using a mirrorless camera (M100,
Canon, Japan) with a mini-rhizobox (Supplementary Figure S1).
The camera information is detailed in Supplementary Table S1.
All root samples were imaged with the lens focus fixed at
22 mm. Additionally, to measure root morphological traits,
the collected root images were analyzed using WinRHIZO Pro
software (WinRHIZO, Regent Instruments, Inc., Canada). Each
root trait is defined in Supplementary Table S2.

Image Analysis for Nodule Count and Size
Almost all nodules of soybean roots were small and overlapped
each other. The measurements (e.g., number of objects,
areas of an object) of small and overlapping objects were
computer vision challenges. Therefore, we designed a pipeline
of accurate measurements by using a deep network-based

nodule segmentation and semi-automatic annotation function-
based error correction process (Figure 2). The pipeline code
is available at https://github.com/ektf1130/nodule_in_soybean_
root. The details are provided below.

Training deep network and nodule segmentation
U-net architecture is a robust package for segmentation of
thin and small objects (Olaf et al., 2015). It is a convolutional
network architecture for fast and precise segmentation of
images known to be the prior best method for segmentation
(Livne et al., 2019). Thus, U-net was used for pixel-wise
segmentation of soybean root nodules, with separation of
the nodules in a soybean root from the background. To
train the segmentation network, RGB color images and their
mask images are required; the mask image designates the
foreground nodules as white and the background as black
(Figures 3C,D). U-Net is used mainly to input the image
dimension as multiples of 32, and our network used 1024× 1024
pixel images as inputs for maximum resolution considering
the specifications of our training computer; Intel(R) Core(TM)
i7-4790K CPU @ 4.00 GHz, 32 GB RAM, NVIDIA GeForce
GTX TITAN X 12 GB.

In the offline process shown as Figure 2, initially, we created
35 masks (annotations) of root images manually using our
customized annotation tool. The RGB color and mask images
(i.e., training data) were properly scaled and padded for the
network size by pre-processing; the original size of RGB and mask
images (6000 × 4000 pixels) were converted to 1024 × 1024
pixel images (Figures 4A,B). Then, our deep network was trained
using the processed training data.

In the online process, input root RGB color images
are converted into 1024 × 1024 pixel images, and nodule
segmentation of the root is performed using the trained deep
network; the network outputs mask images.

Post-processing and Nodule measurements
The fully connected conditional random fields (Krähenbühl
and Koltun, 2011) was mainly used to remove noises from
mask images (segmentation results) generated by the trained
deep network as a post-processing step, to improve the
accuracy of segmentation at the pixel level. As a result of
the nodule segmentation, the mask image had probabilities
of between 0 and 1 for each pixel (Figure 4C). Krähenbühl
and Koltun (2011) used the probabilities, and color and
position of each pixel to remove noise (Figure 4D). After
noise removal, the holes representing nodules in the mask
images were filled using the closing process (Figure 4E).
Then, the semi-automatic annotation-based error correction
was performed. Finally, the fully connected components were
detected, and noise was removed by component sizes. The
nodules were counted using the detected components (i.e.,

TABLE 1 | Soil chemical properties of the experimental site (0–30 cm).

pH EC OM Av. P2O5 K Ca Mg ORD

1:5 1:5 (dS/m) (g/kg) (mg/kg) ———– (cmolc/kg) ———– (kg/10a)

6.65 0.21 9.3 55.0 0.25 4.07 0.47 133.00

Frontiers in Plant Science | www.frontiersin.org 3 October 2020 | Volume 11 | Article 520161

https://github.com/ektf1130/nodule_in_soybean_root
https://github.com/ektf1130/nodule_in_soybean_root
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-520161 October 22, 2020 Time: 17:20 # 4

Chung et al. Image Analysis for Root Nodule Characterization

FIGURE 1 | Weather condition of experimental field in 2018.

FIGURE 2 | Image analysis pipeline.

blobs), shown in Figure 5D, and the nodule size was
converted from pixels to actual size (i.e., mm2) using a
reference size; the actual sizes of the reference were measured
in advance.

Semi-automatic annotation-based error correction and
transfer learning
In general, adding more validated training data increases the
performance of the deep learning-based segmentation network
and widens the range of data that can be processed. However,
generating annotation images (training data) is labor-intensive;
it is time-consuming to generate training data because nodules
in a root are small and numerous, and the amount of training
data required for optimal deep network performance is unknown.

Also, even with the optimal trained networks, segmentation
errors can occur for new root images. Therefore, we created
a semi-automatic annotation tool to improve the mentioned
problem. Our tool was customized based on the existing tool
that has a simple to use and convenient graphical user interface
(GUI) to generate training data (Dutta et al., 2016). We
have added a function that automatically annotates regions of
nodules using our pre-trained deep network on the existing tool.
Our customized tool was used for semi-automatic annotation
(generating training data) and error correction.

Initially, a pre-trained deep network is required for the semi-
automatic annotation. So, we manually generated an appropriate
amount of training data (mask images) using the customized
tool; the appropriate amount means minimal labor for manual
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FIGURE 3 | Graphical User Interface of annotation tool and training data generation. (A) overview of annotation tool (B) manual inputs of annotation by clicking
polygons (C) an RGB color image (D) a mask image.

annotation. We created 35 training data sets of root images
manually; there are multiple nodules on each root, and we
drew polygons by clicking on the contour of each nodule
(Figures 3A,B). Then, a deep network was trained using the
training data; it is a pre-trained deep network. The nodule
segmentation of the pre-trained deep network was not robust, but
it was enough to use as an aid to create additional training data
(Supplementary Table S3).

New root images were input into the pre-trained network and
mask images were created. Next, the coordinates of contours of
each nodule were computed from the mask images, and were
then imported into the customized tool and displayed on the
new root images (Figures 4E,F). We then manually corrected the
error regions of the contours using the GUI tool (Figures 5A,B);
the semi-automatic annotation processes significantly reduced
the time to create additional training data, which were used
to update the pre-trained deep network (i.e., transfer learning).
The segmentation performance of each updated pre-trained
deep network was improved by incorporating additional training
data (Figure 6A). We repeated these processes until the
segmentation performance of the updated pre-trained deep
network was sufficiently robust. The performance was evaluated

using the F1-score metric, which is frequently used to evaluate
segmentation performance (Goutte and Gaussier, 2005; Csurka
et al., 2013). The F1-score can be used to evaluate our pre-trained
network without bias because the score was considered a balance
between precision and recall.

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

F1 score = 2×
P × R
P + R

True Positive (TP), False Positive (FP), and False Negative (FN)
are ratios between the predicted value (nodule and background)
from the pre-trained deep network and the actual value (mask
images); TP means that the actual foregrounds are predicted
as foregrounds by the pre-trained network; FP means that
the actual backgrounds are predicted as foregrounds by the
network; and FN means that the actual foregrounds are predicted
as backgrounds. Finally, the pre-trained deep network using
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FIGURE 4 | Nodule measurement processes. (A) raw input RGB color image (6000 × 4000 dimensions) (B) pre-processed RGB color image (1024 × 1024
dimensions) (C) segmentation results; probability for each pixel (1024 × 1024 dimensions) (D) post-processing results on segmentation result (1024 × 1024
dimensions) (E) reconstruction of original size (6000 × 4000 dimensions) (F) loading nodule regions on annotation tool; the regions extracted from the final
reconstructed segmentation result is displayed on the tool.

135 training data was created and showed robust performance
according to the F1-score (Figure 6B).

This pre-trained network became the final nodule
segmentation network, with fewer errors than the initial
pre-trained network. Additional error correction was performed
with the same process as the initial semi-automatic annotation
mentioned above. In the online process, error correction was
performed on the mask image of the post-processing result,

and the new mask was generated after error correction. Nodule
measurements were then obtained using the corrected mask
images (Figures 5C,D).

Statistical Analysis
A randomized block design was used with subsampling and
three replications (blocks). Three treatments (fertilizer type)
were applied randomly within each block. Analysis of variance
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FIGURE 5 | Semi-automatic annotation function-based error correction. (A) confirm of error nodules (B) error correction; red rectangles (C) segmentation result
(mask image) before error correction (D) segmentation result after error correction.

FIGURE 6 | F1-scores of trained deep segmentation networks; y-axis of 1.0 means 100 percentage matched between predicted mask image and actual mask
image (ground truth image). (A) F1-scores of trained networks according to the number of training data (B) F1-scores of final deep segmentation network; an epoch
means an iteration of the number of training data.

(ANOVA) models were used to investigate the effect of the Si
treatments on the root traits. For these traits, the data tidying
consisted of computing the sum of nodule size for each image
and converting the area measured in millimeters squared to
centimeters squared, resulting in 270 data points. The statistical
model is given by:

yijk = µ+ βj + αi + δij + ijk

where yijk is the response variable (phenotype); µ is the intercept;
βj is the j-th block effect; αi is the i-th treatment effect; δij is
the ij-th experimental error (plot effect), and ijk ∼ N(0, σ2) is
the sampling error.

A quantile–quantile plot was performed to verify the null
hypothesis of the normality of the residuals, and the fitted versus
residuals plot was tested for homogeneity of variance. For some
phenotypes (nodule size and count), logarithmic transformation
was sufficient to deal with non-normality and heteroscedasticity.

Frontiers in Plant Science | www.frontiersin.org 7 October 2020 | Volume 11 | Article 520161

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-520161 October 22, 2020 Time: 17:20 # 8

Chung et al. Image Analysis for Root Nodule Characterization

FIGURE 7 | P-values associated with pairwise comparisons of means of treatments for nodules size (A) and nodules counts (B). Means are shown using a
logarithmic scale.

For others, a heteroscedastic linear mixed model was fitted to
verify the null hypothesis (i.e., no difference between treatments).
The variance structure used to model heteroscedasticity was
proportional to the power of the absolute value of the fitted
values or different variances across experimental units. Tukey’s
test was used to compare the means of the treatments.
Correlations between root traits in which the treatments were
significant, were computed.

RESULTS

Significant differences in nodule size and number were detected
among the treatments (Figure 7). The Si–soil + leaf plants showed
a significantly higher mean nodule size as compared with control
and Si-soil treated plants. For the number of nodules, the only
differences were between Si–soil + leaf and control and between
Si–soil and Si–soil + leaf. Overall, Si treatments were effective on
increased nodule size and number when applied to both soil and
leaf at the same time.

To investigate if the root architecture phenotypes were affected
by Si treatment, nine aspects of root structure were evaluated,

TABLE 2 | F test for fixed effects from the mixed model fitted to root architecture
data originated from a randomized complete block design with subsampling.

Variable F statistics P-value

Length 14.79 0.01

Area projection 4.10 0.11

Average diameter 0.98 0.45

Number of tips 3.44 0.14

Number of forks 14.12 0.02

Linked average surface area 1.32 0.36

Linked average diameter 1.26 0.38

Average link angles 11.80 0.02

Main total length 0.28 0.77

including length, average diameter, number of tips, number
of forks, projected area, main total length, lateral total length,
link projected area, link average length, link average surface
area, link average diameter, and link average branching angles
(Supplementary Table S2). Among them, three variables, namely
length, number of forks, and link average branching angles,
showed significant differences (Table 2). This implies that length,

Frontiers in Plant Science | www.frontiersin.org 8 October 2020 | Volume 11 | Article 520161

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-520161 October 22, 2020 Time: 17:20 # 9

Chung et al. Image Analysis for Root Nodule Characterization

FIGURE 8 | P-values associated with pairwise comparisons of means of treatments for length (A), number of forks (B), and average link angles (C).

TABLE 3 | Correlation network plot between phenotypic data obtained by image analysis and root architecture data.

Number of nodules Root length Number of forks Average link angle

Nodule size a0.95*** a0.89*** a0.97*** a0.32**
b1.00** b0.28** b0.38*** b0.11
c0.98** c0.98** c0.99*** c0.98***

Number of nodules 1 a0.99*** a0.97*** a0.00
b0.25* b0.35*** b0.08
c1.00*** c1.00*** c0.92***

Root length 1 a0.92*** a
−0.14

b0.99*** b0.99**
c1.00*** c0.92***

Number of forks 1 a0.26*
b0.96***
c0.94***

aControl.
bSi–soil.
cSi–soil + leaf.
*, **, and ***, P < 0.05, 0.01, and 0.001, respectively.

the number of forks, and average link angles are important
morphological traits for Si response in soybean root. Length
showed significant difference between Si–soil and control, and

between control and Si–soil + leaf (Figure 8A). However, our
results did not show significant difference between Si–soil and
control in number of forks, while a significant difference observed
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in comparison with control and Si–soil + leaf, and between Si–
soil and Si–soil + leaf (Figure 8B). Link branching angle observed
similar pattern with number of forks. Except for comparison with
control and Si–soil, all treatment showed significant difference
at P < 0.05 (Figure 8C). Those three root traits were then
correlated with the nodule size and number of nodules formed in
the control and treated plants to determine if the root structure
phenotypes affected nodule formation (Table 3). Treatments do
not have effects between nodule size and the number of nodules
and between root length and the number of forks. However,
there were high correlations (r = 0.95–1.00) between nodule size
and number in the control and all treatments, indicating that
nodule size and number are highly associated, irrespective of the
amount of Si the plant absorbs. There were also high correlations
(r = 0.92–1.00) between number of forks and length in the
control and all treatments, suggesting that fork development, as
the initiation point of elongation of lateral roots, augments root
length at all Si levels. There were significant Si treatment effects
on the correlation between average branching angle and root
length and between average branching angle and number of forks,
with correlation values ranging from r = 0.92 to r = 0.99, showing
that Si is responsible for lateral root formation and its angle. The
correlation between nodule size and between average branching
angle and between nodule number and average branching angle
was highly affected only by the Si–soil + leaf, although there was
a low correlation (r = 0.32) between nodule size and average
branching angle in the control plants. However, the correlation
results between nodule size and root length, between nodule size
and number of forks, between nodule number and root length,
and between nodule number and number of forks were difficult
to interpret because the correlations were high both in the control
and in the Si treatment on Si–soil + leaf treatment, while the
correlation was low in the Si–soil treatment.

DISCUSSION

The image was obtained to maximize the area of roots by
adjusting the camera angle. Nonetheless, it is impossible to
characterize the nodule behind the roots image taken for this
experiment. However, it is still analyzable because all treatments
including the control had the same method for image obtaining.
In other words, if one image has error, the others would have
same error. And this is why a lot of images were taken replications

TABLE 4 | Analysis of variance from randomized complete blocks design with
subsampling for nodule size (mm2) and nodule counts.

Source Mean square

Nodule size Nodule number

Blocks 16.49** 22.01***

Treatments 6.28* 2.75**

Experimental error 0.61 0.10

Sampling error 0.21 0.15

*, **, and ***, P < 0.05, 0.01, and 0.001, respectively.

to reduce error. Considering this, the high contrast image was fine
to characterize nodule. The way the nodule was characterized was
to detect the bumpy area from linear line of roots. Based on this,
the nodule was found and counted. Once nodule was detected,
the part of circle could be detected. Then, based on this part
of circle, the rest of the nodule was inferred. According to our
results, Si treated soybean plant showed increased nodule number
and nodule size as compared to non-Si treated soybean plant.
This result revealed that Si treatment induces or participates
nodule formation. We assumed that the reason seems to several
reasons. The first hypothesis is that Si application is responsible
for ABA accumulation, which, in turn, causes lateral root
formation and growth, increasing the number of infection sites
for nodulation. Furthermore, the increased root angle associated
with Si treatment was highly correlated with nodule formation.
It may worth to investigate if it is true or not by measuring
ABA in the future.

The second hypothesis is that Si influence on the expression of
nod genes which affect to formation of nodules in leguminous
plants (Nelwamondo and Dakora, 1999). Furthermore, Si is
involved in synthesis of isoflavonoids, thus application of
Si fertilizer into soil induces increased nodule formation of
leguminous plants (van Bockhaven et al., 2013). Because,
leguminous plants release isoflavonoids for enticing nitrogen-
fixing bacteria (Eckardt, 2006).

Si is known to increase nodule formation and to elongate
root length in legumes, which increases the number of potential
sites for infection by rhizobial invasion (Nelwamondo and
Dakora, 1999). Accordingly, the results in the current study were
consistent with the findings of Nelwamondo and Dakora (1999).
Root length was highly correlated with nodule size and number in
the current study. Furthermore, Si seems to be involved with the
total number of secondary roots as forks (Guo et al., 2006). We
assumed that this phenomenon also was due to the accumulation
of abscisic acid (ABA) in roots, as a result of the Si treatment
(Signora et al., 2001; Dakora and Nelwamondo, 2003). According
to this study, ABA accumulation, due to Si application, influences
not only root growth but also lateral root development and
growth. Liang and Harris (2005) likewise reported that ABA
stimulates lateral root formation in legumes.

In addition, lateral root formation increases as the
concentration of ABA increases (Liang and Harris, 2005).
Previously, nodule number was responsive to Si supply in
legumes (Nelwamondo and Dakora, 1999) because secondary
root formation is highly responsive to the Si concentration
(Guo et al., 2006). Together, these observations could explain
why Si–soil + leaf treatment showed a stronger correlation than
Si–soil. In other words, the Si concentration may not be sufficient
to be influential to lateral root formation. Thus, it would be
worthwhile to investigate the optimal concentration of Si for
nodulation and each of the root morphological traits.

Nodules at a depth of 20 cm or greater were frequently
observed at different sites in different cultivars (Grubinger et al.,
1982). However, the number of nodules varied significantly in the
vertical distribution, depending on the cultivar. If a certain depth
is advantageous for nodule formation, the root structure could be
influential to nodule formation as well. In the current study, the
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Si treatment was highly correlated with a higher root angle, which
means that Si was involved with root formation horizontally,
near the soil surface, and consequently, there was more nodule
formation near the soil surface. This result might indicate that the
cultivar and bacteria used in this study were a lot more influential
in promoting nodule formation in the near soil surface.

The reason for the high correlations between nodule size and
root length, between nodule size and forks number, between
nodule number and root length, and between nodule number
and forks number in both the control and Si–soil + leaf but low
correlations for Si–soil could be because of the huge variation
found in the data set in the current study (Table 4). There are
very significant differences among blocks for nodule size and the
number of nodules, which are larger effects than those among
treatments. Consequently, it is hard to detect clear difference.
This could be because soybean plants are very susceptible to
various abiotic stresses (Board, 2013). It may be enhanced with
more sophisticated experimental design.

The robust measurements in the current study using the
emerging, deep learning-based detection and segmentation (Olaf
et al., 2015; Ren et al., 2017; Chen et al., 2018; Feng et al.,
2020; Gao et al., 2020) allowed distinct separation of the object
from the background, unlike the conventional image processing
methods, which are not robust to various types of objects and
noises (Khan et al., 2010; Wang et al., 2011). Overall, the image
analysis using machine learning in the current study enabled us
to characterize numerous nodules in roots in many plants, which
is truly huge advance.

CONCLUSION

Using 2D images, we analyzed huge number of soybean root
nodule by machine learning technology. Thus we identified
Si application induce increase of nodule size and number.
However, current results cannot prove the accurate mechanism.
We assumed two possibility. The first hypothesis is that Si
application accumulate hormone ABA thus, this phenomena
induce various root responses such as nodule formation and
root architecture. The second hypothesis is that Si treatment not
only stimulate nod gene but also increase isoflavonoid contents,
consequently, increased nodule number and size occurs. To
prove those hypothesis, additional experiments are required.

Furthermore, comparative experiments are need for confirming
the utility of nodule baseline technology in leguminous plants.
If we get reasonable result, we will open website to use those
technology to other researcher.
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