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Machine learning and computer vision technologies based on high-resolution imagery
acquired using unmanned aerial systems (UAS) provide a potential for accurate and
efficient high-throughput plant phenotyping. In this study, we developed a sorghum
panicle detection and counting pipeline using UAS images based on an integration of
image segmentation and a convolutional neural networks (CNN) model. A UAS with an
RGB camera was used to acquire images (2.7 mm resolution) at 10-m height in a research
field with 120 small plots. A set of 1,000 images were randomly selected, and a mask was
developed for each by manually delineating sorghum panicles. These images and their
corresponding masks were randomly divided into 10 training datasets, each with a
different number of images and masks, ranging from 100 to 1,000 with an interval of
100. A U-Net CNN model was built using these training datasets. The sorghum panicles
were detected and counted by a predicted mask through the algorithm. The algorithm
was implemented using Python with the Tensorflow library for the deep learning
procedure and the OpenCV library for the process of sorghum panicle counting.
Results showed the accuracy had a general increasing trend with the number of
training images. The algorithm performed the best with 1,000 training images, with an
accuracy of 95.5% and a root mean square error (RMSE) of 2.5. The results indicate that
the integration of image segmentation and the U-Net CNN model is an accurate and
robust method for sorghum panicle counting and offers an opportunity for enhanced
sorghum breeding efficiency and accurate yield estimation.

Keywords: deep learning, computer vision, sorghum panicle, unmanned aerial systems, convolutional neural
networks, python, TensorFlow, image segmentation
INTRODUCTION

Sorghum (Sorghum bicolor L. Moench) is the fifth top cereal crop in the world, which provides nutrition
to humans and livestock, particularly in warm and arid climates (FAO, 1999). Sorghum is one of the
most efficient crops in the conversion of solar energy and the use of water. It has numerous varieties,
including grain sorghums used for human food, and forage sorghum for livestock hay and fodder
(Dahlberg et al., 2015). By measuring the plant population and the weight per panicle, growers can
estimate the potential final grain yield (Norman et al., 1995). However, it is challenging to determine
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plant population bymanually counting sorghum panicles, especially
for large fields. Traditional counting methods for yield estimation
are mainly focused on hand-sampling in the field, which is tedious,
time-consuming, labor-intensive, and prone to human errors.
Therefore, it is critical to develop alternative methods to
efficiently and accurately count sorghum panicles for determining
population and estimating yield.

Technological innovations in platforms and advanced sensors
such as unmanned aerial systems (UAS) and efficient image
processing capabilities provide opportunities to automate high-
throughput plant phenotyping through computer vision. UAS
imaging has been widely used in plant phenotyping and
precision agriculture-related research. Many low-cost sensors
onboard UAS can provide aerial images with centimeter-level
spatial resolutions. Further, UAS allows for more flexibility in
image acquisition in terms of flight height, flight area, and
weather conditions. Different sensors onboard the UAS offer
various ways for researchers and growers to characterize plant
attributes at different scales. As a result, UAS has become a useful
platform for crop growers and researchers to acquire aerial
images with high spatial and temporal resolutions for
quantifying within-field variations (Gómez-Candón et al.,
2014). For example, RGB (red, green, and blue bands) cameras,
multispectral and thermal sensors were applied to estimate LAI
(Hunt et al., 2010; Verger et al., 2014), biomass (Hunt et al., 2005;
Bendig et al., 2015), water stress (Gago et al., 2015; Ballester et al.,
2018), plant height (Bendig et al., 2015; Dıáz-Varela et al., 2015),
plant density (Jin et al., 2017; Liu et al., 2017), plant counts (Chen
et al., 2017b; Gnädinger and Schmidhalter, 2017; Guo et al., 2018;
Olsen et al., 2018; Oh et al., 2019), plant and soil temperature
(Gómez-Candón et al., 2016; Zhang et al., 2018), and plant
nitrogen status (Hunt et al., 2005; Tokekar et al., 2016). Yang
et al. (2017) provided a review on how UAS remote sensing and
multiple sensors were applied in field-based plant phenotyping.

Image segmentation is commonly the first step to extract
information of targets from an image by separating a set of pixels
containing the objects of interest (Mochida et al., 2018). The
application of image segmentation for plant phenotyping is
typically implemented at small scales because the input requires
detailed information with accurate labels, which is time-consuming
and labor-intensive. Machine learning, together with computer
vision, offer opportunities for high-throughput plant phenotyping
in recent years. Machine learning can be broadly defined as
computational methods to make accurate predictions or improve
performance using experience (Mohri et al., 2018). Deep learning
refers to a class of machine learning techniques that leverage
multiple layers of non-linear information processing for
unsupervised or supervised feature extraction and transformation,
and for classification and pattern analysis (Deng et al., 2014). Deep
learning algorithms learn high-level features in an incremental way,
which eliminates the need for feature identification and extraction
(LeCun et al., 2015). The deep networks have the capacity to learn
complex models that involve crop phenotypic attributes. A variety
of vision-based algorithms have been proven effective with high
accuracy in plant phenotyping, such as crop or leaf recognition
Frontiers in Plant Science | www.frontiersin.org 2
(Sankaran et al., 2015; Gómez-Candón et al., 2016; Sladojevic et al.,
2016), disease detection (Barbedo, 2014; Pérez-Ortiz et al., 2015;
Too et al., 2019), crop classification (Makantasis et al., 2015;
Dyrmann et al., 2016; Kussul et al., 2017), and crop or fruit
counting (Pape and Klukas, 2015; Chen et al., 2017b; Qureshi
et al., 2017; Guo et al., 2018; Hasan et al., 2018; Olsen et al., 2018;
Ubbens et al., 2018; Madec et al., 2019; Oh et al., 2019; Xiong et al.,
2019). In recent years, traditional machine learning and deep
learning algorithms were used on image segmentation, especially
in the areas of biomedical and object detection. For example, Chen
et al. (2017a) developed the Deeplab system and Fully
Convolutional Network for semantic image segmentation.
Ronneberger et al. (2015) used a U-Net convolutional neural
networks (CNN) algorithm with limited training images for the
segmentation of neuronal structures in electronmicroscopic images.
Few studies integrated image segmentation in traditional machine
learning or deep learning models for plant phenotyping
applications. Islam et al. (2017) detected potato diseases on
individual leaves using image segmentation and the multiclass
support vector machine. Wu et al. (2019) combined image
segmentation with VGG-16 CNN on automatic counting of rice
seedlings from UAS images. Traditional machine learning and deep
learning architectures have been applied to sorghum panicle
detection and counting. Guo et al. (2018) used a two-step,
decision-tree-based pixel segmentation model (DTSM), and
Support Vector Machine (SVM) method with the Classification
Learner in sorghum panicle detection. Olsen et al. (2018) developed
a machine learning algorithm using image annotation to detect and
count sorghum panicles with a mean absolute error of 2.66. Ghosal
et al. (2019) proposed a weakly supervised semi-trained CNNmodel
using UAS images for sorghum panicle detection and rough
localization. Therefore, image segmentation, together with
machine learning, has the potential to detect sorghum panicles
and estimate the panicle shape, which can further improve the
accuracy of yield prediction.

For effective deep learning algorithms in agricultural
applications, model selection and feature definition are critical,
which heavily rely on specialized knowledge in both plant
phenotyping and computer science (Singh et al., 2016).
Environmental factors such as cloud and windy weather can
significantly impact the quality of agricultural images (Ghosal
et al., 2019). In addition, plant phenotyping based on UAS
images is also sensitive to plant genotypes, sensor-target angles,
overlap among leaves and panicles, panicle damages, and field
conditions. As a result, a large number of training images are
required to accommodate various environmental conditions to
obtain robust and accurate machine learning algorithms for
plant phenotyping tasks. However, building a large number of
training samples requires a long time and heavy labor. As a
result, datasets of crop images are not yet available on a large
scale due to the expenses involved in collecting and preparing the
corresponding training data. Therefore, it is critical to develop
algorithms that determine the appropriate number of images to
meet the requirement of accurate plant phenotyping, such as
sorghum panicle counting. The objectives of this study were to
September 2020 | Volume 11 | Article 534853
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1) develop a deep learning CNN image segmentation algorithm
to detect and quantify sorghum panicles; 2) evaluate the
performance of this algorithm with respect to the number of
training images.
MATERIALS AND METHODS

Experimental Sites
This study was conducted in a research field (33° 35’ 50.53’’ N,
101° 54’ 27.30’’ W) in Lubbock, Texas, in 2018. The climate in
this region is semiarid, with an average annual rainfall of
487 mm, mostly falling between May and September,
frequently as the result of convective thunderstorms (US
Climate Data, 2019). Three sorghum varieties, including
NK180, XM217, and KS585 (S&W Seed Company,
Sacramento, CA) with two seed populations of 120 and 180,
were planted onMay 26, 2018. In total, there were 120 plots, each
of 6 m long and eight rows wide in an east-west direction. A 1.5-
m alley was arranged between plots. The NK180 is a drought-
tolerant, bird resistant, and early-maturity variety. The NK180
has a whitish color and a relatively large sorghum panicle. The
average measured panicle length for this variety in this study was
22 cm. The XM217 has a red color and a relatively small sorghum
panicle. The average panicle length was 13 cm. The KS585 is a
drought-tolerant, medium height, and medium-maturity variety.
The KS585 has a light brown color, which is close to the soil
color, and a relatively small sorghum panicle. The average
panicle length was 14 cm. A subsurface drip irrigation system
was used for irrigation in this field during the growing season.

UAS Image Collection
A DJI Phantom 4 Pro UAS (DJI, Shenzhen, China) with a 4K
RGB camera was applied in image acquisition. The UAS has a 2-
axis gimbal that can maintain the orientation of the camera
independently from the movement. The UAS is controlled with a
2.4 GHz frequency bidirectional transmission that receives data
of the battery voltage, Global Positioning System (GPS)
reception, the distance, and the height differences from the
home point. The maximum flight duration of the UAS is about
30 min. The flight plan was created using the Pix4Dcapture
software (Pix4D S.A., Switzerland). The flight plan included 80%
front overlap and 80% side overlap. The angle of the camera was
set at 90 degrees to the land surface during flight. The UAS was
flying at an altitude of 10 m at 2.7 m s-1 speed. The spatial
resolution was 2.7 mm for 10 m altitude. Two image datasets
were acquired on August 24 and September 10, 2018. All image
acquisitions were completed under sunny conditions with light
to moderate wind around local solar noon. Raw images were
stitched into a whole image using the Pix4DMapper software
(Pix4D S.A., Switzerland).

This study applied an integrated method of image
segmentation and deep learning for sorghum panicle detection
and counting. Figure 1 shows the steps of the algorithm for
sorghum panicle detection and counting. The U-Net CNN
Frontiers in Plant Science | www.frontiersin.org 3
(Ronneberger et al., 2015) was adopted as the deep learning
framework to train and test the image data.

Preparing Training Images and Masks
The training images were prepared by randomly cropping the
raw UAS images using the Microsoft Paint 3D software
(Microsoft Corporation, Redmond, WA). To accurately
separate sorghum panicles from other objects in the image,
a segmentation mask for each training image was created by
encircling the sorghum panicle pixels using the Adobe
Photoshop CC software (Adobe Systems Inc., San Jose,
CA). Specifically, for each training image of 1024 x 1024
pixels, pixels were divided into two classes, the sorghum
panicle class and the non-panicle class. In the mask, the
pixels containing sorghum panicles were digitized as white
and assigned a value of 1, while the other pixels were set black
and assigned the value of 0 (Figure 2). These mask images
were saved separately to ensure that each mask matched its
corresponding training image when running the U-Net CNN
model. The full training dataset contained 1,000 images. To
test the model performance as a function of the number of
training images, a series of 10 randomly selected sub-datasets,
ranging from 100 to 1,000 with an interval of 100 images (i.e.,
100, 200, …, 1000 images), were generated from the full
training dataset. Each sub-dataset was used to train a model
and tested for the accuracy of the panicle count for the
corresponding number of training images.

U-Net Convolutional Neural Networks
The general procedure of the U-Net CNN in this study is
described as follows. The U-Net architecture consists of three
sections: the contraction, the bottleneck and the expansion. In
this study, there were six blocks in the contraction and the
expansion sections. The kernel size was 3 x 3 and the strides
were 1 x 1 in the contraction section. In the expansion section,
the kernel size was 2 x 2 and the strides were 2 x 2. No padding
was applied in either section. In the contraction section, each
block contained two convolution layers, followed by a down-
sampling layer. Once every pixel was processed after the
convolution layers, the result was saved into a new feature
map in the same arrangement as the input image. The down-
sampling layer was used to reduce the feature map dimension,
so only the most essential bits of the feature map were kept. The
reduced feature map was then utilized as an input to the next
contraction block. The spatial dimensions of the feature maps
were halved and the number of feature maps was doubled
repeatedly through the down-sampling layer (Guan et al., 2019;
Weng et al., 2019). The bottleneck layer, which contained two
convolution layers but without max pooling, mediated the
contraction section and the expansion layer. The data at the
bottleneck had the spatial dimension of 32 x 32 with 2048
feature maps. In the expansion section, the block contained two
convolution layers followed by an up-sampling layer. After each
up-sampling layer, the number of feature maps was halved and
the spatial dimensions of the feature maps were doubled to
September 2020 | Volume 11 | Article 534853
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maintain the whole architecture symmetry. In the meantime,
the input from the corresponding contraction block was
appended to the feature maps. After running all the
expansion blocks, the final output feature map with the same
spatial dimension as the original input image included the
sorghum panicle class and the non-panicle class.

Segmentation Model Training and
Validation
For each training dataset, 90% of the images were set as training,
and the rest 10% was used as validation for the training models.
For example, in a 500-image dataset, 450 images were trained
through the model, and the rest 50 images were used as validation.
Before training the segmentation model, all training images and
masks went through the image augmentation processes. The hue
of each RGB training image was adjusted by a factor of 0.1. Both
the training images and corresponding masks were flipped
horizontally along the central axis with a 0.5 probability. The
training images and corresponding masks were randomly shifted
either horizontally or vertically. Finally, both training images and
FIGURE 1 | Flow chart of a sorghum panicle detection and counting algorithm using a U-net Convolutional Neural Networks model on unmanned aerial system images.
FIGURE 2 | Examples of training images (Top) and corresponding masks
(Bottom) for a sorghum panicle detection and counting algorithm using a
Convolutional Neural Networks model on unmanned aerial system images
(Left to right: NK180, XM217, and KS585).
September 2020 | Volume 11 | Article 534853
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the corresponding masks were rescaled by a factor of 1/1023. The
purpose of image augmentation was to increase the amount of
training data by applying some transformations to the original
training images. This helps the model to generalize better to
unseen data and prevent overfitting (Wang and Perez, 2017;
Frid-Adar et al., 2018; Mikołajczyk and Grochowski, 2018).
After the image augmentation process, a two-channel
segmentation model was generated from these training images
and masks using the U-Net algorithm.

The pixel-wise cross-entropy loss function was used to
evaluate the training models of the U-Net CNN algorithm
using the 10% validation images in the training datasets. The
cross-entropy loss is commonly used as a loss function for
training in deep learning networks, especially in image
segmentation tasks (Ronneberger et al., 2015; Sudre et al.,
2017; Martins and Zaglia, 2019). Cross-entropy loss measures
the probability difference between the observed and the predicted
values in a classification model (Buja et al., 2005). The cross-
entropy loss (CE) for the binary classification in this study is
defined as,

CE = � (yilog(pi) + (1� yi)log(1� pi)) (1)

where yi represents the labeled value for that sample in the mask,
and pi represents the predicted probability being the sorghum
panicle in the output feature maps.

Counting and Evaluations
A test dataset containing 120 images was selected from the fully
stitched image for accuracy assessment. The images in the test
dataset were different from the images in the training dataset.
Each test image was corresponding to two rows of sorghum
plants randomly selected from a plot. Sorghum panicles in each
test image were manually counted, and the number of sorghum
panicles in these test images varied from 95 to 188. The size of
each test image was 3800 x 1280. We found out that it was
difficult for the U-Net CNN model to process the high-
resolution test images directly. In this case, we horizontally
split each test image into four non-overlapped subtest images.
Before running the model on the test images, the subtest images
for each test image were resized to dimensions of 1024 x 1024
pixels. Then the test images were run through the trained
segmentation model to perform the panicle detection. Each
sorghum panicle detected was treated as a contour using the
findContours function of the OpenCV library in the prediction
output feature map. Our initial assessment indicated that
contours with less than six pixels were mainly noise related
and not classified as panicles. A bounding polygon was applied
around each panicle contour using the drawContours function
for each subtest image. Therefore, the number of bounding
polygons represented the number of predicted sorghum
panicles in each subtest image. The summation of sorghum
panicles of the four subtest images equaled the total number of
sorghum panicles in each test image.

The mean absolute error (MAE), mean absolute percentage
error (MAPE), accuracy (ACC), coefficient of the determination
(R2), and the root mean squared error (RMSE) were used as
Frontiers in Plant Science | www.frontiersin.org 5
evaluation metrics to assess the performance of the sorghum
panicle counting algorithm.
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where mi, �mi, and ci represent the manually counted sorghum
panicles for the ith image, the mean manual counts, and the
predicted count for the ith image, respectively. n is the number of
test images.

Hardware and Libraries Used
The algorithm was implemented using the Python programming
language (Python Software Foundation, 1995). The model was
trained on a computer with 192 GB of memory at the Texas Tech
University High Performance Computing Center (HPCC).
Training, evaluation, and testing were performed using the
Keras (Chollet, 2015) high-level neural networks application
programming interface (API), running on top of the
TensorFlow package (Abadi et al., 2016). The model in this
study was trained using the Adam (Kingma and Ba, 2015)
optimizer with a learning rate of 0.001. Fifteen epochs were
performed in the training process. The number of epochs was
determined based on the training image size, training required
time, and the overall performance of the model. In this study, the
cross-entropy loss value did not decrease significantly beyond 15
epochs. The OpenCV-Python library (Bradski, 2000) was used in
model testing.
RESULTS

Training Model and the Number of
Training Images
Table 1 shows the overall decreasing trend of the cross-entropy
loss with the number of training images, indicating an increasing
accuracy in model performance with the number of training
images. The value of cross-entropy loss did not decrease rapidly
from 100 to 500 training images. On the other hand, from 600
training images, every 100 more training images resulted in a
decrease of more than 0.10 in cross-entropy loss. The value of
cross-entropy loss and the trend indicated that there could be
September 2020 | Volume 11 | Article 534853
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potential to improve the performance of the segmentation
model by increasing the number of training images. However,
due to the restriction of the training period in our HPCC and the
CPU memory, the value of the cross-entropy loss used here was
based on 15 epochs of training for all different numbers of
training images. Many studies have shown that the cross-
entropy loss value could be close to 0 with a large number of
training epochs (Alom et al., 2018; Zhang and Sabuncu, 2018).
However, with the number of training epochs, the results of
cross-entropy values showed a clear negative trend as the
number of training images increased.

Sorghum Panicle Counting Performance
and the Number of Training Images
Figure 3 presents the accuracy and coefficient of determination
(R2) of the model performance in relation to the number of
training images. In general, the sorghum panicle count accuracy
and R2 values increased with the number of training images. This
trend, however, was not consistent for the cases with training
images below 500. The accuracy was low at 59% with 100
training images, increased to 75% and 80% with 200 and 300
training images, respectively, but dropped slightly to 78% with
Frontiers in Plant Science | www.frontiersin.org 6
400 training images. Similarly, the R2 value was lowest at 0.01
with 100 training images, increased to 0.09 and 0.17 with 200 and
300 training images, but dropped to 0.08 with 400 images. For
cases with more than 500 training images, the accuracies and R2

values consistently increased with the number of training images.
With 1000 training images, the highest accuracy of 95.5%, and
the highest R2 value of 0.90 were achieved. In addition, the rate of
change in relation to the number of images for R2 was greater
than that for the accuracy. From 500 to 1,000 images, the
accuracy increased by 16.5% from 82% to 95.5%, while the R2

value increased by 900% from 0.09 to 0.90. This indicates
the accuracy is a better parameter for evaluating this type of
algorithm performance. In summary, the algorithm performance
was not stable with less than 500 training images. With more
than 500 training images, the algorithm performance steadily
improved with respect to accuracy.

MAE, MAPE, and RMSE consistently decreased with the
increasing number of training images (Table 2). These trends
were not consistent with the trends for the accuracy and R2

values, which had fluctuations in the relation between the
magnitude and number of training images. For a low number of
training images, the MAE was relatively large; it was 53.1 for 100
FIGURE 3 | Trends of accuracy, Cross-Entropy Loss, and coefficient of determination (R2) with the number of training images in a sorghum panicle detection and
counting algorithm using a Convolutional Neural Networks model on unmanned aerial system images.
TABLE 1 | Cross-entropy loss values for 10 sets of training images for a sorghum panicle detection and counting algorithm using a U-Net Convolutional Neural
Networks model on unmanned aerial system images.

No. of Images 100 200 300 400 500 600 700 800 900 1000

Cross-entropy loss 0.71 0.66 0.63 0.59 0.53 0.50 0.39 0.34 0.20 0.11
September 2
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training images and 35.2 for 200 training images. This value
dropped to 6.3 for 1,000 images. MAPE was 0.41 for 100 training
images and 0.25 for 200 training images, then it dropped to 0.05 for
1,000 training images. A similar trend was observed for the RMSE
values. Its change, however, was not as extreme as those MAE
values. RMSE was 7.3 for 100 training images, and it gradually
dropped to 2.5 for 1,000 training images. Considering the range of
sorghum panicles (95 to 188) in the test dataset, the MAE and
RMSE values for 1,000 training images are within an
acceptable range.

To better evaluate the algorithm performance with respect to
the patterns of over- and under-estimations, Figure 4 shows the
error, the difference in sorghum panicles between the model
prediction and the manual count result, in relation to the number
of training images. If the error is positive, then the algorithm
overestimates sorghum panicles; otherwise, the algorithm
underestimates. For the cases of 100, 400, 600, 700, and 900
training images, the results represented a mean overestimation of
50.1, 23.7, 20.1, 16.9, and 10.1 panicles, respectively. For 200, 300,
and 800 training images, the results represented a mean
underestimation of 35.2, 28.0, and 11.4 panicles, respectively.
The mean errors were 3.9 and 2.6 for the cases of 500 and 100
Frontiers in Plant Science | www.frontiersin.org 7
images, respectively. However, the variance of prediction results
for the 500 training images was larger than that for the 1000
training images. A key to the success of deep learning in object
detection tasks is abundant training images. A larger number of
training images results in better accuracy and performance
(Kamnitsas et al., 2017; Aggarwal et al., 2019). Therefore, the
accuracy and robustness of this algorithm increased with
the number of training images, with 1,000 images providing
the best performance.

It appeared that the counting accuracy was related to the soil
background. Figures 5–7 show the examples of sorghum
panicle detection results for the three varieties with 100, 500,
and 1,000 training images. For the case of 100 training images,
the prediction was overestimated by 53 on average. This
substantial overestimation was due to some soil pixels
between plots being counted as sorghum panicles, especially
for XM217 and KS585. The sorghum panicle colors of these
two varieties were similar to the soil background. Therefore,
with only 100 training images, the U-Net CNN algorithm was
not able to distinguish the soil and sorghum panicles with
similar colors. For the case of 500 training images, both
overestimation and underestimation were observed. For
FIGURE 4 | Distributions of counting errors between predicted and observed sorghum panicles for ten sets of training images using a Convolutional Neural
Networks model on unmanned aerial system images.
TABLE 2 | Mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE) for 10 sets of training images for a sorghum
panicle detection and counting algorithm using a U-Net Convolutional Neural Networks model on unmanned aerial system images.

No. of Images 100 200 300 400 500 600 700 800 900 1000

MAE 53.1 35.2 28.1 27.2 23.7 19.6 16.9 11.4 9.9 6.3
MAPE 0.41 0.25 0.20 0.21 0.18 0.15 0.13 0.09 0.07 0.05
RMSE 7.3 5.9 5.3 5.2 4.9 4.4 4.1 3.4 3.2 2.5
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XM217, 141 sorghum panicles were predicted compared to 175
values observed. For KS585, the predicted number of sorghum
panicles was 163 compared with the observed number of 215.
For NK180, 99 sorghum panicles were detected, while the
observed was 114. Overlapping sorghum panicles and the
misclassification between white soil background and sorghum
panicles caused the overestimation and underestimation with
500 training images.

For the case of 1,000 training images, sorghum panicles
were overestimated for variety XM217 (168 predicted vs. 175
observed). For KS585, 199 sorghum panicles were predicted
compared to 215 observed. For NK180, 106 panicles were
predicted compared to 114 observed. The errors in these cases
were mainly caused by overlapping sorghum panicles. For
some images with bright soil background and leaves, the
algorithm could not perfectly separate sorghum panicles from
surroundings, which led to the underestimation errors. This
situation was more widespread with a small number of
training images, especially for sorghum varieties KS585 and
NK180, which had bright panicles similar to the soil and
shiny leaves.
Frontiers in Plant Science | www.frontiersin.org 8
DISCUSSION

Previous studies on sorghum panicle detection and counting
used points or rectangular bounding boxes to label sorghum
panicles for preparing the training datasets and outputting the
predicted results (Guo et al., 2018; Ghosal et al., 2019; Oh et al.,
2019). For example, Wu et al. (2019) combined the image
segmentation technique and basic CNN algorithm to create a
density map of sorghum panicles. The application of image
segmentation can exclude the areas that are not directly
involved in training dataset preparation and final output.
Malambo et al. (2019) applied a semantic segmentation-based
CNN algorithm to separate sorghum panicles from the soil and
other parts in images. These machine learning algorithms for
sorghum panicle detection were mainly based on image
classification. The use of points or bounding boxes does not
provide direct information about the sorghum panicle shape and
size. Compared to previous similar studies, the U-Net CNN
segmentation adopted in this study not only detect but also
localize and delineate individual sorghum panicles. Therefore,
the use of sorghum panicle masks and deep learning from this
FIGURE 5 | Sample results of sorghum panicle detection for Variety XM217 with 100, 500, and 1000 training images using a Convolutional Neural Networks model
and UAS images. Red circles represent underestimation; blue circles represent overestimation compared to the manual masks.
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study enables the characterization of individual sorghum
panicles, leading to more accurate yield estimation. This,
however, does not mean sorghum yield can be directly
calculated from the images because the sorghum panicles are
typically not orthogonal to the UAS sensor during image
acquisition. Further research is required to more accurately
determine the size and shape of the sorghum panicle if yield
prediction is needed.

By using masks, our algorithm also minimized the errors in
sorghum panicle detection due to panicle overlaps and mixing
with other elements in the image. Agricultural images acquired
using UAS typically have a mixture of target items and
background elements due to the deformation caused by
camera angel and other factors (Kamilaris and Prenafeta-
Boldú, 2018; Pradeep et al., 2018). This makes object
detection in computer vision tasks challenging, especially for
the multiple overlapping panicles and panicles that are obscured
partially by plant leaves (Guo et al., 2018). Chen et al. (2017a)
used the DeepLabv3+ to detect object boundaries, with a high
accuracy using 11,530 high quality pixel-level annotated
images. However, this proposed algorithm was only able to
Frontiers in Plant Science | www.frontiersin.org 9
separate the object boundaries between two different classes, but
could not detect overlapping sorghum panicles described in this
study. Similar methods all required a large number of well
labeled training images. Compared with these methods, our
algorithm was able to separate and count sorghum panicles
individually. For example, Figure 8 shows the overlapping
panicles situation and the prediction results using training
images and corresponding masks. As shown, the algorithm
was able to detect overlapping sorghums by providing masks
that mark overlapping panicles. This algorithm, however, could
not detect all overlapping panicles due to the lack of training
masks in such cases. We believe the performance in detecting
overlapping panicles can be improved by increasing the number
of overlapping training images.

One of the limitations encountered in this study was the split
of a full image into pieces for counting sorghum panicles due to
computation restrictions. Previous studies have also shown such
challenges in machine learning and deep learning algorithms to
directly process high-resolution images. It is common to crop or
split the original large dimension images to smaller images for
detecting and counting objects (Aich et al., 2018; Wu et al., 2019;
FIGURE 6 | Sample results of sorghum panicle detection for Variety KS585 with 100, 500, and 1000 training images using a Convolutional Neural Networks model
on UAS images. Red circles represent underestimation; blue circles represent overestimation compared to the manual masks.
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Chandra et al., 2020). This potentially leads to overestimation. In
our study, some sorghum panicles were cut into two parts and
counted twice because we horizontally split the test image into
four sub-images. However, our visual check indicated that most
of panicles were not split evenly, resulting in the smaller pieces
with less than six pixels not being counted. Therefore, the double
counting issue had no significant effect on the accuracy of the
algorithm. Future studies are required to address this limitation
by adopting more efficient image processing algorithms to avoid
potential double counting.

In this study, sorghum panicles with greater contrast in color
and brightness with surrounding elements were easily detected and
counted, while some other panicles, especially for the variety KS585,
were challenging to detect due to their similarity to the surrounding
features, including soil and dry leaves. Environmental factors, such
as wind and clouds, have a significant impact on UAS image quality,
which can affect the performance of deep learning algorithms. Field
condition and plant genotypes also affect the accuracy of machine
learning tasks (Torres-Sánchez et al., 2013; Rasmussen et al., 2019).
The similar colors between soil background and crops could also
cause errors in computer vision tasks (El-Faki et al., 2000; Lee et al.,
Frontiers in Plant Science | www.frontiersin.org 10
2018). In this study, it appears some soil clusters and leaves were
mislabeled as sorghum panicles, probably due to strong sunlight
conditions. We acquired most of the images around local noon
time. As a result, both the soil surface and some sorghum panicles
were relatively bright in full sunlight. In future studies, users may
consider acquiring UAS images under relatively soft light
environments, such as late afternoon or early morning. For the
improvement of the algorithm performance, adding a separate mask
for soil pixels can be an effective alternative to separate the sorghum
panicles from soil background.

Abundant training datasets are critical for effective deep
learning tasks (Deng et al., 2014; LeCun et al., 2015), especially
for complex computer vision tasks such as sorghum panicle
detection and counting. This study provides useful information
regarding the number of training images required for such deep
learning tasks. The algorithm produces inconsistent predictions
and low accuracy with below 500 training images. It is
reasonably accurate with 1,000 training images. It is expected
that with more training images, the accuracy and robustness
can be further improved. Aggarwal et al. (2019) demonstrated
that a large number of training images could improve the
FIGURE 7 | Sample results of sorghum panicle detection for Variety NK180 with 100, 500, and 1000 training images using a Convolutional Neural Networks model
on UAS images. Red circles represent underestimation and blue circles represent overestimation compared to the manual masks.
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performance of the U-Net CNN model, especially in complex
models. However, there are not enough public ready-to-use
data as training datasets for specific crops and their phenotypic
traits. The development of large training datasets for plant
phenotyping is time-consuming and labor-intensive. The
drawback of the pre-label based algorithm lies in the fact that
it is time consuming to prepare these training masks of
sorghum panicles. In this study, 1,000 training images and
masks were manually prepared and applied to develop the
algorithm. It took a considerably longer time to prepare the
training datasets compared with previous studies that used dot-
labeled training images. The automatic annotation technique
has shown its potential in similar algorithms (Zahavy et al.,
2016; Komura and Ishikawa, 2018; Ghosal et al., 2019).
Predicted outputs from automatic annotation can be used as
new training input, which reduces the workload of manual
preparation and can improve the efficiency and the robustness
of the algorithm.
CONCLUSIONS

In this study, we developed an algorithm to integrate deep learning
and segmentation to detect and count sorghum panicles using high-
Frontiers in Plant Science | www.frontiersin.org 11
resolution UAS images. A dataset of 1,000 randomly selected
images and their corresponding manually labeled masks were
constructed for training this algorithm. The performance and
efficacy of the algorithm were assessed with a different number of
subset training images. The performance of the algorithm improved
with the number of training images. The performance of the
algorithm was not stable with less than 500 training images. With
1,000 training images, the algorithm had the best performance, with
an accuracy of 95.5% and an RMSE of 2.5. The algorithm is
sufficiently accurate for varying orientations and sizes of three
sorghum varieties. Therefore, future studies are required to test
the robustness of our algorithm with other varieties. In addition,
compared to previous similar studies, our algorithm integrated
image segmentation and CNN deep learning, which not only detect
but also localize and delineate individual sorghum panicles. The
algorithm is also capable of detecting overlapping sorghum
panicles. This offers an opportunity for enhanced sorghum
breeding efficiency and accurate yield estimation. To achieve this,
however, further research is needed to improve the algorithm to
quantify panicle dimension in relation to yield.

The development of large training datasets for plant
phenotyping is time consuming and labor intensive. Therefore,
this study provides a benchmark for the requirement for the
number of training images for such phenotyping tasks. On the
other hand, a more effective method, such as automatic
annotation, is needed to prepare reliable training images. The
performance of this algorithm was evaluated at the small-plot
scale. Further studies are required to expand this algorithm to
detect and count sorghum panicles at the commercial field scale.
In addition, sorghum panicle detection accuracy as influenced by
environmental factors, including image resolution, soil
background, and illumination levels, requires further evaluation.
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Verger, A., Vigneau, N., Chéron, C., Gilliot, J. M., Comar, A., and Baret, F. (2014).
Green area index from an unmanned aerial system over wheat and rapeseed
crops. Remote Sens. Environ. 152, 654–664. doi: 10.1016/j.rse.2014.06.006

Wang, J., and Perez, L. (2017).The Effectiveness of Data Augmentation in Image
Classification using Deep Learning. Available at: http://arxiv.org/abs/1712.
04621 (Accessed April 29, 2020). arXiv Prepr. arXiv1712.04621

Weng, Y., Zhou, T., Li, Y., and Qiu, X. (2019). NAS-Unet: Neural architecture
search for medical image segmentation. IEEE Access. 7, 44247–44257.
doi: 10.1109/ACCESS.2019.2908991

Wu, J., Yang, G., Yang, X., Xu, B., Han, L., and Zhu, Y. (2019). Automatic
Counting of in situ Rice Seedlings from UAV Images Based on a Deep Fully
Convolutional Neural Network. Remote Sens. 11, 691. doi: 10.3390/rs11060691

Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., and Shen, C. (2019). TasselNetv2: In-
field counting of wheat spikes with context-augmented local regression
networks. Plant Methods 15, 150. doi: 10.1186/s13007-019-0537-2

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial
vehicle remote sensing for field-based crop phenotyping: Current status and
perspectives. Front. Plant Sci. 8, 1111. doi: 10.3389/fpls.2017.01111

Zahavy, T., Sivak, A., Kang, B., Feng, J., Xu, H., and Mannor, S. (2016). “Ensemble
robustness and generalization of stochastic deep learning algorithms,” arXiv
preprint arXiv:1602.02389.

Zhang, Z., and Sabuncu, M. R. (2018). “Generalized cross entropy loss for training
deep neural networks with noisy labels,” in Advances in Neural Information
Processing Systems, 8778–8788.

Zhang, Y., Zhou, J., Meng, L., Li, M., Ding, L., and Ma, J. (2018). “A method for
deriving plant temperature from UAV TIR Image,” 2018 7th International
Conference on Agro-geoinformatics (Agro-geoinformatics). (Hangzhou), 1–5.
doi: 10.1109/Agro-Geoinformatics.2018.8475995

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Lin and Guo. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
September 2020 | Volume 11 | Article 534853

https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1109/IGARSS.2015.7326945
https://doi.org/10.1109/IGARSS.2015.7326945
https://doi.org/10.3390/rs11242939
http://www.obt.inpe.br/OBT/assuntos/programa/amazonia/prodes
http://www.obt.inpe.br/OBT/assuntos/programa/amazonia/prodes
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.1093/gigascience/giy153
https://doi.org/10.2139/ssrn.3399990
http://www.fao.org/3/v5330e/V5330e00.htm#Contents
https://arxiv.org/abs/1905.13291
https://doi.org/10.1109/DSAA.2018.00052
https://doi.org/10.1109/DSAA.2018.00052
https://doi.org/10.5244/c.29.cvppp.3
https://doi.org/10.1016/j.asoc.2015.08.027
https://doi.org/10.1016/j.asoc.2015.08.027
https://doi.org/10.1109/AERO.2018.8396617
http://oai.cwi.nl/oai/asset/5007/05007D.pdf
http://oai.cwi.nl/oai/asset/5007/05007D.pdf
https://doi.org/10.1007/s11119-016-9458-5
https://doi.org/10.1007/s11119-018-09625-7
https://doi.org/10.1007/s11119-018-09625-7
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.compag.2015.09.001
https://doi.org/10.1016/j.compag.2015.09.001
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1155/2016/3289801
https://doi.org/10.1007/978-3-319-67558-9_28
https://doi.org/10.1109/TRO.2016.2603528
https://doi.org/10.1016/j.compag.2018.03.032
https://doi.org/10.1371/journal.pone.0058210
https://doi.org/10.1186/s13007-018-0273-z
https://www.usclimatedata.com/climate/lubbock/texas/united-states/ustx2745/2014/1
https://www.usclimatedata.com/climate/lubbock/texas/united-states/ustx2745/2014/1
https://doi.org/10.1016/j.rse.2014.06.006
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
https://doi.org/10.1109/ACCESS.2019.2908991
https://doi.org/10.3390/rs11060691
https://doi.org/10.1186/s13007-019-0537-2
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.1109/Agro-Geoinformatics.2018.8475995
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning
	Introduction
	Materials and Methods
	Experimental Sites
	UAS Image Collection
	Preparing Training Images and Masks
	U-Net Convolutional Neural Networks
	Segmentation Model Training and Validation
	Counting and Evaluations
	Hardware and Libraries Used

	Results
	Training Model and the Number of Training Images
	Sorghum Panicle Counting Performance and the Number of Training Images

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


