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Drought-Conditioning of Quaking
Aspen (Populus tremuloides Michx.)
Seedlings During Nursery Production
Modifies Seedling Anatomy
and Physiology
Joshua L. Sloan1,2, Owen T. Burney1* and Jeremiah R. Pinto3

1 John T. Harrington Forestry Research Center, New Mexico State University, Mora, NM, United States, 2 Department of
Forestry, New Mexico Highlands University, Las Vegas, NM, United States, 3 Rocky Mountain Research Station, Forest
Service, U.S. Department of Agriculture, Moscow, ID, United States

In the western US, quaking aspen (Populus tremuloidesMichx.) regenerates primarily by root
suckers after disturbances such as low to moderate severity fires. Planting aspen seedlings
grown from seed may provide a mechanism to improve restoration success and genetic
diversity on severely disturbed sites. However, few studies have examined the use of
container-grown aspen seedlings for restoration purposes from both the outplanting and
nursery production perspective. Thus, the purpose of this novel study was to examine how
alterations in irrigation levels during nursery production across three seed sources would
impact seedling performance attributes on harsh, dry outplanting sites. Irrigation treatments
were based on three irrigation levels, determined gravimetrically: High = 90%,Medium = 80%,
and Low = 70% of container capacity. The three seed sources represented a latitudinal
gradient across the aspen range (New Mexico, Utah, and Alberta). Carbon isotope analysis
indicated irrigation treatments were effective in creating higher levels of water stress for both
the Low and Medium irrigation levels compared to seedlings under the High irrigation level.
Seedlings subject to the Low irrigation level were found to induce greater height, higher
photosynthetic rates, larger percentages of hydraulically active xylem, and faster xylem flow
velocities compared to the High irrigation level. The lack of an interaction between irrigation
treatments and seed source for nearly all response variables suggests that nursery
conditioning via irrigation limitations may be effective for a range of aspen seed sources.

Keywords: Populus tremuloides, drought, irrigation, drought-conditioning, d13C, xylem
INTRODUCTION

There is a growing global demand for the restoration of degraded forest ecosystems. However, many of
these restoration efforts often overlook nursery systems and the associated cultural practices that are
critical to the success of these restoration activities (Haase and Davis, 2017). One species of restoration
interest is quaking aspen (Populus tremuloides Michx.), which is a widely distributed tree species in
North America that provides a variety of important values, including commercial timber production,
.org September 2020 | Volume 11 | Article 5578941
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wildlife habitat, and recreational activities (Landhäusser et al., 2019).
However, aspen is currently in decline throughout much of its range
due to a variety of factors including large, high-severity fires and
severe droughts (Rehfeldt et al., 2009). This decline is likely to
accelerate as future climatic conditions are projected to be warmer
and drier (Rehfeldt et al., 2009; Allen et al., 2015).

In the western US, post-fire environments andmine reclamation
sites are typical targets for forest restoration activities. Currently,
land managers attempting to restore aspen on these disturbed sites
rely almost entirely on aspen’s ability to regenerate vegetatively via
root suckering (Long andMock, 2012). Reliance solely on vegetative
reproduction limits genetic diversity and thus reduces resiliency and
the potential for adaptations to future stresses (Ally et al., 2010). On
the other hand, sexual reproduction via seed is rare across the range
of aspen, hindering both the maintenance of genetic diversity and
overall regeneration (Long and Mock, 2012; Fairweather et al.,
2014). Thus, there has been a growing interest in restoring quaking
aspen via artificial regeneration throughout its range, although this
is not currently practiced in the western US (Howe et al., 2019;
Landhäusser et al., 2019). Planting nursery-grown seedlings
produced from collected seed will likely improve the level of
genetic diversity at aspen restoration sites that would not likely
occur otherwise under natural conditions, especially with a
changing climate (Eriksson, 1992; Landis et al., 2003).

Most of the research connected to aspen nursery cultural
practices was developed in western boreal Canada in relation to
mine reclamation in the region (Macdonald et al., 2012; Howe et al.,
2019). Results from some of these studies have shown that
increasing both root:shoot and non-structural carbohydrates
through manipulation of nursery practices improved outplanting
success under a range of environmental conditions (Landhäusser
et al., 2012a; Landhäusser et al., 2012b). However, a recent study
found that using these same nursery cultural practices from
Landhäusser et al. (2012a; 2012b) resulted in a range of
morphological and phenological responses based on genetic
influences from three distinct seed sources (Howe et al., 2019). A
continent-wide genetic survey of aspen revealed that there are two
distinct genetic clusters: a southern and northern cluster in which
the southern cluster contains higher rates of triploidy occurrence
among genets (Mock et al., 2012; Callahan et al., 2013). Structural
and physiological differences have been observed with triploidy and
polyploidy plant species including increases in cell size (e.g., larger
xylem elements) which may result in a higher likelihood of xylem
cavitation under drought conditions (Mock et al., 2012; Greer et al.,
2018). These findings suggest that continued research is necessary to
improve aspen nursery protocols for a range of genetic sources that
will result in improved outplanting success across genotypes.

Soil moisture is often one of the more limiting factors on post-
fire and mine reclamation sites, resulting in negative effects on plant
physiology and overall seedling performance (Galmés et al., 2007;
Grossnickle, 2012; Claeys and Inzé, 2013; Flathers et al., 2016).
Moisture stress in plants can lead to xylem cavitation, embolism,
and ultimately mortality (Schreiber et al., 2015). Thus, it is critical to
produce seedlings in the nursery that are capable of withstanding
higher levels of water stress. This, in part, can be accomplished
through nursery conditioning based on the Target Plant Concept
Frontiers in Plant Science | www.frontiersin.org 2
(TPC). The TPC focuses on identifying and manipulating those
seedling traits produced in the nursery that improve seedling
performance for specific outplanting conditions (Landis, 2011;
Dumroese et al., 2016). Water stress conditioning in the nursery
as a treatment to help seedlings establish on sites with dry
conditions has been done on a number of different species, often
with mixed results (van den Driessche, 1991; Villar-Salvador et al.,
1999; Vilagrosa et al., 2003; Villar-Salvador et al., 2013). On
moisture limited planting sites, one major area of interest is the
alteration of xylem structure and function so as to improve an
individual seedling’s ability to buffer itself against water stress and
drought-induced mortality (Venturas et al., 2017).

Water is transported through plants via secondary xylem
elements (i.e., tracheids in gymnosperms and vessels in
angiosperms). Primary xylem transitions to secondary xylem
shortly (i.e., a few weeks) after germination depending on the
species (Miller and Johnson, 2017). Based on the TPC, it is
hypothetically possible to condition seedlings in the nursery to
tolerate higher levels of water stress by limiting soil moisture
through reductions in irrigation regimes at a time when
secondary xylem is initiating for the seedling (Miller and Johnson,
2017). Exposing seedlings to stress at this time of xylem transition is
hypothesized to alter the secondary xylem structure and function,
influencing such characteristics as xylem element diameter and the
total amount of hydraulically active xylem. For example, narrower
xylem elements are more resistant to cavitation and thusmore likely
to tolerate higher levels of drought stress (Olson and Rosell, 2013).
Additionally, building a greater buffer against drought stress may
also be a function of increasing the total number of xylem elements
that are hydraulically conductive (Jacobsen et al., 2015).

The main objective of this novel study was to examine the effects
of drought conditioning treatments via irrigation limitation in the
nursery across three seed sources of Populus tremuloides, with a
focus on the effects these treatments had on seedling morphology
and physiology. In order to assess the impacts of irrigation
limitations on seedling development, a comprehensive suite of
morphological and physiological parameters were assessed which
were expected to either be directly related to drought tolerance (e.g.,
xylem structure and function) or which are considered to be
standard measures of nursery seedling quality (e.g., height, root
collar diameter, seedling biomass, etc.; see Haase, 2008). Specifically,
we hypothesized that: 1) drought-conditioned seedlings would have
smaller vessel diameters and greater percentages of hydraulically
active xylem; 2) southern seed sources would have inherently
smaller vessel diameters and a greater percentage of hydraulically
active xylem; and 3) there would be no interaction between seed
source and drought conditioning treatments.
MATERIALS AND METHODS

Seedling Production and
Experimental Treatments
The seed used in this study represented three sources of
quaking aspen (Populus tremuloides Michx.). They were the
September 2020 | Volume 11 | Article 557894
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same sources used by Howe et al. (2019) and represented a
latitudinal gradient within the quaking aspen range (New
Mexico, USA; N 36°24′, W 105°35′; Utah, USA; N 41°56’, W
111°31′; and Alberta, Canada; N 56°43′, W 113°31′). These
sources represent different genetic clusters associated with
aspen (Mock et al., 2012; Callahan et al., 2013). Within each
source region, there is still a significant amount of genetic
variation given collections were from 7 to 15 open pollinated
clones that were spaced between 0.4 and 15 km apart. Mean
annual temperature and precipitation for these locations are as
follows: New Mexico, 8.5°C and 324 mm; Utah, 4.1°C and
1061 mm; and Alberta, 0.4°C and 448 mm (PRISM Climate
Group, 2015; The Climate Atlas of Canada, 2019). On 26 June
2015, seeds were sown into 164 ml containers and placed in
racks with 98 container capacities (Ray Leach Cone-tainers-
SC10 Super, RL98 Tray, Stuewe & Sons, Inc., Tangent, OR,
USA) Media was a 2:1:1 mixture of sphagnum peat, perlite, and
vermiculite (v:v:v). Twelve racks were sown for each seed
source (total of 1,176 seedlings); each rack represented an
experimental treatment unit with each seedling representing a
sub-sample. After sowing, racks were placed in a greenhouse
where they received regular misting until germination. Racks of
germinated seedlings were then watered to container capacity
with clear water via overhead irrigation, and rack weights at
container water-holding capacity were recorded. Prior to the
initiation of irrigation treatments (described below), racks were
watered when their weights dried to 90% of container capacity
(“manager technique” described by Dumroese et al., 2015).
Throughout the nursery production phase of the experiment,
greenhouse conditions were maintained at 29.4/18.3°C (day/
night), and natural light was supplemented as needed to
maintain an 18 h photoperiod.

On 4 August 2015, the twelve racks (i.e., experimental units)
were randomly assigned to a block (n = 4) and irrigation
treatment (described below), and irrigation treatments were
initiated. Subirrigation was applied on a per rack basis.
Irrigation treatments consisted of one of three irrigation levels
(High = 90%, Medium = 80%, and Low = 70% of container
capacity). These levels were chosen based upon a pilot study
which found that the permanent wilting point for these seedlings
occurred at ~65% container capacity (data not shown). New rack
weights at container capacity were recorded for all racks. For the
remainder of the irrigation portion of the experiment, racks were
weighed daily for purposes of determining irrigation needs in
accordance with irrigation treatments.

Despite different levels of irrigation, all seedlings received
equal quantities of fertilizer over the course of the growing
season, with each seedling receiving a total of 63 mg N during
the irrigation treatment phase of this study. All fertilizer was
applied as an aqueous solution via subirrigation. Of the total
amount of fertilizer applied, the first two fertilizer applications
each consisted of a solution of “starter fertilizer” (Peters
Professional 10-30-20 Plant Starter, ICL Specialty Fertilizers,
Dublin, OH, USA) and the remaining applications consisted of
“grower fertilizer” (Peters Excel 21-5-20 Multi Purpose No
Boron, ICL Specialty Fertilizers, Dublin, OH, USA).
Frontiers in Plant Science | www.frontiersin.org 3
Synopsis of Morphological and
Physiological Measurements
Irrigation treatments concluded on 6 October 2015, and all
blocks were irrigated at this time. On 7–8 October, after 9
weeks of treatment implementation, a total of five seedlings
were randomly sub-sampled from each experimental treatment
unit for measurements and processing as described below. No
trees were selected from the border rows of the racks.
Morphological measurements were taken on all five sub-
sampled seedlings, including seedling height, root collar
diameter, total leaf area, stomatal density, total seedling dry
mass, organ dry mass (roots, stems, and leaves), root:shoot (g:g),
and average diameter of xylem vessels (physiologically active and
total). Physiological measurements were also taken at this time
and included net photosynthetic rates, transpiration rates,
soluble sugar concentrations and contents by organ (roots,
stems, and leaves), starch concentrations and contents by
organ (roots, stems, and leaves), xylem flow velocity, the
proportion of xylem which was physiologically active, and d13C
of stem tissue as an integrated reflection of cumulative stomatal
limitations on gas exchange. Measurements were conducted in
the order presented below.

Gas Exchange
Net photosynthesis and transpiration rates were measured on a
south-facing, sun-exposed, mid-canopy leaf of five randomly
sub-sampled seedlings per experimental treatment unit.
Measurements occurred between 11:00 and 15:00 using an LI-
6400XT Portable Photosynthesis System equipped with a 6400-
02B LED light source (LI-COR, Inc., Lincoln, NE, USA).
Instrument settings were as follows: block temperature = 20°C,
CO2 reference = 375 µmol mol−1, flow rate = 500 µmol s−1, and
photosynthetically active radiation in the leaf chamber (PAR) =
1,500 µmol m−2 s−1.

General Morphological Characteristics
Total seedling height (measured from the root collar to the base
of the pseudo-terminal bud) and root collar diameter were
measured on each of the five sub-samples selected for the gas
exchange measurements. Of the five sub-samples initially
selected, three seedlings were randomly chosen for root
morphology measurements. Seedlings were removed from their
containers, roots were washed free from media, and root volume
was measured gravimetrically using the water displacement
method (Burdett, 1979).

Xylem Characteristics and
Stem Conductance
Of the three sub-samples used for root volume, two seedlings were
randomly chosen for the assessment of xylem flow velocity, the
proportion of xylem which was physiologically active, the average
diameter of xylem vessels, both physiologically active and total (see
Jacobsen et al., 2018). For these transpirational staining
measurements, seedling stems were severed underwater at the
root collar, the root systems were set aside for subsequent biomass
determination (described below), and the intact aboveground
September 2020 | Volume 11 | Article 557894
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portion of seedlings were suspended with the cut stem bases
submerged 1 cm in 4.5 ml cuvettes containing 4.0 ml of a 0.01%
(w:v) pH 2.0 crystal violet dye solution beneath an artificial light
source providing 540 µmol m−2 s−1 PAR and an ambient
temperature of 29.4°C. Seedlings were maintained in the dye
solution for 60 s, after which they were transferred to a cuvette
containing deionized water for 5 min maintained under identical
light and temperature conditions. After removal from the
deionized water cuvettes, a cross-section of stem approximately
0.5 mm in thickness was excised from each seedling at 2 cm above
the root collar for microscopic analysis of xylem properties.
Excised stem cross-sections were digitally photographed using a
4× objective lens under a light microscope (AmScope, MU1400).
For each stem cross-section, the proportion of xylem which was
physiologically active (as indicated by the presence of dye), the
average diameter of physiologically active xylem vessels (those
which were dyed), and the average diameter of all xylem vessels
were determined from the digital images using Photoshop CC
(Adobe Systems Inc., San Jose, CA, USA). Xylem flow velocity was
determined by severing each stem at 1 cm increments using a
razor blade, moving upward from the root collar, and visually
identifying (with the aid of a 10× hand lens) the upper limit of dye
occurrence within each seedling.

Of the two remaining sub-samples, one was randomly chosen
to measure native stem conductance and leaf specific
conductance. Stem segments 5 cm in length were severed at
the root collar under water with a razor blade. Bark was removed
and both ends were re-trimmed underwater with a fresh razor
blade. Conductance was measured using the same technique as
Kavanagh and Zaerr (1999), where stems were fitted to solution-
filled tubing with a reservoir placed 0.5-0.6 m above the sample.
The solution was filtered, deionized, and degassed. A pre-
weighed, 4.5 ml cuvette with cotton gauze was used to capture
solution passing through the stem. The vial was measured at 120
s intervals. Stem conductance (Ks) was calculated by dividing the
flow rate across the segment by the pressure gradient and stem
cross sectional area. Leaf specific (Kl) conductance was calculated
similarly using the leaf area, measurements described below.

Leaf Parameters
Leaves were subsequently removed from the two seedlings which
had been sub-sampled for xylem measurements, as well as the third
seedling sub-sampled for root volume. Leaves from each of these
three sub-samples were placed on a flatbed scanner to determine
total leaf area. Stomatal density was measured on the leaf from the
gas exchange measurements. Images of stomata were taken digitally
from a 10× objective lens under a light microscope (AmScope,
MU1400) and analyzed using Photoshop CC.

Biomass
The leaves, stems, and roots of the three sub-samples were placed
in separate paper bags and oven-dried at 68°C for 48 h. Dry
masses were recorded for each organ of each sub-sample, and
tissues were ground in a Wiley mill (Thomas Scientific,
Swedesboro, NJ, USA) to pass a 20-mesh screen. Total seedling
mass was calculated as the sum of the individual organ mass for
Frontiers in Plant Science | www.frontiersin.org 4
each sub-sampled seedling, and root:shoot was calculated by
dividing the root mass by the sum of the stem and leaf masses for
that seedling. Specific leaf area was calculated as total leaf area
divided by total leaf mass per seedling.

Non-Structural Carbohydrates
Soluble sugar concentrations were determined for each organ of
each of the three sub-samples. In short, ethanol-soluble sugars
were extracted from a 50 mg aliquot of dried and ground tissue
from each organ of each sub-sampled seedling via three
sequential extractions using 1 ml of room-temperature 80% (v:
v) ethanol for each extraction. Supernatant from each of the
three extractions was pooled, and an aliquot of the pooled
supernatant was diluted and subjected to an anthrone assay for
colorimetric quantification of soluble sugar concentration (Sloan
and Jacobs, 2012). Soluble sugar contents of each organ of each
sub-sampled seedling were calculated by multiplying the soluble
sugar concentration of an organ by its mass. After soluble sugars
were extracted, the residual tissue was again oven-dried at 68°C
for 48 h prior to the analysis of starch concentration.

Starch concentrations were determined for each of the three
sub-sampled seedlings. Starch contained within the oven-dried
residual tissue from which soluble sugars had been extracted was
enzymatically digested into glucose with a-amylase and
amyloglucosidase prior to extraction and colorimetric
quantification via a modified Trinder assay (Trinder, 1969; Lott
and Tuner, 1975; Schwab and Lindell, 2010). Starch contents of
each organ of each sub-sampled seedling were calculated by
multiplying the starch concentration of an organ by its mass.

Carbon Isotope Ratio (d13C)
Aliquots of ground stem tissue from the three sub-samples were
submitted to the Stable Isotope Core Laboratory of Washington
State University for determination of d13C. Samples for carbon
were converted to CO2 with an elemental analyzer (ECS 4010,
Costech Analytical, Valencia, CA) and then separated with a 3 m
GC column and analyzed with a continuous flow isotope ratio
mass spectrometer (Delta PlusXP, Thermofinnigan, Bremen).
Isotope reference materials were interspersed with samples for
calibration. Carbon isotope ratios were expressed as d13C relative
to the Pee Dee River belemnite standard (Craig, 1957).

Statistical Design and Analyses
This experiment was designed and analyzed as a 3 × 3 factorial
randomized complete block design, with three seed source levels
and three irrigation levels. Within each of the four blocks (i.e.,
four replicates), each treatment combination was represented by
a single complete rack of seedlings which had been randomly
assigned to a block and irrigation level. All data were analyzed
using the PROC MIXED procedure in SAS (SAS Institute Inc.,
Cary, NC, USA) with a = 0.05. Tukey’s Honest Significant
Difference test was used to detect significant differences
between means (a = 0.05). When interactions were found to
be non-significant, lower order terms were reported. All residuals
were checked for constant variance and normality. Both Ks and
Kl data were log transformed for analysis to meet the
September 2020 | Volume 11 | Article 557894
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assumptions of constant variance and normality. Data are back
transformed for manuscript presentation.
RESULTS

General Morphological Characteristics
and Biomass
No interactions between seed source and irrigation treatment were
observed for seedling total mass, leaf mass, stem mass, root mass,
total seedling height, root collar diameter, or root-to-shoot ratio by
mass (p > 0.05). Seed source was not found to influence leaf, stem,
or total seedling mass (p = 0.9670, 0.8688, and 0.0573, respectively);
however, it significantly influenced root mass, total height, root
collar diameter, and root:shoot (p = 0.0119). Root mass differed
between all seed sources, with the AB source exhibiting the highest
and the NM source exhibiting the lowest root mass (Table 1). Root:
shoot exhibited the same pattern across sources as root mass, while
total height was found to have an inverse pattern by source (Table
1). Root collar diameter was largest in the UT source and lowest in
the AB source, with no difference observed between the NM seed
source and other sources (Table 1).

Irrigation treatments did not influence total seedling mass,
leaf mass, stem mass, root mass, root collar diameter, or root-to-
shoot ratio (p = 0.6102, 0.0774, 0.4282, 0.7234, 0.1433, and
0.1625, respectively). However, total height responded positively
to decreasing water availability, with the Low treatment
exhibiting the greatest total height (p = 0.0009; Table 1).
Frontiers in Plant Science | www.frontiersin.org 5
Leaf Parameters and Gas Exchange
No interactions (p > 0.05) were observed for net photosynthetic
rates, specific leaf area (SLA), stomatal density (adaxial and abaxial).
Seed source did not influence net photosynthetic rates (p = 0.1836),
although it significantly influenced SLA (p = 0.0253) and stomatal
density (abaxial: p = 0.0223; adaxial: p = 0.007). SLA was higher in
the NM source than in the AB source, while the UT source did not
differ from either the NM or AB source. Abaxial stomatal density
was higher in the UT source than in the AB source, while adaxial
stomatal density was higher in the UT source than in the NM
source. No differences in stomatal density were observed between
the AB and NM sources (Table 2).

Irrigation treatments were not found to influence SLA, abaxial
stomatal density, or adaxial stomatal density (p = 0.1227, 0.6079, and
0.2441, respectively). Irrigation treatments, however, significantly
increased net photosynthetic rates in the Low treatment relative to
the Medium and High treatments (p < 0.0001; Table 2).

Xylem Characteristics and Stem
Conductance
No interactions between seed source and irrigation treatment were
observed for the percentage of physiologically active xylem, average
xylem vessel diameter, average diameter of physiologically active
xylem vessels, or xylem flow velocity (p > 0.05). Both Ks and Kl data
yielded no interactions (p < 0.5440). Seed source was not found to
influence the average diameter of physiologically active xylem
vessels (p = 0.4070) or xylem flow velocity (p = 0.3128), but the
NM seed source was found to have a higher percentage of
physiologically active xylem compared to the UT source and a
larger average xylem vessel diameter than other seed sources (p =
0.0276 and p = 0.0008, respectively; Table 3). Seed source elicited a
September 2020 | Volume 11 | Article 557894
,

TABLE 1 | Aspen seedling morphological characteristics by seed source (A) and
irrigation treatment (B).

A. Morphological responses by seed source

Morphological parameter Seed source

AB UT NM

Total seedling mass (g) 2.02 (0.11)a 1.69 (0.15)a 1.55 (0.16)a
Leaf mass (g) 0.60 (0.04)a 0.59 (0.06)a 0.59 (0.05)a
Stem mass (g) 0.52 (0.04)a 0.54 (0.06)a 0.56 (0.06)a
Root mass (g) 0.90 (0.06)a 0.56 (0.06)b 0.39 (0.05)c
Total height (cm) 23.0 (1.63)c 29.1 (1.02)b 37.6 (1.98)a
Root collar diameter (mm) 2.9 (0.14)b 3.3 (0.11)a 3.2 (0.14) ab
Root : Shoot (g:g) 0.83 (0.06)a 0.48 (0.01)b 0.32 (0.02)c

B. Morphological responses by irrigation treatment

Morphological parameter Irrigation treatment

High Medium Low

Total seedling mass (g) 1.64 (0.17)a 1.79 (0.17)a 1.82 (0.10)a
Leaf mass (g) 0.51 (0.04)a 0.63 (0.06)a 0.65 (0.04)a
Stem mass (g) 0.50 (0.05)a 0.53 (0.06)a 0.60 (0.05)a
Root mass (g) 0.63 (0.10)a 0.64 (0.09)a 0.58 (0.06)a
Total height (cm) 28.8 (2.01)b 27.2 (2.37)b 33.8 (2.36)a
Root collar diameter (mm) 3.0 (0.15)a 3.1 (0.15)a 3.3 (0.11)a
Root : Shoot (g:g) 0.59 (0.08)a 0.55 (0.07)a 0.49 (0.06)a
Values displayed are the mean (± standard error of the mean) of total seedling mass, leaf
mass, stem mass, root mass, height, root collar diameter, and root:shoot. Seed source:
Alberta (AB), Utah (UT), and New Mexico (NM). Irrigation abbreviations: High (90%
saturation), Medium (80% saturation), and Low (70% saturation). Within each
parameter, means followed by the same letter do not differ significantly (a = 0.05).
TABLE 2 | Aspen leaf parameter responses by seed source (A) and irrigation
treatment (B).

A. Leaf parameter responses by seed source

Leaf parameter Seed source

AB UT NM

Anet (µmol m−2 s−1) 10.93 (0.97)a 10.00 (0.71)a 11.67 (0.86)a
SLA (mm2 g−1) 273.9 (7.5)b 309.4 (15.8)ab 324.2 (16.4)a
Abaxial stomatal density 156.4 (14.3)b 222.7 (17.0)a 214.4 (19.5)ab
Adaxial stomatal density 38.7 (4.6)ab 50.3 (4.9)a 27.1 (6.8)b

B. Leaf parameter responses by irrigation treatment

Leaf parameter Irrigation treatment

High Medium Low

Anet (µmol m−2 s−1) 9.21 (0.69)a 9.91 (0.53)a 13.48 (0.78)b
SLA (mm2 g−1) 322.6 (17.6)a 300.2 (16.5)a 284.8 (6.9)a
Abaxial stomatal density 210.6 (16.7)a 196.1 (20.1)a 186.1 (19.9)a
Adaxial stomatal density 43.1 (5.4)a 32.2 (6.8)a 40.9 (5.9)a
Values displayed are the mean (± standard error of the mean) of net photosynthetic rate
(Anet), specific leaf area (SLA), stomatal density of the lower side of the leaf (abaxial), and
stomatal density of the upper side of the leaf (adaxial). Seed source abbreviations: Alberta
(AB), Utah (UT), and New Mexico (NM). Irrigation abbreviations: High (90% saturation)
Medium (80% saturation), and Low (70% saturation). Within each parameter, means
followed by the same letter do not differ significantly (a = 0.05).
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significant response for both Ks and Kl (p < 0.0003). For each, the
AB and UT were similar in value and exhibited less conductance
than the NM source (Figures 1A, B).

Irrigation treatments were not found to influence the average
diameter of physiologically active xylem vessels (p = 0.2686) or the
average xylem vessel diameter (p = 0.0622). The percentage of
physiologically active xylem (p = 0.0219) and xylem flow velocity
(p = 0.0104) were found to increase with decreasing irrigation in the
nursery (Figure 2). The Low irrigation level exhibited the highest
values for each of these parameters (Table 3). Irrigation treatment
had no effects on either Ks or Kl (p > 0.5211; Figures 1C, D).

Non-Structural Carbohydrates
No interactions between seed source and irrigation treatments were
observed for any measured non-structural carbohydrate parameter
(p > 0.05). Seed source was not found to influence leaf starch
concentration, leaf sugar content, stem sugar content, or leaf starch
content (p = 0.0511, 0.4774, 0.1713, and 0.1765; respectively).
However, seed source significantly influenced leaf sugar
concentration, stem sugar concentration, root sugar concentration,
stem starch concentration, root starch concentration, root sugar
content, stem starch content, and root starch content (p ≤ 0.0037).
Seed sources exhibited trends of decreasing non-structural
carbohydrate concentrations and contents with decreasing latitudes
of origin (Tables 4 and 5).

Irrigation treatments did not influence leaf or root sugar
concentrations (p = 0.9527 and 0.7851, respectively) or leaf or
root starch concentrations (p = 0.2453 and 0.2766, respectively).
Additionally, irrigation did not influence leaf, stem, or root sugar
contents (p = 0.1001, 0.9275, and 0.5755, respectively) or leaf,
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stem, or root starch contents (p = 0.4058, 0.0676, and 0.4651,
respectively). Only stem sugar and starch concentrations (p =
0.0293 and p = 0.0009, respectively) were influenced by irrigation
treatments, with stem sugar concentrations decreasing in the
Low treatment relative to the High and stem starch concentrations
decreasing in both the Medium and Low treatments relative to the
High treatment (Tables 4 and 5).

Carbon Isotope Ratio (d13C)
No significant interaction occurred between seed source and
irrigation treatments for d13C of stem tissues (p = 0.5933). Seed
source and irrigation main effects were significant (p < 0.0001
and p = 0.0028, respectively). Within seed source, the AB
source exhibited a less negative d13C compared to the other
two sources (Figure 3A). No differences were found between
NM and UT sources. For the irrigation treatments, d13C in the
High irrigation level was found to be significantly more
negative compared to the Medium and Low levels (Figure 3B).
DISCUSSION

Impacts of Irrigation Limitations
Studies that have limited irrigation during nursery production to
produce drought-conditioned seedlings have been highly varied in
their implementation and results. The initiation of drought
conditioning treatments has begun at a range of phenological
stages of seedling development and has been implemented across
different lengths of time, likely contributing to the varied results
(Zwiazek and Blake, 1989; van den Driessche, 1991; Villar-Salvador
et al., 1999; Vilagrosa et al., 2003; Galvez et al., 2011). It is known
that xylem begins to develop and differentiate early in a seedling’s
development (0–10 weeks after germination; Miller and Johnson,
2017), but the earliest initiation of a drought-conditioning treatment
identified by the authors was reported by Galvez et al. (2011) at 14
weeks after germination. Therefore, our study is novel in that its
drought conditioning treatments began early in the period of xylem
development (approximately 4 weeks after germination) and
continued throughout the full nursery growing season.

In the present study, patterns of height growth and net
photosynthesis differed substantially from those described by
Galvez et al. (2011), which found that seedlings in the well-
watered control treatment were much taller and had greater net
photosynthetic rates than seedlings in the drought treatment.
Typical seedling photosynthetic rates follow a pattern where they
are low in times of limited moisture availability and exhibit the
opposite when water is more available (Pinto et al., 2012). We
suspect, however, that irrigation timing prior to sampling may have
impacted the rates seen in this study. Pinto et al. (2016) observed
that moisture-limited seedlings exhibited low photosynthetic rates,
but that these rates quickly rebounded with an increase in soil
moisture. The same may have been true for the seedlings in this
study that were just irrigated (i.e., rehydrated) prior to measuring
photosynthesis. These seedlings were subjected to dehydration/
rehydration cycles as a result of the irrigation regimes throughout
September 2020 | Volume 11 | Article 557894
ABLE 3 | Aspen seedling xylem characteristics by seed source (A) and
rigation treatment (B).

. Xylem responses by seed source
ylem parameter
 Seed source
AB
 UT
 NM
active xylem
 11.5 (1.9)ab
 11.1 (3.0)b
 19.2 (2.6)a

verage xylem diameter (µm)
 25.8 (0.8)b
 26.6 (0.8)b
 29.6 (0.7)a

verage active diameter (µm)
 28.3 (1.0)a
 27.2 (1.6)a
 29.9 (1.7)a

ylem flow velocity (cm h−1)
 54.6 (3.9)a
 45.0 (7.1)a
 47.1 (3.9)a
. Xylem responses by irrigation treatment
ylem parameter
 Irrigation treatment
High
 Medium
 Low
active xylem
 9.9 (1.8)b
 12.9 (2.8)ab
 19.2 (2.8)a

verage xylem diameter (µm)
 26.0 (0.9)a
 27.9 (0.8)a
 28.1 (0.9)a

verage active diameter (µm)
 26.6(1.9)a
 29.1 (1.4)a
 29.8 (0.9)a

ylem flow velocity (cm h−1)
 40.4 (2.9)b
 45.4 (3.9)ab
 60.6 (6.4)a
alues displayed are the mean (± standard error of the mean) of the percentage of xylem
hich was physiologically active (% active xylem), the average diameter of xylem vessel
lements (average xylem diameter), the average diameter of physiologically active xylem
essel elements (average active diameter), and xylem flow velocity. Seed source
bbreviations: Alberta (AB), Utah (UT), and New Mexico (NM). Irrigation abbreviations:
igh (90% saturation), Medium (80% saturation), and Low (70% saturation). Within each
arameter, means followed by the same letter do not differ significantly (a = 0.05).
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A B

FIGURE 2 | Comparison of physiologically active xylem of first year Populus tremuloides seedlings by irrigation treatment. The blue stained (crystal violet dye) areas
indicate those xylem vessels that are actively conductive. The images displayed are representative of the High irrigation treatment level (A) and Low irrigation
treatment level (B).
A

B D

C

FIGURE 1 | Aspen seedling stem conductance by seed source and irrigation treatment. Native stem conductance (Ks) is shown in (A, C); leaf specific stem
conductance is shown in (B, D). Dashed lines are mean stem conductance K1; solid lines are the median. Seed source: Alberta (AB), Utah (UT), and New Mexico
(NM). Irrigation: High (90% saturation), Medium (80% saturation), and Low (70% saturation). Within each parameter, means followed by the same letter do not differ
significantly (a = 0.05).
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the growth cycle. Increased photosynthetic rates of the low irrigation
treatment may have been an opportunistic response to the
rehydration portion of the irrigation cycle, thus contributing to
the overall lack of growth differences seen in our results. This is
further evidenced by the trend in d13C values, which is discussed
below. It is also suspected that the significantly reduced height
growth and photosynthetic rates described by Galvez et al. (2011)
reflect the typical responses of seedlings when they are exposed to
drought after being produced in a nursery under non-limiting
irrigation regimes. In contrast, the increased height growth and
photosynthetic rates of seedlings in the Low irrigation treatment
reflect the responses of seedlings whose physiology and anatomy
have been altered by exposure to cyclic moisture limitations
beginning at an early developmental stage, potentially leading to
an improved ability to respond opportunistically to ephemeral
increases in soil moisture.

Soluble sugar concentrations of stems were lower in seedlings
from the Low irrigation treatment compared with seedlings from
the High irrigation treatment, while starch concentrations were
lower in seedlings of both the Low and Medium irrigation
Frontiers in Plant Science | www.frontiersin.org 8
treatments relative to seedlings of the High irrigation treatment
(Table 4). Considering that no differences were observed between
irrigation levels for stem sugar or starch contents, it is likely that
the reductions observed in the Low treatment were a growth
dilution effect resulting from the increased seedling heights
observed in this treatment (Tables 1 and 4). In examining the
response of soluble sugar and starch concentrations of one-year-
old aspen seedlings to drought, Galvez et al. (2011) found a pattern
of increasing root starch concentrations in seedlings exposed to
drought, which seemed to correspond to the observed cessation of
aboveground growth in these seedlings. In contrast, the present
study found no difference in non-structural carbohydrate
concentrations or contents in roots of drought-conditioned
seedlings, which seemed to correspond to the absence of
negative impacts on above-ground growth in drought-
conditioned seedlings in our study. This again highlights the
different physiological responses to drought observed in
seedlings which have been grown under drought conditions
TABLE 5 | Aspen seedling non-structural carbohydrate contents by seed source
and irrigation treatment.

A. Soluble sugar contents by seed source (mg)

Organ Seed source

AB UT NM

Leaves 78.6 (5.6)a 73.4 (7.6)a 68.1 (7.2)a
Stems 44.6 (2.8)a 41.7 (5.3)a 33.9 (3.8)a
Roots 52.0 (3.6)a 28.1 (3.8)b 14.7 (2.0)c

B. Starch contents by seed source (mg)

Organ Seed source

AB UT NM

Leaves 32.1 (4.4)a 40.2 (9.9)a 21.9 (5.7)a
Stems 33.2 (2.7)a 25.3 (3.9)a 12.6 (2.0)b
Roots 173.8 (13.6)a 61.9 (7.3)b 29.1 (5.2)c

C. Soluble sugar contents by irrigation treatment (mg)

Organ Irrigation treatment

High Medium Low

Leaves 62.5 (5.7)a 77.2 (7.7)a 80.4 (6.1)a
Stems 33.9 (3.9)a 40.4 (5.1)a 41.0 (3.8)a
Roots 32.8 (6.6)a 33.2 (5.8)a 28.8 (4.3)a

D. Starch contents by irrigation treatment (mg)

Organ Irrigation treatment

High Medium Low

Leaves 28.9 (5.5)a 38.8 (9.1)a 26.5 (6.6)a
Stems 28.9 (3.9)a 20.7 (3.7)a 21.4 (3.7)a
Roots 97.4 (24.0)a 85.9 (18.8)a 81.5 (19.2)a
Septembe
r 2020 | Volume 11 |
Values displayed are the mean (± standard error of the mean) of the soluble sugar contents
by organ and seed source (A), starch contents by organ and seed source (B), soluble
sugar contents by organ and irrigation treatment (C), and starch contents by organ and
irrigation treatment (D). Seed source abbreviations: Alberta (AB), Utah (UT), and New
Mexico (NM). Irrigation abbreviations: High (90% saturation), Medium (80% saturation),
and Low (70% saturation). Within each parameter, means followed by the same letter do
not differ significantly (a = 0.05).
TABLE 4 | Aspen seedling non-structural carbohydrate concentrations by seed
source and irrigation treatment.

A. Soluble sugar concentrations by seed source (mg g−1)

Organ Seed source

AB UT NM

Leaves 128.2 (3.7)a 122.6 (4.5)a 110.7 (3.2)b
Stems 85.4 (2.7)a 70.5 (3.8)b 57.9 (3.5)c
Roots 56.8 (1.7)a 44.7 (2.9)b 33.7 (1.8)c

B. Starch concentrations by seed source (mg g−1)

Organ Seed source

AB UT NM

Leaves 46.5 (6.0)a 55.9 (10.5)a 32.0 (5.5)a
Stems 65.6 (5.4)a 44.0 (4.4)b 23.8 (4.9)c
Roots 195.0 (7.7)a 101.4 (7.2)b 63.8 (7.1)c

C. Soluble sugar concentrations by irrigation treatment (mg g−1)

Organ Irrigation treatment

High Medium Low

Leaves 120.2 (4.1)a 120.0 (4.0)a 121.4 (5.0)a
Stems 75.6 (4.2)a 72.4 (5.6)ab 65.8 (3.9)b
Roots 45.7 (3.2)a 45.7 (4.0)a 43.8 (3.5)a

D. Starch concentrations by irrigation treatment (mg g−1)

Organ Irrigation treatment

High Medium Low

Leaves 49.0 (7.6)a 49.9 (9.0)a 35.5 (7.4)a
Stems 57.0 (6.4)a 38.3 (6.8)b 38.0 (6.6)b
Roots 128.2 (17.3)a 112.1 (16.3)a 120.0 (20.4)a
Values displayed are the mean (± standard error of the mean) of the soluble sugar
concentrations by organ and seed source (A), starch concentrations by organ and seed
source (B), soluble sugar concentrations by organ and irrigation treatment (C), and starch
concentrations by organ and irrigation treatment (D). Seed source abbreviations: Alberta
(AB), Utah (UT), and New Mexico (NM). Irrigation abbreviations: High (90% saturation),
Medium (80% saturation), and Low (70% saturation). Within each parameter, means
followed by the same letter do not differ significantly (a = 0.05).
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from an early age as opposed to those grown under non-limiting
soil moisture and only later exposed to drought conditions.

Unfortunately, neither soil nor plant water potentials were
directly monitored during this study. As a proxy, stable carbon
isotopes were used as a time-integrated index of the ratio of
intercellular to ambient CO2 concentration to infer water
availability and water-use efficiency (Ehleringer and Osmond,
1989; Warren et al., 2001; Dawson et al., 2002). The observation
that d13C values of stem tissues were enriched in the Medium
and Low irrigation treatments relative to the High irrigation
treatments (Figure 3B) confirms that both the Medium and Low
irrigation treatments induced levels of water limitation sufficient
to cause stomatal closure and isotopic enrichment during periods
of water-limited photosynthesis. Stable carbon isotopes have also
been used to confirm water relations and water stress for nursery
produced seedlings by Pinto et al. (2012).

Though irrigation had a notable effect on d13C values,
morphological parameters were minimally affected. It is
Frontiers in Plant Science | www.frontiersin.org 9
suspected that though stomata may have been closed more for
the Medium and Low irrigation treatments, the difference was
made up with increased photosynthesis. Studies have shown that
leaf photosynthetic traits can scale with hydraulic conductivity in
large trees (Bodribb and Field, 2000; Santiago et al., 2004), though,
this study did not show increased Ks and Kl for the Medium and
Low treatments. Interestingly, higher photosynthesis in the Low
treatment did correspond to increased active xylem percentage
and xylem flow velocity. Xylem vessel development in nursery
versus natural settings is minimally explored; nevertheless, it is
known that the functional attributes of xylem vessels can change
over the lifespan of the plant (Jacobsen et al., 2018). The attributes
measured in this study represent merely a snapshot in
developmental time. Despite this, the data may suggest that the
observed patterns of adaptations to decreased water availability in
quaking aspen seedlings rely heavily on the modification of the
physiology of above-ground portions of the plant in an effort to
facilitate water movement and prevent xylem cavitation events,
with negligible modification of the below-ground portions of the
plant or overall biomass allocation. It is suspected that the
increased active xylem may represent a buffer to cavitation
events for seedlings grown in water limiting environments
(Jacobsen et al., 2015). Seed source data may corroborate this.
NM sources illustrated higher KS, Kl, percent active xylem, and
average xylem diameter traits. Of the three sources, NM receives
the least amount of annual precipitation, and most of this comes
with the summer monsoons when the species has leaves and is
actively growing. It is logical that hydraulic systems for this region
are built with a pulse-activated and highly buffered system for
physiological functioning.

Understanding such aspects of the strategies by which aspen
seedlings attempt to adapt to environmental conditions is
important for nursery managers and restoration practitioners
inasmuch as it can help inform them as to the likely influence of
nursery cultural practices and post-transplant environmental
characteristics on seedling development and survival.

Relevance for Nursery Management
and Outplanting
The general lack of interactions suggests that the observed
responses to the irrigation treatments may remain consistent
across a range of seed sources for aspen. As a result, there is the
potential for nursery managers to use these irrigation strategies in
their nursery programs with similar outcomes for a range of seed
sources for aspen. Although further investigations will be
necessary to confirm the uniformity of the effects of irrigation
limitations during nursery culture across a much broader range of
seed sources, as well as to confirm the effects of such irrigation
limitations for drought-conditioning of other species, the absence
of interactions lends to the idea these traits exhibit some plasticity
across seed sources. This leaves open the possibility that such
irrigation treatments may be used to produce drought-
conditioned nursery stocktypes, thereby providing tree seedling
nursery managers with a novel cultural approach that allows for
the production of new seedling stocktypes culturally pre-
conditioned to a variety of outplanting site moisture regimes.
A

B

FIGURE 3 | Aspen seedling stem tissue d13C by seed source (A) and
irrigation treatment (B). Dashed lines are mean seedling stem tissue d13C;
solid lines are the median. Seed source: Alberta (AB), Utah (UT), and New
Mexico (NM). Irrigation: High (90% saturation), Medium (80% saturation), and
Low (70% saturation). Within each parameter, means followed by the same
letter do not differ significantly (a = 0.05).
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This expansion and adaptation of nursery cultural practices would
be a logical application of the Target Plant Concept and would
constitute a step forward for nurseries seeking to develop more
advanced stocktypes that are potentially better adapted to harsh
outplanting sites (Landis, 2011; Dumroese et al., 2016). Such
drought-conditioned stocktypes, in turn, could have the
potential to substantially improve the success of reforestation
and afforestation operations on harsh, moisture-limited
outplanting sites.
CONCLUSIONS

Limitation of irrigation during nursery production was found
to influence a small number of above-ground traits in aspen
seedlings, resulting in increased height growth, elevated
photosynthetic rates, increased percentages of active xylem,
and increased xylem flow velocities. No influence on measured
below-ground plant properties was observed, and few
interactions were observed between seed source and irrigation
treatments. This suggests that 1) adaptation to drought in aspen
seedlings may rely primarily on alteration of above-ground
plant traits to improve water use efficiency, and 2) that
observations from this study may be applicable across a range
of seed sources. Follow-up studies are needed to determine the
extent to which the altered seedling characteristics observed in
the Low treatment of this study translate into altered patterns of
seedling survival, growth, and physiology following outplanting
into water-limited environments. This research suggests
the possibility of developing drought-conditioned nursery
stocktypes that are pre-conditioned to harsh, drought-prone
planting sites.
Frontiers in Plant Science | www.frontiersin.org 10
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