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Detecting plant diseases in the earliest stages, when remedial intervention is most
effective, is critical if damage crop quality and farm productivity is to be contained.
In this paper, we propose an improved vision-based method of detecting strawberry
diseases using a deep neural network (DNN) capable of being incorporated into an
automated robot system. In the proposed approach, a backbone feature extractor
named PlantNet, pre-trained on the PlantCLEF plant dataset from the LifeCLEF 2017
challenge, is installed in a two-stage cascade disease detection model. PlantNet
captures plant domain knowledge so well that it outperforms a pre-trained backbone
using an ImageNet-type public dataset by at least 3.2% in mean Average Precision
(mAP). The cascade detector also improves accuracy by up to 5.25% mAP. The results
indicate that PlantNet is one way to overcome the lack-of-annotated-data problem
by applying plant domain knowledge, and that the human-like cascade detection
strategy effectively improves the accuracy of automated disease detection methods
when applied to strawberry plants.

Keywords: strawberry diseases, cascade detector, deep neural network, detection, plant domain knowledge

INTRODUCTION

Effectively protecting plants from diseases is a critical means of improving productivity and
enhancing crop quality (Fuentes et al., 2018). The traditional methods for the identification and
diagnosis of plant diseases - visual analysis by professional farmer or inspection of a sample in a
laboratory - generally require extensive professional knowledge and high costs. Moreover, neither
method is particularly effective, with carrying a high probability of failure in successfully diagnosing
specific diseases, leading to erroneous conclusions and treatments (Ferentinos, 2018).

Detecting plant diseases in their earliest stages can reduce the need to rely on potentially harmful
remedial chemicals and lower labor costs. As many greenhouses are quite large, it is not always easy
for even the most experienced farmers to identify plant diseases before they have spread. For this
reason, an automated disease detection process will prove to be a valuable supplement to the labor
and skill of farmers.

Researchers have already developed automatic identification and diagnosis methods capable
of reaching fast, convenient, and accurate conclusions based on image analysis and machine
learning techniques. Currently, there are two types of vision-based disease detection methods.
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First, are those methods that require humans to be kept in the
detection loop. For example, the PlantVillage dataset (Hughes
and Salathé, 2015) consists of images of detached leaves. When
a detection system trained with a dataset like this is installed on
handheld mobile devices equipped with a camera, a human is
expected to take the initiative in identifying suspicious leaves and
running the app. In the second type of system, crop monitoring
robots capable of surveilling the whole of a crop at once are
installed throughout a greenhouse. The images collected by
these robots can be analyzed to identify a potential disease
and automatically alert the appropriate supervisor. While such
a surveillance system presents many logistical challenges in
migrating from the drawing-board to the greenhouse, detection
model is highly desirable for its superior early detection abilities
and potential for cost savings.

The typical farmer approaches disease detection in two
stages. First, he or she tries to identify suspicious areas
on a plant that, based on his (or her) domain knowledge,
may indicate disease. They then must determine whether it
is a real disease or not. This paper proposes an improved
deep learning–based strawberry disease detection method
that relies on automatic visual object detection to imitate
the two-steps of the human expert–detection process. First,
our proposed system uses domain knowledge specific about
plants for transfer learning. Second, it relies on a cascade
detection scheme, by which it first glances over the objects
in order to identify large suspicious regions, and then
scrutinizes the suspicious area more closely to precisely
identify the disease.

In general, plants vary in the shapes and colors of their flowers,
leaves, stems, fruits, and roots. In light of this great diversity,
it is inappropriate to analyze and extract plant features using a
pre-trained model based on the ImageNet dataset, as this dataset
does not reflect adequate domain knowledge. Typically, source
and target domains are well connected with each other, which
maximizes the effect of transfer learning. This explains why it is so
inefficient to use pre-trained models with coarse-grained public
datasets like ImageNet (Krizhevsky et al., 2012) for plant disease
detection or classification.

Our proposed method uses networks named PlantNets,
pre-trained with the PlantCLEF dataset from the LifeCLEF
2017 challenge (Joly et al., 2017), to construct a deep
object detection model by transfer learning. Unlike prior
disease detection or classification approaches (Kawasaki
et al., 2015; Mohanty et al., 2016; Sladojevic et al., 2016;
Brahimi et al., 2017; Cruz et al., 2017; Fuentes et al., 2017,
2018, 2019; Ramcharan et al., 2017, 2019; Barbedo, 2018;
Ferentinos, 2018; Liu et al., 2018; Nie et al., 2019; Too
et al., 2019), we assume a PlantNet backbone network
pre-trained on the PlantCLEF dataset has the low-level
domain knowledge of a farmer experienced at plant and
disease identification.

The proposed method then uses a two-stage cascade detection
model. In the first stage, the system surveilles a large visual
field, seeking visual symptoms of diseases or other objects that
may possibly cause a false positive. In the second stage, the
system closely checks only the disease-suspected area to improve

diagnosis and precision. In this way, the system reduces false
positives caused by adverse environmental factors, like glare
or other objects.

In our experimental a single-stage detector with a PlantNet
provided an 86.4% mAP in the complex task of strawberry disease
detection, which represents a 3.27% improvement over a model
pre-trained on the ImageNet dataset. In addition, the cascade
model produced approximately 91.65% mAP, which represents a
5.25% gain over a non-cascade model.

The remainder of this paper is organized as follows. In the next
section, we provide a detailed review of previous works related
to our method. Further details about the cascade strategy for
disease detection with a PlantNet are provided in Section 3. In
Section 4 we outline the proposed approach to strawberry disease
detection. Our experimental results are presented in Section 5,
along with a discussion of the performance of our method.
Finally, in Section 6 we summarize our work, and suggest what
new lines of inquiry have been opened by our research.

RELATED WORKS

A conventional computer vision approach consists of feature
exploration by image analysis and identifier construction by
machine learning. Many visual feature classifiers have been
developed for application in many problem domains (Zhao et al.,
2019). In general, for traditional computer vision, there have been
many expert-designed features descriptors developed, including
the Scale Invariant Feature Transform (SIFT) (Lowe, 2004), the
Haar (Viola and Jones, 2001), and the Histogram of Oriented
Gradients (HOG) (Dalal and Triggs, 2005). Theses have been
exploited with machine learning algorithms, such as the Support
Vector Machine (SVM), to construct detectors or classifiers.

The deep learning approach differs from the conventional
computer vision–based disease recognition in several way. First,
the features are not selected by an expert, but are automatically
derived by a network relying on a large amount of training data.
In designing this approach, therefore, the goal is not to identify
the proper features, but rather to finding an appropriate network
and preparing suitable training data. Another difference is that
the detector or the classifier can be obtained by simultaneously
training it with features in the same deep neural network.
Therefore, the appropriate network structure becomes more
important with an efficient training algorithm.

There are two different vision-based approaches to plant
disease recognition by machines: classification and detection. The
classification approach relies on a human to visually identify
symptoms of a plant disease, and then capture an image and ask
a computer to provide a diagnosis. This approach starts with an
image of part or whole of a plant canopy, diseased or healthy, and
then follows this with an attempt determine whether the image
includes symptoms of a specific disease.

The detection approach, in contrast, first tries to identify
the location of symptoms, usually within bounding boxes, and
classify them as specific diseases. This process is localized to,
suspicious areas to reduce the necessity of human intervention.
In this system, an image in which symptoms are detected
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results in an output of bounding boxes with the corresponding
names of diseases. Input images for the detection approach
are generally less restricted than those of the classification
approach, as they can be captured from any direction or distance
to reveal the symptoms. The detection approach can also be
applied to a sequence of video frames, while the classification
approach typically relies on only a single image. Being the more
flexible and comprehensive of the two options, it comes as no
surprise that a detection system was preferred in designing our
automated system.

Classification Approaches for Disease
Identification
There have been a number of prior Deep Neural Network
(DNN)-based classification approaches to plant diseases and
disorder identification. Such DNNs usually consists of a
multilayer Convolutional Neural Network (CNN)-based feature
representation block which is followed by a classification block.
The PlantVillage dataset has been widely used to train classifiers
because of its excellent images of plant disease.

Table 1 summarizes recent research in which Deep Learning
(DL)-based classification approaches have been applied. Note
that a great deal of the research used the ImageNet pre-trained
backbone models as a feature extractor, and the PlantVillage
dataset to fine-tune the specific feature extractor and classifier to
plants and diseases. In addition, (Park et al., 2018) proposed a
DL-based classification approach for the five types of apple leaf
conditions in hyperspectral images for diagnosis of Marssonina
blotch, in which they selected several bands by minimum
redundancy maximum relevance (mRMR). Also, (You and
Lee, 2020) developed a lightweight MobileNet-based DNN for
classifying citrus diseases and pests.

Detection Approaches for Disease
Identification
In general, DL-based visual object detections are divided into
single-step and multi-step approaches. OverFeat (Sermanet et al.,
2013) was one of the first single-stage object detections based
on deep learning networks. There are two primary means
of applying the single-step approach; Single Shot Multi-Box
Detector (SSD) (Liu et al., 2016) and You Only Look Once
(YOLO) (Redmon et al., 2016). The single-step approach reduces
the computational complexity of the network to improve
detection speed, which is its primary advantage over the multi-
step approach. Plant disease detections by DL-based computers
that use the single-step approach have been developed for various
spices, such as cassava (Ramcharan et al., 2017, 2019) and
tomatoes (Fuentes et al., 2017, 2018, 2019).

The multi-step approach is based on a two-step process. The
first step generates a set of candidate region proposals (Uijlings
et al., 2013), and the second step classifies the proposals into
either foreground (enclosed by bounding boxes) or background.
This approach originated from the Region-based Convolutional
Neural Network (R-CNN) (Girshick et al., 2014) and successive
improvements in detection speed and accuracy led to the Fast
R-CNN (Girshick, 2015), the Faster R-CNN (Ren et al., 2015),

the Region-based Fully Convolutional Network (R-FCN) (Dai
et al., 2016), and the Feature Pyramid Network (FPN) (Lin
et al., 2017). Several plant disease detection models have used
the multi-stage approach to identify, for example, verticillium
wilt in strawberries (Nie et al., 2019), and diverse diseases in
tomatoes (Fuentes et al., 2017, 2018, 2019). Table 2 summarizes
plant disease identification based on visual object detection.

As gathering and labeling data for disease identification is
expensive, all of the prior research used pre-trained networks
and applied transfer learning. Gathering even annotated data
for object detection is much harder than it is for classification,
as bounding boxes must be provided for ground truth. In
general, all DNN-based object detection methods adopted the
backbone networks pre-trained on the ImageNet dataset of the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
or the Microsoft Common Objects in Context (MS COCO)
dataset (Lin et al., 2014), which is appropriate for coarse-grained
identification tasks. Because there is no public dataset like
PlantVillage for classification, every detection model developed
has used its own dataset collected from the field to fine-
tune the network.

THE PROPOSED APPROACH

In light of the many advantages of the object detection model
for automating early monitoring for plant diseases, our DL-
based approach adopts this approach. In our two-stage cascade
structure, the initial diagnosis stage identifies suspected diseased
area and the second stage is used for fine detection. Each stage
is constructed with one of the PlantNets as a backbone for
the feature extractor, which is pre-trained using the PlantCLEF
dataset from the LifeCLEF 2017 challenge.

The scope of this work does not include abiotic stresses.
We assume that strawberry growing in relatively small sized
greenhouses in South Korea, where the abiotic stresses are
relatively rare and the image capturing is less hard to be
incorporated with a robot system.

Plant Domain Knowledge Network
(PlantNet)
Detecting disease on the basis of plant images is not a coarse-
grained task like ILSVRC, which includes objects such as
elephants, cars, apples, etc., and which all look different from each
other. Many plant diseases and disorders look very similar, so
even an expert might struggle to correctly diagnose and remediate
the symptoms. Accordingly, the backbone networks pre-trained
with an ImageNet dataset may not be sufficient to be applied to
the tack of detecting disease from plant images.

Successful transfer learning requires that, the visual features
in the target domain should be properly transformed from
those of the source domain by fine-tuning, even with a small
training dataset. Labeled data for plant disease detection is
expensive to acquire, as the name and location of a disease
must be annotated with the corresponding bounding box by a
domain expert. Accordingly, it was inevitable that we would have
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TABLE 1 | L-based classification approaches for identification of plant diseases.

Authors Network Models Dataset for pre-training Plants Dataset for fine-tuning Disease classes

Sladojevic et al., 2016 CaffeNet ImageNet 15 spices Collected from Internet 13

Cruz et al., 2017 Modified LeNet PlantVillage olives PlantVillage 3

Mohanty et al., 2016 AlexNet, GoogLeNet ImageNet 14 spices PlantVillage 38

Barbedo, 2018 GoogLeNet ImageNet 12 spices 12

Too et al., 2019 VGG16, InceptionV4,
ResNet50, -101, -152,
DenseNet121

ImageNet 14 spices PlantVillage 38

Brahimi et al., 2017 AlexNet, GoogLeNet ImageNet 9 diseases PlantVillage 9

Ramcharan et al., 2017 InceptionV3 ImageNet cassava Collected from fields 5

Kawasaki et al., 2015 Modified LeNet cucumber Collected from laboratory 3

Ferentinos, 2018 AlexNet, GoogLeNet, OverFeat,
VGG16, AlexNetOWTBn

25 species PlantVillage 58

Liu et al., 2018 AlexNet ImageNet apple Collected from fields 4

TABLE 2 | Summary of visual object detection models for plant disease monitoring.

Authors Models Dataset for pre-training Plants Dataset for fine-tuning No. of classes

Nie et al., 2019 Faster R-CNN + Attention ImageNet strawberry Collected from fields 4

Ramcharan et al., 2019 SSD MSCOCO cassava Collected from fields 3

Fuentes et al., 2017 Faster R-CNN,R-FCN, SSD ImageNet tomato Collected from fields 9

Fuentes et al., 2018 Faster R-CNN + FilterBank ImageNet tomato Collected from fields 10

Fuentes et al., 2019 FPN + LSTM ImageNet tomato Collected from fields 10

to overcome a lack-of-training-data problem in our efforts to
achieve accurate detection.

Because no large image dataset for plant diseases exists,
we relied on the PlantCLEF dataset from the LifeCLEF
2017 challenge, which was designed to study biodiversity and
agrobiodiversity (Joly et al., 2017). We believe PlantCLEF is
superior to ImageNet for extracting the proper features of plant
diseases, as these images are particularly well-suited successfully
fine-tune for plant disease detection with a small amount of
domain-specific, annotated training data.

The PlantCREF dataset includes images of weeds, trees, ferns,
etc., and their various parts, including the flowers, fruits, and
leaves. The dataset includes 256,278 credible and noiseless plant
images, and approximately 1.45M images with noise gathered off
the internet. Figure 1 shows several sample images taken from
the noiseless dataset. We filtered out thousands of noisy images,
and retrained approximately 1.25M images.

We tested three recent backbone networks, including
ResNet50, ResNet152, and the InceptionResNet v2 models, to
do the classification task of the LifeCLEF 2017 challenge. We
ultimately choose ResNet152, which gave the best performance
with respect to Top-5 classification accuracy.

Cascade Strawberry Diseases Detection
Model
Our strawberry disease detection model adopts a two-step
cascade object detection technique. Figure 2 shows the proposed
detection model. The first stage detects suspicious areas of
diseases with a low threshold-of-confidence score for the
locations of the bounding boxes. In general, the role of the first
stage in cascade detection is to increase the recall rate by using a

low detection threshold. Improving precision and reducing false
detections is the goal of the second stage. In the first stage, we
defined three categories; “normal,” “abnormal (fruit, leaf),” and
“background object” (to include items such as vinyl or other items
that are not part of the plant). Figure 3 shows the detection and
merged results of the first stage. Adjacent suspicious areas of
disease (a short distance apart) were then merged as rectangles to
prepare a single large area. In this merging process the detected
background objects were excluded so that they would not be
examined in the second stage. This process removed areas where
diseases would not manifest in order to reduce false detections
and reduce speed in reaching the second stage.

The merged area of the rectangle was cropped and resized
to feed into the second stage module, where suspicious areas
were again scrutinized to more precisely detect seven categories
of six diseases, including “angular leafspot,” “anthracnose fruit
rot,” “gray mold,” “leaf blight,” “leaf spot,” and “powdery mildew
fruit/leaf.” The final results of the analysis of disease class
and locations are displayed in the input image. The second
stage review provides high accuracy and low false detection
rates by carefully observing only the confined areas. Note
that the structure of the detection modules are identical
even though the object classes to be detected are different
from each other.

Strawberry Disease Detection Modules
Because the ResNet152 backbone network was the best
performer at the LifeCREF 2017 classification task, it was
chosen as the initial backbone feature extractor for both
the first and second detection modules. Once the features
are extracted, they are captured in an FPN structure. Based
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FIGURE 1 | Examples of noiseless samples from the PlantCLEF dataset in LifeCLEF 2017 challenge (Joly et al., 2017).

FIGURE 2 | Proposed strawberry disease detection model.

FIGURE 3 | Detection and merged results of the first stage: (A) suspicious areas of disease in the first stage, and (B) merged areas for input to the second stage.
[Forestry Images (2020); photographer: Sikora].

on this multi-scale feature representation, the regions to
be classified are proposed and precisely located. Figure 4
shows the ResNet152 backbone and the FPN-structured disease
detection module.

EXPERIMENTS

In this section, we present the experimental results for the
PlantNets, and our collected strawberry dataset.
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FIGURE 4 | ResNet152 backbone and the FPN-structured disease detection module.

FIGURE 5 | LifeCLEF 2017 task for a round dotted red-rectangle PlantNet.

TABLE 3 | Summary of results from the LifeCLEF 2017 Task.

Backbone Accuracy Features obtained from ImageNet dataset Fine-tuned by PlantCLEF 2017 dataset

250K noise-free data 1.50M + noisy data

ResNet50 Top-1 20.80% 51.70% 69.60%

Top-5 26.30% 79.50% 85%

ResNet152 Top-1 27.10% 64.80% 76.30%

Top-5 32.80% 84.00% 91.00%

InceptionResNetV2 Top-1 24.50% 67.50% 75.50%

Top-5 38.00% 83.50% 90.00%

LifeCLEF 2017 Task and PlantNets
To demonstrate the necessity for transfer learning, and to identify
the backbone network best suited to capturing visual features
from plant images, we followed the LifeCLEF 2017 task, which
constructs an image classifier for 10,000 categories of different
plants, as shown in Figure 5.

In our experiment, we first comprise the backbone
networks with the parameters trained on the ImageNet
dataset and adjusted the parameters associated with the
Softmax classifier for the 10,000 categories. Note that this
experiment relied on only the learned feature extractor
that was trained on the ImageNet dataset, and only
attempted to train the classifier to perform the task.
This setting resulted in poor performance, as expected,

by the ResNet50, ResNet152, and InceptionResNetV2, as
listed in Table 3.

The backbone was then pre-trained with the ImageNet dataset
and the Softmax classifier was fine-tuned with the LifeCLEF
2017 dataset. Performance was greatly improved by fine-tuning
both the backbone feature extractor and the classifier network,
suggesting that fine-tuning is necessary prerequisite to improving
performance with domain-specific data. Performance improved
as the amount of data increased, even when noisy data was
included. Among the Top-5 categories, ResNet152 was the best
among the three, providing 91.0% classification accuracy, as
shown in Table 3. Based on these results, we chose ResNet152 as
the backbone of the strawberry disease detector. The dotted red
rounded rectangle in Figure 5 represents the PlantNet.
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TABLE 4 | Number of images for strawberry disease detection.

Categories of positive and
negative examples

Original number of images Images for training and
validation

Augmented number of
images for training and

validation

Numbers of test
images for evaluation

Angular leafspot 319 223 2676 96

Anthracnose fruit rot 231 161 1932 70

Gray mold 235 164 1968 71

Leaf blight 294 209 2508 85

Leaf spot 593 415 4980 178

Powdery mildew fruit 137 97 1164 40

Powdery mildew leaf 718 502 6024 216

Normal 2000 1400 16800 600

Background 198 138 1656 60

Total 4725 3309 39708 1416

FIGURE 6 | The annotated sample images from the collected dataset. Ground truth is annotated by bounding boxes with the following class categories: diseases
(red box), normal plants (blue box), and background object (purple box).

Strawberry Dataset
We collected 4,560 images from different greenhouses using
camera-equipped mobile phones, and combine them with 175
Forestry Images1 for a total 4,735 images as in Table 4.

1Forestry Images (2020), https://www.forestryimages.org/index.cfm (accessed
November 7, 2020). Photographers: Brenda Kennedy, University of Kentucky,
Bugwood.org; Bruce Watt, University of Maine, Bugwood.org; Clemson University

TABLE 5 | Comparison of results from ImageNet- and PlantNet-pre-trained
backbones in a single-stage detector.

Class Average precision of the
ImageNet pre-trained

backbone

Average precision of
PlantNet

Angular leafspot 74.72% 81.69%

Anthracnose fruit rot 87.38% 90.23%

Gray mold 89.68% 90.00%

Leaf blight 87.64% 89.81%

Leaf spot 71.66% 80.48%

Powdery mildew fruit 83.94% 84.01%

Powdery mildew leaf 86.91% 88.59%

mAP 83.13% 86.40%

We assumed that the images were collected from diverse
environmental conditions for strawberries, as they were taken

– USDA Cooperative Extension Slide Series, Bugwood.org; Don Ferrin, Louisiana
State University Agricultural Center, Bugwood.org; Edward Sikora, Auburn
University, Bugwood.org; Florida Division of Plant Industry, Florida Department
of Agriculture and Consumer Services, Bugwood.org; Gerald Holmes, Strawberry
Center, Bugwood.org; Garrett Ridge, NCSU, Bugwood.org; Jonas Janner Hamann,
Universidade Federal de Santa Maria (UFSM), Bugwood.org; Ko Ko Maung,
Bugwood.org; Mary Ann Hansen, Virginia Polytechnic Institute and State
University, Bugwood.org; Natalie Hummel, Louisiana State University AgCenter,
Bugwood.org; Paul Bachi, University of Kentucky Research and Education Center,
Bugwood.org; Rebecca A. Melanson, Mississippi State University Extension,
Bugwood.org; Scott Bauer, USDA Agricultural Research Service, Bugwood.org; U.
Mazzucchi, Università di Bologna, Bugwood.org.

TABLE 6 | Comparison of results from the IoU detection threshold in the
first-stage detector.

IoU threshold True Positive False Negative Recall

0.1 39708 0 1

0.2 39578 130 0.9941976

0.3 39492 216 0.989226633

0.4 39333 375 0.983649467

0.5 38160 1548 0.961471133
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different farms. The dataset included images of the beginning,
middle, and final stages of various diseases, as well as
unblemished strawberries. Such diversity in the dataset is
important to successfully train a generalized disease detector.
Figure 6 shows sample images from the dataset.

Training the Strawberry Disease Detector
The dataset was divided into training, validation, and test
datasets. About 60% of the images in the dataset were taken
for training, and 10% were used for validation. To reduce
the chance of overfitting, we augmented the training and
validation dataset with geometric transformations, including
resized, cropped, rotated, horizontal/vertical flipped, and PCA
color-changed images. The test dataset used evaluation was
not augmented. Table 4 describes the training, validation, and
testing datasets in greater detail. We separated the background,
which included objects like pillars that supported the greenhouse
and black vinyl to protect against weeds, from the foreground
images of the strawberry plant. The normal category includes
images of healthy strawberries, which corresponds to the negative
examples as well as background in the first stage of cascade
detection. Seven different categories of strawberry diseases
were considered (powdery mildew has two different categories,
depending on where it manifests on the plant). As shown in
Figure 6, ground truth is annotated by bounding boxes with
the following class categories: diseases (red box), normal plants
(blue box), and background object (purple box). From the images
listed in Table 4, we annotated 21,252 bounding boxes for
abnormal classes (positive examples of diseases and background
objects) and 16,800 for normal classes (negative examples, i.e.,
normal strawberries).

Training was performed separately for each detection module.
Because this includes merging the bounding boxes and the
crop/resizing process that prepares the input for the second
stage of the detection module, end-to-end learning was not
possible. The proposed model was trained and evaluated on
an Intel Xeon CPU E5-2650, 64GB RAM, and a single NVidia
Geforce TiTanXP GPU. The model parameters were selected as
follows: the maximum number of iterations was 250,000, the
initial learning rate of 0.001 with the decaying rate of 0.1 for
80,000/150,000 iterations, weight decay was 0.00004, momentum

TABLE 7 | Comparison of the results from ImageNet and PlantNet pre-trained
backbones in the cascade detector.

Class Average precision of
ImageNet pre-trained

backbone

Average precision of
PlantNet

Angular leafspot 88.41% 94.55%

Anthracnose fruit rot 90.23% 96.01%

Gray mold 90.17% 94.52%

Leaf blight 89.81% 91.82%

Leaf spot 85.16% 87.83%

Powdery mildew fruit 84.01% 86.36%

Powdery mildew leaf 88.59% 90.48%

mAP 88.05% 91.65%

rate of 0.9. During the training, OHEM (Online Hard Example
Mining) was adopted to effectively relieve the class imbalance
problem and decrease the false positive error.

Evaluation Method
The performance of the proposed model was evaluated based on
average precision (AP) introduced by the Pascal VOC Challenge
(Everingham et al., 2010). AP is the area under the precision and
recall curve for the detection task, and has a constant recall level
of 0 to 1. The equation for AP is as follows:

AP =
1

11

∑
r∈{0,0.1,0.2,. . . ,1}

Pinterp(r) (1)

Pinterp(r) = maxr̃:r̃≥rP(r̃) (2)

where Pinterp (r) and P(r̃) represent the maximum precision for
any recall values greater than r, and the measured precision of
recall, r̃, respectively. The intersection over union (IoU) defined
in Equation 3, is a used method for evaluating the detector
accuracy:

IoU(A,B) =

∣∣∣∣A∩ B
A∪ B

∣∣∣∣ (3)

where A Brepresent the ground truth box collected in the
annotation and B represents the predicted result of the network.
If the estimated IoU was higher than a given threshold, the
predicted results were considered as positive samples (TP + FP)
otherwise they were considered negatives (FN + TN). IoU is a
parameter where the bounding box detected is used to identify
True Positive(TP), True Negative(TN), False Positive(FP), and
False Negative(FN).

EXPERIMENT RESULTS AND
DISCUSSION

ImageNet and PlantNet Pre-trained
Backbone in a Single Stage Detector
To determine the effect of PlantNet on performance, we
compared two different types of backbone feature extractors in
a single-stage detector; one was a ResNet152 pre-trained only
on the ImageNet dataset and the other was a ResNet152 pre-
trained on a PlantNet obtained from the LifeCLEF 2017 task.
For both experiments, the single-stage detectors were adjusted
and fine-tuned with the strawberry training dataset. With the
same detection threshold of 0.5 for the FPN, pre-training with
ImageNet resulted in 83.13% mAP, while pre-training from
PlantNet resulted in 86.4% mAP. This result clearly shows how
direct use of a PlantNet pre-trained backbone is superior to an
ImageNet. PlantNet is capable of capturing domain knowledge
prior to being fine-tuned with a small amount of domain-specific
data on strawberry diseases. Table 5 summarizes the results
of the experiment.

ImageNet and PlantNet Pre-trained
Backbones in a Cascade Detector
In the experiment, we constructed a cascade detector with two
different types of backbone feature extractor; one pre-trained
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FIGURE 7 | Samples of the final detected results.

FIGURE 8 | Comparison of the detection results between the single stage (upper row) and two-stage cascade detector (lower row).

with the ImageNet dataset, and the other pre-trained with
PlantNet. The number of bounding boxes detected by the object
detector decreased as the IoU threshold increased. However, the
impact on the cascade structure should also be considered in
terms of the recall rate, which is equal to TP/(TP + FN). Table 6
shows true positive, false negative and recall for the IoU detection
threshold in the first stage.

IoU detection threshold for the second stage was 0.5 in order
to increase precision. The overall mAPs for the ImageNet was
88.05% and 91.65% for the PlantNet pre-trained backbones,
which are at least 4.92% and 5.25% higher than those from the
single-stage detector.

The average time until disease detection was 0.241 s for
the single stage cascade detector and 0.662 s for the two-
stage cascade detector, using the computation resources
described in Section “Training the Strawberry Disease
Detector.” This shows that the cascade structure improves
accuracy, though it comes at the cost of increased detection
time. In order to speed up the detection process, pipeline
processing could be adopted with our cascade approach.
Table 7 summarizes our results, and Figure 7 shows samples
of our detection tests, in which blue rectangles represent the
merged suspicious areas of disease, and the red boxes are the
diseases detected in the second stage. Figure 8 compares the
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results of the single stage and the cascade detectors. The false
positive errors in the upper row of the single stage detector
are effectively reduced in the lower row of the two-stage
cascaded detector.

It is difficult to compare the performance of our proposed
method using relative terms, as we have attempted to detect
different set of diseases with different data than other
researchers. For example, (Nie et al., 2019) have achieved 99.95%
accuracy in identifying four diseases, while others (Kusumandari
et al., 2019; Shin et al., 2020) have sought to identify only
a single disease.

CONCLUSION

Protecting plants from diseases is critical to maximizing farm
productivity and achieving higher crop quality. The earlier
plant diseases can be detected, the more effective and targeted
an intervention can be. We reviewed recent research into
vision-based plant disease identification, especially research that
involved use of DL. We then categorized these interventions
into two types based on the degree of human intervention: the
‘classification’ and ‘detection’ approaches.

After determining that the detection approach was superior,
we proposed an improved method of vision-based detection
of strawberry diseases using a DNN that is capable of being
incorporated into an automated robot system. In our approach,
the backbone feature extractor PlantNet, which was pre-trained
on plant data like the PlantCLEF dataset for the LifeCLEF
2017 challenge, was installed with a two-stage cascade disease
detection model. PlantNet captured plant domain information
quite well, and it demonstrated performance superior to that of
the backbone pre-trained on an ImageNet-type public dataset by
at least 3.2% mAP. The cascade detector also improved accuracy
by up to 5.25% mAP. The results indicate that PlantNet is one way
to overcome a lack of annotated data by applying plant domain
knowledge, and that the human-like cascade detection strategy is
effective at improving accuracy.

Diseases and abiotic stresses in the strawberry plant occur
everywhere in greenhouses, which is related to environmental
data such as low or high temperature, deficient or excessive
water, high salinity, heavy metals, and ultraviolet radiation. These

factors are hostile to plant growth and development, leading to
crop yield penalty (He et al., 2018). For this reason, pursuing even
more accurate, quick, and practical strawberry plant disease and
abiotic stress lesion detection techniques is necessary. It can also
be helpful to improve the visual analysis results by integrating
other environmental data, such as humidity, temperature, and
nutrition. In the future development of the proposed method,
we will continuously collect environmental and strawberry plant
image data for the disease and abiotic stress and can improve
the detection accuracy by fusion of visual detection results and
environmental knowledge information.
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